Next Article in Journal
The Sheep as a Large Animal Model for the Investigation and Treatment of Human Disorders
Previous Article in Journal
Perturbation by Antimicrobial Bacteria of the Epidermal Bacterial Flora of Rainbow Trout in Flow-Through Aquaculture
Previous Article in Special Issue
Targeting the RBD of Omicron Variant (B.1.1.529) with Medicinal Phytocompounds to Abrogate the Binding of Spike Glycoprotein with the hACE2 Using Computational Molecular Search and Simulation Approach
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Coronavirus Disease 2019 (COVID-19)

Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany
Biology 2022, 11(8), 1250; https://doi.org/10.3390/biology11081250
Submission received: 4 August 2022 / Revised: 13 August 2022 / Accepted: 17 August 2022 / Published: 22 August 2022
(This article belongs to the Special Issue Coronavirus Disease 2019 (COVID-19))
The coronavirus disease 2019 (COVID-19) pandemic has affected almost all aspects of daily life. The economic and social disruption has been devastating. However, it has also opened many doors to the new development of novel technologies, such as telemedicine. In this context, the editors of the journal Biology decided at the very beginning of this worldwide dilemma to create a Special Issue, entitled “Coronavirus Disease 2019 (COVID-19).” This Special Issue encompasses thirty-one articles covering various aspects of the current pandemic [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31]. With contributions from esteemed scientists from across the globe, this Special Issue sheds light on various aspects of the pandemic, including, but not limited to, epidemiology, pathophysiology, risk factors, and possible treatment options. In summary, the key published articles in this Special Issue addressed the following topics. Firstly, the virus and its complex pathophysiology were evaluated in some of the published articles [3,4,5,8,22,29]. In addition, the importance of face masks and related subjects were highlighted in other studies [6,7]. Klugar and colleagues asserted the importance of vaccines and different types of vaccines in combatting the pandemic [10]. Rodriguez-Cerdeira et al. [17] and Conforti and his colleagues [18] demonstrated the cutaneous manifestations of SARS-CoV-2 and their major role in determining a better diagnosis of the disease. Finally, the management of COVID-19 was also highlighted in some of other published articles [1,13,19,28,30].
Special thanks goes to the strong international team of editors, including Prof. Robert A. Schwartz from the USA, Prof. Dedee F. Murrell from Australia, and Prof. Torello Lotti from Italy, for their immeasurable dedication and support.
We hope for universal cooperation in the use of appropriate vaccines and efforts to identify new and effective medications, so that the world might be free of SARS-CoV-2 in the near future and normal life might be resumed.

Funding

This research received no external funding.

Conflicts of Interest

The author declare no conflict of interest.

