Effect of Sox18 on the Induction Ability of Dermal Papilla Cells in Hu Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Culture of DPCs of Hu Sheep
2.2. Immunofluorescence Staining in Dermal Papilla Cells of Hu Sheep
2.3. Total Cellular RNA Extraction
2.4. Construction of the Sox18 Overexpression Vector
2.4.1. Full-Length Amplification of the Sox18 CDS Region and Restriction of pcDNA3.1 Plasmid
2.4.2. Ligation of the Sox18 Fragment with Linear Vector
2.5. Sox18 siRNA Synthesis
2.6. Cell Transfection
2.7. Alkaline Phosphatase Activity
2.8. Real-Time Quantitative Polymerase Chain Reaction (RT-PCR)
2.9. Western Blotting
2.10. Activation and Inhibition of Wnt/β-Catenin Signal Pathway
2.11. Statistical Analysis
3. Results
3.1. Sox18 Was a Marker Gene of DPCs in Hu Sheep
3.2. Sox18 Enhanced the Induction Ability of DPCs in Hu Seep
3.3. Sox18 Regulated the Induction Ability of DPCs through the Wnt/β-Catenin Signal Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lv, X.; Sun, W.; Yin, J.; Ni, R.; Su, R.; Wang, Q.; Gao, W.; Bao, J.; Yu, J.; Wang, L.; et al. An Integrated Analysis of MicroRNA and mRNA Expression Profiles to Identify RNA Expression Signatures in Lambskin Hair Follicles in Hu Sheep. PLoS ONE 2016, 11, e0157463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, T.; Guo, X.; Wang, H.; Hao, F.; Du, X.; Gao, X.; Liu, D. Differential gene expression analysis between anagen and telogen of Capra hircus skin based on the de novo assembled transcriptome sequence. Gene 2013, 520, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Driskell, R.R.; Giangreco, A.; Jensen, K.B.; Mulder, K.W.; Watt, F.M. Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development 2009, 136, 2815–2823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, R.; Grzenda, A.; Allison, T.F.; Rawnsley, J.; Balin, S.J.; Sabri, S.; Plath, K.; Lowry, W.E. Defining Transcriptional Signatures of Human Hair Follicle Cell States. J. Investig. Dermatol. 2020, 140, 764–773.e764. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.R.; Schmidt-Ullrich, R.; Paus, R. The hair follicle as a dynamic miniorgan. Curr. Biol. 2009, 19, R132–R142. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Sun, Y.; Song, Y.; Zhou, Y.; Zhang, L.; Li, S.; Yan, X.; Xu, Y. Research Progress on the Correlation between Wnt/β-catenin Signaling Pathway and Hair Follicle. Chin. J. Anim. Sci. 2021, 57, 88–95. [Google Scholar] [CrossRef]
- Chi, W.; Wu, E.; Morgan, B.A. Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development 2013, 140, 1676–1683. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhu, N.X.; Huang, K.; Cai, B.Z.; Zeng, Y.; Xu, Y.M.; Liu, Y.; Yuan, Y.P.; Lin, C.M. iTRAQ-Based Quantitative Proteomic Comparison of Early- and Late-Passage Human Dermal Papilla Cell Secretome in Relation to Inducing Hair Follicle Regeneration. PLoS ONE 2016, 11, e0167474. [Google Scholar] [CrossRef] [Green Version]
- Withers, A.P.; Jahoda, C.A.; Ryder, M.L.; Oliver, R.F. Culture of wool follicle dermal papilla cells from two breeds of sheep. Arch. Dermatol. Res. 1986, 279, 140–142. [Google Scholar] [CrossRef]
- Higgins, C.A.; Chen, J.C.; Cerise, J.E.; Jahoda, C.A.; Christiano, A.M. Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth. Proc. Natl. Acad. Sci. USA 2013, 110, 19679–19688. [Google Scholar] [CrossRef]
- Lin, C.M.; Liu, Y.; Huang, K.; Chen, X.C.; Cai, B.Z.; Li, H.H.; Yuan, Y.P.; Zhang, H.; Li, Y. Long noncoding RNA expression in dermal papilla cells contributes to hairy gene regulation. Biochem. Biophys. Res. Commun. 2014, 453, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Geng, R.; Yuan, C.; Chen, Y. Exploring differentially expressed genes by RNA-Seq in cashmere goat (Capra hircus) skin during hair follicle development and cycling. PLoS ONE 2013, 8, e62704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Gao, F.; Guo, J.; Wu, D.; Hao, B.; Li, Y.; Zhao, C. A Microarray-Based Analysis Reveals that a Short Photoperiod Promotes Hair Growth in the Arbas Cashmere Goat. PLoS ONE 2016, 11, e0147124. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Wang, Z.; Zhu, Y.; Wang, W.; Bai, M.; Jiao, Q.; Wang, Y.; Zhao, S.; Yin, X.; Guo, D.; et al. LncRNA-000133 from secondary hair follicle of Cashmere goat: Identification, regulatory network and its effects on inductive property of dermal papilla cells. Anim. Biotechnol. 2020, 31, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Iida, M.; Ihara, S.; Matsuzaki, T. Hair cycle-dependent changes of alkaline phosphatase activity in the mesenchyme and epithelium in mouse vibrissal follicles. Dev. Growth Differ. 2007, 49, 185–195. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Wang, Y.; Wu, J.; Yang, G.; Yang, T.; Gao, Y.; Lu, Y. Versican gene: Regulation by the beta-catenin signaling pathway plays a significant role in dermal papilla cell aggregative growth. J. Dermatol. Sci. 2012, 68, 157–163. [Google Scholar] [CrossRef]
- Stewart, C.E.R.P. Growth, differentiation, and survival: Multiple physiological functions for insulin-like growth factors. Physiol Rev. 1996, 76, 1005–1026. [Google Scholar] [CrossRef]
- Ota, Y.; Saitoh, Y.; Suzuki, S.; Ozawa, K.; Kawano, M.; Imamura, T. Fibroblast growth factor 5 inhibits hair growth by blocking dermal papilla cell activation. Biochem. Biophys. Res. Commun. 2002, 290, 169–176. [Google Scholar] [CrossRef]
- Botchkarev, V.A.; Botchkareva, N.V.; Sharov, A.A.; Funa, K.; Huber, O.; Gilchrest, B.A. Modulation of BMP signaling by noggin is required for induction of the secondary (nontylotrich) hair follicles. J. Investig. Dermatol. 2002, 118, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Do, H. Wnt Signaling in Neurogenesis during Aging and Physical Activity. Brain Sci. 2012, 2, 745–768. [Google Scholar] [CrossRef]
- Botchkarev, V.A.; Sharov, A.A. BMP signaling in the control of skin development and hair follicle growth. Differentiation 2004, 72, 512–526. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, H.; Morgan, B.A. Wnt signaling through the beta-catenin pathway is sufficient to maintain, but not restore, anagen-phase characteristics of dermal papilla cells. J. Investig. Dermatol. 2004, 122, 239–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Wu, T.; Sun, J.; Li, Y.; Yuan, Z.; Sun, W. Single-Cell Transcriptomics Reveals the Molecular Anatomy of Sheep Hair Follicle Heterogeneity and Wool Curvature. Front. Cell Dev. Biol. 2021, 9, 800157. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, D.; Gardner, J.; Chambers, D.; Hosking, B.; Peters, J.; Muscat, G.; Abbott, C.; Koopman, P. Mutations in Sox18 underlie cardiovascular and hair follicle defects in ragged mice. Nat. Genet. 2000, 24, 434–437. [Google Scholar] [CrossRef]
- Villani, R.; Hodgson, S.; Legrand, J.; Greaney, J.; Wong, H.Y.; Pichol-Thievend, C.; Adolphe, C.; Wainwight, B.; Francois, M.; Khosrotehrani, K. Dominant-negative Sox18 function inhibits dermal papilla maturation and differentiation in all murine hair types. Development 2017, 144, 1887–1895. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.; Huang, S.; Lv, X.; Wang, S.; Getachew, T.; Mwacharo, J.M.; Haile, A.; Sun, W. miR-143 Targeting CUX1 to Regulate Proliferation of Dermal Papilla Cells in Hu Sheep. Genes 2021, 12, 2017. [Google Scholar] [CrossRef]
- Gwak, J.; Hwang, S.G.; Park, H.S.; Choi, S.R.; Park, S.H.; Kim, H.; Ha, N.C.; Bae, S.J.; Han, J.K.; Kim, D.E.; et al. Small molecule-based disruption of the Axin/beta-catenin protein complex regulates mesenchymal stem cell differentiation. Cell Res. 2012, 22, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Dodge, M.E.; Tang, W.; Lu, J.; Ma, Z.; Fan, C.W.; Wei, S.; Hao, W.; Kilgore, J.; Williams, N.S.; et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol. 2009, 5, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Jahoda, C.A.; Reynolds, A.J.; Oliver, R.F. Induction of hair growth in ear wounds by cultured dermal papilla cells. J. Investig. Dermatol. 1993, 101, 584–590. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Du, H.; Ju, Y.; Wang, J.; Long, C.; Gao, J.; Liu, H. Isolation and cultivation of Tibet miniature pig dermal papilla cells in vitro. J. Pract. Dermatol. 2013, 6, 1–2. [Google Scholar] [CrossRef]
- Bai, L.; Sun, H.; Hu, H.; Yang, L.; Gao, S.; Jiang, W. Study on isolation, culture, identification and growth characteristics of dermal papilla cells in angora rabbit. J. Domest. Anim. Ecol. 2017, 38, 20–26. [Google Scholar] [CrossRef]
- She, Z.Y.; Yang, W.X. SOX family transcription factors involved in diverse cellular events during development. Eur. J. Cell Biol. 2015, 94, 547–563. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Luo, Y. Research progress of transcription factor SOXF family regulating endothelial cells. Jiangxi Med. J. 2021, 56, 448–450. [Google Scholar] [CrossRef]
- Pennisi, D.; Bowles, J.; Nagy, A.; Muscat, G.; Koopman, P. Mice null for Sox18 are viable and display a mild coat defect. Mol. Cell Biol. 2000, 20, 9331–9336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, K.; Hosking, B.; Gardner, J.; Muscat, G.E.O.; Koopman, P. Sox18 mutations in theragged mouse allelesragged-like andopossum. Genesis 2003, 36, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Woo, W.M.; Zhen, H.H.; Oro, A.E. Shh maintains dermal papilla identity and hair morphogenesis via a Noggin-Shh regulatory loop. Genes Dev. 2012, 26, 1235–1246. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Wang, X.; Geng, R.; He, X.; Qu, L.; Chen, Y. Discovery of cashmere goat (Capra hircus) microRNAs in skin and hair follicles by Solexa sequencing. BMC Genom. 2013, 14, 511. [Google Scholar] [CrossRef] [Green Version]
- Soma, T.; Tsuji, Y.; Hibino, T. Involvement of transforming growth factor-beta2 in catagen induction during the human hair cycle. J. Investig. Dermatol. 2002, 118, 993–997. [Google Scholar] [CrossRef] [Green Version]
- Lynn, A.K.; Yannas, I.V.; Bonfield, W. Antigenicity and immunogenicity of collagen. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 71, 343–354. [Google Scholar] [CrossRef]
- Plikus, M.V.; Mayer, J.A.; de la Cruz, D.; Baker, R.E.; Maini, P.K.; Maxson, R.; Chuong, C.M. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 2008, 451, 340–344. [Google Scholar] [CrossRef]
- Hu, Y.A.; Zhao, C.J. Research progress of Wif1 in development of nervous system. Zhejiang Da Xue Xue Bao Yi Xue Ban 2010, 39, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, J.C.; Kodjabachian, L.; Rebbert, M.L.; Rattner, A.; Smallwood, P.M.; Samos, C.H.; Nusse, R.; Dawid, I.B.; Nathans, J. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 1999, 398, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Li, J.; Shi, S.; Zhang, L.; Xiang, A.; Shi, X.; Yang, G.; Chu, G. Hhip inhibits proliferation and promotes differentiation of adipocytes through suppressing hedgehog signaling pathway. Biochem. Biophys. Res. Commun. 2019, 514, 148–156. [Google Scholar] [CrossRef]
- Tsuboi, R.; Yamazaki, M.; Matsuda, Y.; Uchida, K.; Ueki, R.; Ogawa, H. Antisense oligonucleotide targeting fibroblast growth factor receptor (FGFR)-1 stimulates cellular activity of hair follicles in an in vitro organ culture system. Int. J. Dermatol. 2007, 46, 259–263. [Google Scholar] [CrossRef]
- Huntzicker, E.G.; Oro, A.E. Controlling hair follicle signaling pathways through polyubiquitination. J. Investig. Dermatol. 2008, 128, 1081–1087. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.M.; Yuan, Y.P.; Chen, X.C.; Li, H.H.; Cai, B.Z.; Liu, Y.; Zhang, H.; Li, Y.; Huang, K. Expression of Wnt/beta-catenin signaling, stem-cell markers and proliferating cell markers in rat whisker hair follicles. J. Mol. Histol. 2015, 46, 233–240. [Google Scholar] [CrossRef]
- Rendl, M.; Polak, L.; Fuchs, E. BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties. Genes Dev. 2008, 22, 543–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, E.R.; Sandberg, R.; Lendahl, U. Notch signaling: Simplicity in design, versatility in function. Development 2011, 138, 3593–3612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.C.; Liu, Z.Y.; Gambardella, L.; Delacour, A.; Shapiro, R.; Yang, J.; Sizing, I.; Rayhorn, P.; Garber, E.A.; Benjamin, C.D.; et al. Regular articles: Conditional disruption of hedgehog signaling pathway defines its critical role in hair development and regeneration. J. Investig. Dermatol. 2000, 114, 901–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.Y.; Bai, L.Y.; Li, F.C. Progress in research on the regulatory signaling pathway of hair follicle development and periodic growth. Anim. Husb. Vet. Med. 2021, 53, 125–129. [Google Scholar]
- Ma, Y.; You, Y.; Shen, H.; Sun, Z.; Zeng, L.; Fa, Y. Effect of Noggin silencing on the BMP and Wnt signaling pathways. Acta Lab. Anim. Sci. Sin. 2016, 24, 475–480. [Google Scholar] [CrossRef]
- Lan, X.; Yang, X. Wnt/β-catenin signaling pathways and hair follicle morphogenesis. J. Pract. Dermatol. 2015, 8, 205–207. [Google Scholar] [CrossRef]
- Kwack, M.H.; Kim, M.K.; Kim, J.C.; Sung, Y.K. Wnt5a attenuates Wnt/beta-catenin signalling in human dermal papilla cells. Exp. Dermatol. 2013, 22, 229–231. [Google Scholar] [CrossRef] [PubMed]
- Huelsken, J.; Vogel, R.; Erdmann, B.; Cotsarelis, G.; Birchmeier, W. β-Catenin Controls Hair Follicle Morphogenesis and Stem Cell Differentiation in the Skin. Cell 2001, 105, 533–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enshell-Seijffers, D.; Lindon, C.; Kashiwagi, M.; Morgan, B.A. beta-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev. Cell 2010, 18, 633–642. [Google Scholar] [CrossRef] [PubMed]
Name | Sequences (5′→3′) |
---|---|
siRNA-Sox18 | Sense:ACCAGUACCUCAACUGCAGTT |
Antisense:CUGCAGUUGAGGUACUGGUTT | |
siRNA-NC | Sense:UUCUCCGAACGUGUCACGUTT |
Antisense:ACGUGACACGUUCGGAGAATT |
Name | Forward Primer (5′-3′) | Reverse Primer (5′-3′) | Product Length (bp) |
---|---|---|---|
Sox18 | TGTGGGCGAAGGACGAGC | GCCAAGCCTGGGAGGAGGAG | 253 |
Versican | TACAAAGGGAGGGTGTCGGT | AAGCCTTCTGTGCCATCTCA | 226 |
β-catenin | TGAGTGGGAACAGGGGTTTT | TGAGCAGCATCGAACTGTGT | 162 |
BMP4 | TAGCAAGAGCGCAGTCATCC | AGCAGAGTTTTCGCTGGTCC | 196 |
WIF1 | AAGCCTGTACCTGTGGATCG | CTGGCATTCTCTGCTGTGCT | 134 |
HHIP | GTGGCCTGTGCTTTCCTGAT | AGAATGAAGAGGCGGTGGGA | 208 |
FGFR1 | CCCGGAGATGTTGCCATCAA | GCCCTGTTCCTCTTTGCCAT | 135 |
GAPDH | TCTCAAGGGCATTCTAGGCTAC | GCCGAATTCATTGTCGTACCAG | 151 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, T.; Lv, X.; Getachew, T.; Mwacharo, J.M.; Haile, A.; Quan, K.; Li, Y.; Wang, S.; Sun, W. Effect of Sox18 on the Induction Ability of Dermal Papilla Cells in Hu Sheep. Biology 2023, 12, 65. https://doi.org/10.3390/biology12010065
Hu T, Lv X, Getachew T, Mwacharo JM, Haile A, Quan K, Li Y, Wang S, Sun W. Effect of Sox18 on the Induction Ability of Dermal Papilla Cells in Hu Sheep. Biology. 2023; 12(1):65. https://doi.org/10.3390/biology12010065
Chicago/Turabian StyleHu, Tingyan, Xiaoyang Lv, Tesfaye Getachew, Joram M. Mwacharo, Aynalem Haile, Kai Quan, Yutao Li, Shanhe Wang, and Wei Sun. 2023. "Effect of Sox18 on the Induction Ability of Dermal Papilla Cells in Hu Sheep" Biology 12, no. 1: 65. https://doi.org/10.3390/biology12010065
APA StyleHu, T., Lv, X., Getachew, T., Mwacharo, J. M., Haile, A., Quan, K., Li, Y., Wang, S., & Sun, W. (2023). Effect of Sox18 on the Induction Ability of Dermal Papilla Cells in Hu Sheep. Biology, 12(1), 65. https://doi.org/10.3390/biology12010065