References

  1. Hakami, A.R. Targeting the RBD of Omicron Variant (B.1.1.529) with Medicinal Phytocompounds to Abrogate the Binding of Spike Glycoprotein with the hACE2 Using Computational Molecular Search and Simulation Approach. Biology 2022, 11, 258. [Google Scholar] [CrossRef] [PubMed]
  2. Marc, F.; Moldovan, C.; Hoza, A.; Restea, P.; Sachelarie, L.; Romila, L.E.; Suteu, C.; Farcas, D.M. Evaluation of Hepatic Biochemical Parameters during Antiviral Treatment in COVID-19 Patients. Biology 2021, 11, 13. [Google Scholar] [CrossRef] [PubMed]
  3. Muhseen, Z.T.; Kadhim, S.; Yahiya, Y.I.; Alatawi, E.A.; Aba Alkhayl, F.F.; Almatroudi, A. Insights into the Binding of Receptor-Binding Domain (RBD) of SARS-CoV-2 Wild Type and B.1.620 Variant with hACE2 Using Molecular Docking and Simulation Approaches. Biology 2021, 10, 1310. [Google Scholar] [CrossRef]
  4. Lobiuc, A.; Șterbuleac, D.; Sturdza, O.; Dimian, M.; Covasa, M. A Conservative Replacement in the Transmembrane Domain of SARS-CoV-2 ORF7a as a Putative Risk Factor in COVID-19. Biology 2021, 10, 1276. [Google Scholar] [CrossRef]
  5. Lim, H.G.; Hsiao, S.H.; Lee, Y.G. Orchestrating an Optimized Next-Generation Sequencing-Based Cloud Workflow for Robust Viral Identification during Pandemics. Biology 2021, 10, 1023. [Google Scholar] [CrossRef]
  6. Rojo-Tirado, M.A.; Benítez-Muñoz, J.A.; Alcocer-Ayuga, M.; Alfaro-Magallanes, V.M.; Romero-Parra, N.; Peinado, A.B.; Rael, B.; Castro, E.A.; Benito, P.J. Effect of Different Types of Face Masks on the Ventilatory and Cardiovascular Response to Maximal-Intensity Exercise. Biology 2021, 10, 969. [Google Scholar] [CrossRef] [PubMed]
  7. Krajewski, P.K.; Matusiak, Ł.; Szepietowska, M.; Białynicki-Birula, R.; Szepietowski, J.C. Increased Prevalence of Face Mask-Induced Itch in Health Care Workers. Biology 2020, 9, 451. [Google Scholar] [CrossRef] [PubMed]
  8. Celik, I.; Yadav, R.; Duzgun, Z.; Albogami, S.; El-Shehawi, A.M.; Idroes, R.; Tallei, T.E.; Emran, T.B. Interactions of the Receptor Binding Domain of SARS-CoV-2 Variants with hACE2: Insights from Molecular Docking Analysis and Molecular Dynamic Simulation. Biology 2021, 10, 880. [Google Scholar] [CrossRef]
  9. Dutta, M.; Tareq, A.M.; Rakib, A.; Mahmud, S.; Sami, S.A.; Mallick, J.; Islam, M.N.; Majumder, M.; Uddin, M.; Alsubaie, A.; et al. Phytochemicals from Leucas zeylanica Targeting Main Protease of SARS-CoV-2: Chemical Profiles, Molecular Docking, and Molecular Dynamics Simulations. Biology 2021, 10, 789. [Google Scholar] [CrossRef]
  10. Klugar, M.; Riad, A.; Mekhemar, M.; Conrad, J.; Buchbender, M.; Howaldt, H.P.; Attia, S. Side Effects of mRNA-Based and Viral Vector-Based COVID-19 Vaccines among German Healthcare Workers. Biology 2021, 10, 752. [Google Scholar] [CrossRef]
  11. Manríquez, R.; Guerrero-Nancuante, C.; Taramasco, C. Protection Strategy against an Epidemic Disease on Edge-Weighted Graphs Applied to a COVID-19 Case. Biology 2021, 10, 667. [Google Scholar] [CrossRef] [PubMed]
  12. Mekhemar, M.; Attia, S.; Dörfer, C.; Conrad, J. Dental Students in Germany throughout the COVID-19 Pandemic: A Psychological Assessment and Cross-Sectional Survey. Biology 2021, 10, 611. [Google Scholar] [CrossRef] [PubMed]
  13. Mahmud, S.; Biswas, S.; Paul, G.K.; Mita, M.A.; Promi, M.M.; Afrose, S.; Hasan, M.R.; Zaman, S.; Uddin, M.S.; Dhama, K.; et al. Plant-Based Phytochemical Screening by Targeting Main Protease of SARS-CoV-2 to Design Effective Potent Inhibitors. Biology 2021, 10, 589. [Google Scholar] [CrossRef] [PubMed]
  14. Tudoran, C.; Tudoran, M.; Pop, G.N.; Giurgi-Oncu, C.; Cut, T.G.; Lazureanu, V.E.; Oancea, C.; Parv, F.; Ciocarlie, T.; Bende, F. Associations between the Severity of the Post-Acute COVID-19 Syndrome and Echocardiographic Abnormalities in Previously Healthy Outpatients Following Infection with SARS-CoV-2. Biology 2021, 10, 469. [Google Scholar] [CrossRef]
  15. Elhady, S.S.; Abdelhameed, R.F.A.; Malatani, R.T.; Alahdal, A.M.; Bogari, H.A.; Almalki, A.J.; Mohammad, K.A.; Ahmed, S.A.; Khedr, A.I.; Darwish, K.M. Molecular Docking and Dynamics Simulation Study of Hyrtios erectus Isolated Scalarane Sesterterpenes as Potential SARS-CoV-2 Dual Target Inhibitors. Biology 2021, 10, 389. [Google Scholar] [CrossRef]
  16. Reginelli, A.; Grassi, R.; Feragalli, B.; Belfiore, M.P.; Montanelli, A.; Patelli, G.; La Porta, M.; Urraro, F.; Fusco, R.; Granata, V.; et al. Coronavirus Disease 2019 (COVID-19) in Italy: Double Reading of Chest CT Examination. Biology 2021, 10, 89. [Google Scholar] [CrossRef]
  17. Rodriguez-Cerdeira, C.; Uribe-Camacho, B.I.; Silverio-Carrasco, L.; Méndez, W.; Mahesh, A.R.; Tejada, A.; Beirana, A.; Martinez-Herrera, E.; Alba, A.; Arenas, R.; et al. Cutaneous Manifestations in COVID-19: Report on 31 Cases from Five Countries. Biology 2021, 10, 54. [Google Scholar] [CrossRef]
  18. Conforti, C.; Dianzani, C.; Agozzino, M.; Giuffrida, R.; Marangi, G.F.; Meo, N.D.; Morariu, S.H.; Persichetti, P.; Segreto, F.; Zalaudek, I.; et al. Cutaneous Manifestations in Confirmed COVID-19 Patients: A Systematic Review. Biology 2020, 9, 449. [Google Scholar] [CrossRef]
  19. Chowdhury, K.H.; Chowdhury, M.R.; Mahmud, S.; Tareq, A.M.; Hanif, N.B.; Banu, N.; Reza, A.A.; Emran, T.B.; Simal-Gandara, J. Drug Repurposing Approach against Novel Coronavirus Disease (COVID-19) through Virtual Screening Targeting SARS-CoV-2 Main Protease. Biology 2020, 10, 2. [Google Scholar] [CrossRef]
  20. Müller, S.M.; Mueller, G.F.; Navarini, A.A.; Brandt, O. National Publication Productivity during the COVID-19 Pandemic-A Preliminary Exploratory Analysis of the 30 Countries Most Affected. Biology 2020, 9, 271. [Google Scholar] [CrossRef]
  21. Duffey, R.B.; Zio, E. COVID-19 Pandemic Trend Modeling and Analysis to Support Resilience Decision-Making. Biology 2020, 9, 156. [Google Scholar] [CrossRef] [PubMed]
  22. Gaspersic, J.; Dolzan, V. Viral and Host Genetic and Epigenetic Biomarkers Related to SARS-CoV-2 Cell Entry, Infection Rate, and Disease Severity. Biology 2022, 11, 178. [Google Scholar] [CrossRef] [PubMed]
  23. Nechipurenko, Y.D.; Semyonov, D.A.; Lavrinenko, I.A.; Lagutkin, D.A.; Generalov, E.A.; Zaitceva, A.Y.; Matveeva, O.V.; Yegorov, Y.E. The Role of Acidosis in the Pathogenesis of Severe Forms of COVID-19. Biology 2021, 10, 852. [Google Scholar] [CrossRef] [PubMed]
  24. Kiseleva, I.; Ksenafontov, A. COVID-19 Shuts Doors to Flu but Keeps Them Open to Rhinoviruses. Biology 2021, 10, 733. [Google Scholar] [CrossRef]
  25. Srivastava, K.C.; Shrivastava, D.; Hosni, H.A.; Khan, Z.A.; Al-Johani, K.; Alzoubi, I.A.; Sghaireen, M.G.; Alam, M.K. Recommendations, Practices and Infrastructural Model for the Dental Radiology Set-up in Clinical and Academic Institutions in the COVID-19 Era. Biology 2020, 9, 334. [Google Scholar]
  26. Magdy Beshbishy, A.; Hetta, H.F.; Hussein, D.E.; Saati, A.A.; CUba, C.; Rivero-Perez, N.; Zaragoza-Bastida, A.; Shah, M.A.; Behl, T.; Batiha, G.E.S. Factors Associated with Increased Morbidity and Mortality of Obese and Overweight COVID-19 Patients. Biology 2020, 9, 280. [Google Scholar] [CrossRef]
  27. Kothari, A.; Singh, V.; Nath, U.K.; Kumar, S.; Rai, V.; Kaushal, K.; Omar, B.J.; Pandey, A.; Jain, N. Immune Dysfunction and Multiple Treatment Modalities for the SARS-CoV-2 Pandemic: Races of Uncontrolled Running Sweat? Biology 2020, 9, 243. [Google Scholar] [CrossRef]
  28. Glowacka, P.; Rudnicka, L.; Warszawik-Hendzel, O.; Sikora, M.; Goldust, M.; Gajda, P.; Stochmal, A.; Blicharz, L.; Rakowska, A.; Olszewska, M. The Antiviral Properties of Cyclosporine. Focus on Coronavirus, Hepatitis C Virus, Influenza Virus, and Human Immunodeficiency Virus Infections. Biology 2020, 9, 192. [Google Scholar] [CrossRef]
  29. Mjokane, N.; Folorunso, O.S.; Ogundeji, A.O.; Sebolai, O.M. The Possible Role of Microbial Proteases in Facilitating SARS-CoV-2 Brain Invasion. Biology 2021, 10, 966. [Google Scholar] [CrossRef]
  30. Sivaraman, V.; Richey, M.M.; Nasir, A. Alcohol, Cannabis and Crossfading: Concerns for COVID-19 Disease Severity. Biology 2021, 10, 779. [Google Scholar] [CrossRef]
  31. Ghanemi, A.; Yoshioka, M.; St-Amand, J. Coronavirus Disease 2019 (COVID-19) Crisis: Losing Our Immunity When We Need It the Most. Biology 2021, 10, 545. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Goldust, M. Coronavirus Disease 2019 (COVID-19). Biology 2022, 11, 1250. https://doi.org/10.3390/biology11081250

AMA Style

Goldust M. Coronavirus Disease 2019 (COVID-19). Biology. 2022; 11(8):1250. https://doi.org/10.3390/biology11081250

Chicago/Turabian Style

Goldust, Mohamad. 2022. "Coronavirus Disease 2019 (COVID-19)" Biology 11, no. 8: 1250. https://doi.org/10.3390/biology11081250

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop