Intercropping of Euonymus japonicus with Photinia × fraseri Improves Phytoremediation Efficiency in Cd/Cu/Zn Contaminated Field
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil and Site Description
2.2. Plant and soil Cd, Cu, and Zn Concentration
2.3. Soil Extractable Cd, Cu, Zn; Dissolved Organic Carbon; and pH
2.4. Detection of the Root Mycorrhization Rate
2.5. Calculation of Bioconcentration Factor, Land Equivalent Ratio, and Metal Removal Equivalent Ratio
2.6. Statistical Analysis
3. Results
3.1. Plant Biomass
3.2. Concentration of Total Cd/Cu/Zn in Plants
3.3. Total Cd/Cu/Zn content in P. × fraseri and E. japonicus
3.4. BCF, MRER, and LER of P. × fraseri and E. japonicus in the Monoculture and Intercropping Systems
3.5. Soil Chemical Characteristics and Heavy Metal Concentrations in Monoculture and Intercropping Systems
3.6. Mycorrhization Rate of P. × fraseri and E. japonicus in Monoculture and Intercropping Systems
4. Discussion
4.1. Differences in P. × fraseri and E. japonicus Biomass in Monoculture and Intercropping Systems
4.2. Effect of Intercropping on Heavy Metal Accumulation and Phytoremediation Potential in P. × fraseri and E. japonicus
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMF | Arbuscular mycorrhiza fungi |
BCR | Community Bureau of Reference |
BCF | Calculation of bioconcentration factor |
DOC | Dissolved organic carbon |
Ej/E. japonicus | Euonymus japonicus |
HMs | Heavy metals |
LER | Land equivalent ratio |
MRER | Metal removal equivalent ratio |
Pf/P. × fraseri | Photinia × fraseri Dress |
SOM | Soil organic matter |
References
- Hu, Y.; Cheng, H.; Tao, S. The challenges and solutions for cadmium-contaminated rice in China: A critical review. Environ. Int. 2016, 92, 515–532. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Environmental Protection. A National Survey of Soil Pollution Bulletin; Ministry of Environmental Protection: Beijing, China, 2014. Available online: https://huanbao.bjx.com.cn/news/20151209/689681.shtml (accessed on 25 July 2022).
- Sasmaz, M.; Öbek, E.; Sasmaz, A. Bioaccumulation of cadmium and thallium in Pb-Zn tailing waste water by Lemna minor and Lemna gibba. Appl. Geochem. 2019, 100, 287–292. [Google Scholar] [CrossRef]
- Chen, W.; Peng, L.; Hu, K.; Zhang, Z.; Peng, C.; Teng, C.; Zhou, K. Spectroscopic response of soil organic matter in mining area to Pb/Cd heavy metal interaction: A mirror of coherent structural variation. J. Hazard. Mater. 2020, 393, 122425. [Google Scholar] [CrossRef]
- Bamagoos, A.A.; Alharby, H.F.; Abbas, G. Differential Uptake and Translocation of Cadmium and Lead by Quinoa: A Multivariate Comparison of Physiological and Oxidative Stress Responses. Toxics 2022, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.K.; Pandey, P.; Rajpoot, R.; Rani, A.; Dubey, R. Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma 2014, 251, 1047–1065. [Google Scholar] [CrossRef]
- Kaya, C.; Akram, N.A.; Sürücü, A.; Ashraf, M. Alleviating effect of nitric oxide on oxidative stress and antioxidant defence system in pepper (Capsicum annuum L.) plants exposed to cadmium and lead toxicity applied separately or in combination. Sci. Hortic. 2019, 255, 52–60. [Google Scholar] [CrossRef]
- He, H.; Wang, X.; Wu, M.; Guo, L.; Fan, C.; Peng, Q. Cadmium and lead affect the status of mineral nutrients in alfalfa grown on a calcareous soil. Soil Sci. Plant Nutr. 2020, 66, 506–514. [Google Scholar] [CrossRef]
- Zhou, M.; Han, R.; Ghnaya, T.; Lutts, S. Salinity influences the interactive effects of cadmium and zinc on ethylene and polyamine synthesis in the halophyte plant species Kosteletzkya pentacarpos. Chemosphere 2018, 209, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Ronzan, M.; Piacentini, D.; Fattorini, L.; Della Rovere, F.; Eiche, E.; Riemann, M.; Altamura, M.; Falasca, G. Cadmium and arsenic affect root development in Oryza sativa L. negatively interacting with auxin. Environ. Exp. Bot. 2018, 151, 64–75. [Google Scholar] [CrossRef]
- De Conti, L.; Ceretta, C.A.; Melo, G.W.; Tiecher, T.L.; Silva, L.O.; Garlet, L.P.; Mimmo, T.; Cesco, S.; Brunetto, G. Intercropping of young grapevines with native grasses for phytoremediation of Cu-contaminated soils. Chemosphere 2019, 216, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Niu, H.; Wang, Z.; Song, J.; Long, A.; Cao, M.; Luo, J. Cadmium subcellular distribution and chemical form in Festuca arundinacea in different intercropping systems during phytoremediation. Chemosphere 2021, 276, 130137. [Google Scholar] [CrossRef]
- Ma, Y.-h.; Fu, S.-l.; Zhang, X.-p.; Zhao, K.; Chen, H.Y. Intercropping improves soil nutrient availability, soil enzyme activity and tea quantity and quality. Appl. Soil Ecol. 2017, 119, 171–178. [Google Scholar] [CrossRef]
- Zeng, P.; Guo, Z.; Xiao, X.; Peng, C.; Feng, W.; Xin, L.; Xu, Z. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil. Sci. Total Environ. 2019, 650, 594–603. [Google Scholar] [CrossRef]
- Li, Z.-R.; Wang, J.-X.; An, L.-Z.; Tan, J.-B.; Zhan, F.-D.; Wu, J.; Zu, Y.-Q. Effect of root exudates of intercropping Vicia faba and Arabis alpina on accumulation and sub-cellular distribution of lead and cadmium. Int. J. Phytoremediation 2019, 21, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Liu, C.; Li, J.; Luo, Y.; Yang, Q.; Zhang, W.; Yang, P.; Feng, B. Responses of rhizosphere soil properties, enzyme activities and microbial diversity to intercropping patterns on the Loess Plateau of China. Soil Tillage Res. 2019, 195, 104355. [Google Scholar] [CrossRef]
- Zeng, P.; Guo, Z.; Xiao, X.; Peng, C. Dynamic response of enzymatic activity and microbial community structure in metal (loid)-contaminated soil with tree-herb intercropping. Geoderma 2019, 345, 5–16. [Google Scholar] [CrossRef]
- Guo, B.; Liang, Y.; Fu, Q.; Ding, N.; Liu, C.; Lin, Y.; Li, H.; Li, N. Cadmium stabilization with nursery stocks through transplantation: A new approach to phytoremediation. J. Hazard. Mater. 2012, 199, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Bai, Y.; Hong, X.; Sun, L.; Liu, Y. Particulate matter and heavy metal deposition on the leaves of Euonymus japonicus during the East Asian monsoon in Beijing, China. PLoS ONE 2017, 12, e0179840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattei, P.; Gnesini, A.; Gonnelli, C.; Marraccini, C.; Masciandaro, G.; Macci, C.; Doni, S.; Iannelli, R.; Lucchetti, S.; Nicese, F.P. Phytoremediated marine sediments as suitable peat-free growing media for production of red robin photinia (Photinia x fraseri). Chemosphere 2018, 201, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Spatafora, J.W.; Chang, Y.; Benny, G.L.; Lazarus, K.; Smith, M.E.; Berbee, M.L.; Bonito, G.; Corradi, N.; Grigoriev, I.; Gryganskyi, A. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 2016, 108, 1028–1046. [Google Scholar] [CrossRef] [Green Version]
- Errisson, I.; Hognason, J.; Vidarsdottir, H.; Gottskalksson, G.; Gunnarsson, G.; Sverrisson, J.; Gudbjartsson, T.; Dhalaria, R.; Kumar, D.; Kumar, H. Arbuscular Mycorrhizal Fungi as Potential Agents in Ameliorating Heavy Metal Stress in Plants. Agronomy 2020, 10, 815. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, Y.; Chen, S.; Polle, A.; Rennenberg, H.; Luo, Z.B. Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants. Plant Cell Environ. 2019, 42, 1087–1103. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, Y.; Jiang, X.; Chen, B.; Zhang, X. Arbuscular mycorrhizal fungi alleviate arsenic toxicity to Medicago sativa by influencing arsenic speciation and partitioning. Ecotoxicol. Environ. Saf. 2018, 157, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Qin, J.; Li, J.; Lai, Z.; Li, H. Upland rice intercropping with Solanum nigrum inoculated with arbuscular mycorrhizal fungi reduces grain Cd while promoting phytoremediation of Cd-contaminated soil. J. Hazard. Mater. 2021, 406, 124325. [Google Scholar] [CrossRef]
- Lian, T.; Mu, Y.; Ma, Q.; Cheng, Y.; Gao, R.; Cai, Z.; Jiang, B.; Nian, H. Use of sugarcane–soybean intercropping in acid soil impacts the structure of the soil fungal community. Sci. Rep. 2018, 8, 14488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, X.; Wang, Y.; Li, Z.; Larousse, M.; Pere, A.; da Rocha, M.; Zhan, F.; He, Y.; Pu, L.; Panabières, F. Root-associated microbiota drive phytoremediation strategies to lead of Sonchus Asper (L.) Hill as revealed by intercropping-induced modifications of the rhizosphere microbiome. Environ. Sci. Pollut. Res. 2022, 29, 23026–23040. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Mu, Y.; Li, X.; Li, S.; Sang, P.; Wang, X.; Wu, H.; Xu, N. Response of the arbuscular mycorrhizal fungi diversity and community in maize and soybean rhizosphere soil and roots to intercropping systems with different nitrogen application rates. Sci. Total Environ. 2020, 740, 139810. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Riaguas, A.; Fernández-de Córdova, M.; Llorent-Martínez, E.J. Phenolic profile and antioxidant activity of Euonymus japonicus Thunb. Nat. Prod. Res. 2020, 36, 1–5. [Google Scholar] [CrossRef]
- Larraburu, E.E.; Apóstolo, N.M.; Llorente, B.E. Anatomy and morphology of photinia (Photinia × fraseri Dress) in vitro plants inoculated with rhizobacteria. Trees 2010, 24, 635–642. [Google Scholar] [CrossRef]
- Lin, X.; Shu, D.; Zhang, J.; Chen, J.; Zhou, Y.; Chen, C. Dynamics of particle retention and physiology in Euonymus japonicus Thunb. var. aurea-marginatus Hort. with severe exhaust exposure under continuous drought. Environ. Pollut. 2021, 285, 117194. [Google Scholar] [CrossRef]
- Guo, B.; Hong, C.; Tong, W.; Xu, M.; Huang, C.; Yin, H.; Lin, Y.; Fu, Q. Health risk assessment of heavy metal pollution in a soil-rice system: A case study in the Jin-Qu Basin of China. Sci. Rep. 2020, 10, 11490. [Google Scholar] [CrossRef]
- Kartal, Ş.; Aydın, Z.; Tokalıoğlu, Ş. Fractionation of metals in street sediment samples by using the BCR sequential extraction procedure and multivariate statistical elucidation of the data. J. Hazard. Mater. 2006, 132, 80–89. [Google Scholar] [CrossRef]
- Qu, X.; Fu, H.; Mao, J.; Ran, Y.; Zhang, D.; Zhu, D. Chemical and structural properties of dissolved black carbon released from biochars. Carbon 2016, 96, 759–767. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis: Part 3 Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Wiley and Sons: Hoboken, NJ, USA, 1996; Volume 5, pp. 961–1010. [Google Scholar]
- Liu, J.; Liu, J.; Chen, A.; Ji, M.; Chen, J.; Yang, X.; Gu, M.; Qu, H.; Xu, G. Analysis of tomato plasma membrane H+-ATPase gene family suggests a mycorrhiza-mediated regulatory mechanism conserved in diverse plant species. Mycorrhiza 2016, 26, 645–656. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Klinnawee, L.; Zhou, Y.; Saridis, G.; Vijayakumar, V.; Brands, M.; Dörmann, P.; Gigolashvili, T.; Turck, F.; Bucher, M. AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal Lotus japonicus. Proc. Natl. Acad. Sci. USA 2018, 115, E9239–E9246. [Google Scholar] [CrossRef] [Green Version]
- Jamali, M.K.; Kazi, T.G.; Arain, M.B.; Afridi, H.I.; Jalbani, N.; Kandhro, G.A.; Shah, A.Q.; Baig, J.A. Heavy metal accumulation in different varieties of wheat (Triticum aestivum L.) grown in soil amended with domestic sewage sludge. J. Hazard. Mater. 2009, 164, 1386–1391. [Google Scholar] [CrossRef]
- Tang, L.; Hamid, Y.; Zehra, A.; Sahito, Z.A.; He, Z.; Beri, W.T.; Khan, M.B.; Yang, X. Fava bean intercropping with Sedum alfredii inoculated with endophytes enhances phytoremediation of cadmium and lead co-contaminated field. Environ. Pollut. 2020, 265, 114861. [Google Scholar] [CrossRef]
- Zeng, L.; Lin, X.; Zhou, F.; Qin, J.; Li, H. Biochar and crushed straw additions affect cadmium absorption in cassava-peanut intercropping system. Ecotoxicol. Environ. Saf. 2019, 167, 520–530. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Q.; Meng, Q.; Liu, Y.; Pan, F.; Luo, S.; Wu, Y.; Ma, L.; Yang, X. Chromosome doubling of Sedum alfredii Hance: A novel approach for improving phytoremediation efficiency. J. Environ. Sci. 2019, 86, 87–96. [Google Scholar] [CrossRef]
- Cao, X.; Wang, X.; Lu, M.; Hamid, Y.; Lin, Q.; Liu, X.; Li, T.; Liu, G.; He, Z.; Yang, X. The Cd phytoextraction potential of hyperaccumulator Sedum alfredii-oilseed rape intercropping system under different soil types and comprehensive benefits evaluation under field conditions. Environ. Pollut. 2021, 285, 117504. [Google Scholar] [CrossRef] [PubMed]
- Zu, Y.; Qin, L.; Zhan, F.; Wu, J.; Li, Y.; Chen, J.; Wang, J.; Hu, W. Effects of Intercropping of Sonchus asper and Vicia faba on plant cadmium accumulation and root responses. Pedosphere 2020, 30, 457–465. [Google Scholar] [CrossRef]
- Hei, L.; Wu, Q.-T.; Long, X.-X.; Hu, Y.-M. Effect of co-planting of Sedum alfredii and Zea mays on Zn-contaminated sewage sludge. Huan Jing Ke Xue Huanjing Kexue 2007, 28, 852–858. [Google Scholar] [PubMed]
- Yang, M.; Zhang, Y.; Qi, L.; Mei, X.; Liao, J.; Ding, X.; Deng, W.; Fan, L.; He, X.; Vivanco, J.M. Plant-plant-microbe mechanisms involved in soil-borne disease suppression on a maize and pepper intercropping system. PLoS ONE 2014, 9, e115052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qing, L.; Li-Na, S.; Xiao-Min, H. Metabonomics study on root exudates of cadmium hyperaccumulator Sedum alfredii. Chin. J. Anal. Chem. 2015, 43, 7–12. [Google Scholar] [CrossRef]
- Ling, W.; Sun, R.; Gao, X.; Xu, R.; Li, H. Low-molecular-weight organic acids enhance desorption of polycyclic aromatic hydrocarbons from soil. Eur. J. Soil Sci. 2015, 66, 339–347. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Khan, M.A.; Luo, W.; Xiang, Z.; Xu, W.; Zhong, B.; Ma, J.; Ye, Z.; Zhu, Y. Effect of plant extracts and citric acid on phytoremediation of metal-contaminated soil. Ecotoxicol. Environ. Saf. 2021, 211, 111902. [Google Scholar] [CrossRef]
- Tang, X.; Luo, S.; Huang, Z.; Wu, H.; Wang, J.; Shi, G.; He, L.; Xiong, F.; Jiang, J.; Liu, J. Changes in the physicochemical properties and microbial communities of rhizospheric soil after cassava/peanut intercropping. bioRxiv 2019, 570937. [Google Scholar] [CrossRef]
- Tang, X.; Zhong, R.; Jiang, J.; He, L.; Huang, Z.; Shi, G.; Wu, H.; Liu, J.; Xiong, F.; Han, Z. Cassava/peanut intercropping improves soil quality via rhizospheric microbes increased available nitrogen contents. BMC Biotechnol. 2020, 20, 13. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.; Lu, R.; Li, H.; Lin, L.; Li, L.; Xiang, J.; Chen, L.; Tang, Y. Effects of mutual intercropping on cadmium accumulation in seedlings of three varieties of eggplant. Int. J. Environ. Anal. Chem. 2021, 101, 1761–1772. [Google Scholar] [CrossRef]
- Bian, F.; Zhong, Z.; Li, C.; Zhang, X.; Gu, L.; Huang, Z.; Gai, X.; Huang, Z. Intercropping improves heavy metal phytoremediation efficiency through changing properties of rhizosphere soil in bamboo plantation. J. Hazard. Mater. 2021, 416, 125898. [Google Scholar] [CrossRef]
- Lu, Q.; Li, J.; Chen, F.; Liao, M.A.; Lin, L.; Tang, Y.; Liang, D.; Xia, H.; Lai, Y.; Wang, X. Effects of mutual intercropping on the cadmium accumulation in accumulator plants Stellaria media, Malachium aquaticum, and Galium aparine. Environ. Monit. Assess. 2017, 189, 622. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Liang, D.; Chen, F.; Liao, M.A.; Lin, L.; Tang, Y.; Lv, X.; Li, H.; Wang, Z.; Wang, X. Effects of mutual intercropping on cadmium accumulation by the accumulator plants Conyza canadensis, Cardamine hirsuta, and Cerastium glomeratum. Int. J. Phytoremediation 2018, 20, 855–861. [Google Scholar] [CrossRef] [PubMed]
Chemical Characteristics | Value | Heavy Metal Concentration | Value | * Standard |
---|---|---|---|---|
pH | 4.97 | Cu (mg/kg) | 97.80 | 50 |
Total N (g/kg) | 4.56 | Zn (mg/kg) | 305.89 | 200 |
SOM (g/kg) | 28.37 | Cd (mg/kg) | 4.80 | 0.3 |
DOC (mg/kg) | 144.12 | BCR-Cu (mg/kg) | 10.23 | |
Available N (mg/kg) | 160.94 | BCR-Zn (mg/kg) | 16.47 | |
Available P (mg/kg) | 2.65 | BCR-Cd (mg/kg) | 2.08 | |
Available K (mg/kg) | 48.07 |
Organs | Treatments | Cu | Zn | Cd |
---|---|---|---|---|
BCFR | Ej | 0.62 ± 0.07 a | 0.57 ± 0.05 b | 5.54 ± 1.21 b |
Ej-Pf (Ej) | 0.68 ± 0.05 a | 0.81 ± 0.09 a | 11.77 ± 1.56 a | |
Pf | 0.37 ± 0.02 b | 0.29 ± 0.01 c | 1.45 ± 0.08 c | |
Ej-Pf (Pf) | 0.27 ± 0.01 b | 0.19 ± 0.02 c | 1.24 ± 0.08 c | |
BCFS | Ej | 0.06 ± 0.00 b | 0.13 ± 0.01 ab | 0.30 ± 0.04 b |
Ej-Pf (Ej) | 0.08 ± 0.00 a | 0.14 ± 0.00 ab | 0.21 ± 0.02 b | |
Pf | 0.05 ± 0.01 b | 0.12 ± 0.00 b | 0.42 ± 0.15 b | |
Ej-Pf (Pf) | 0.06 ± 0.00 b | 0.15 ± 0.01 a | 0.96 ± 0.07 a | |
BCFL | Ej | 0.03 ± 0.00 c | 0.06 ± 0.00 b | 0.10 ± 0.00 c |
Ej-Pf (Ej) | 0.05 ± 0.00 b | 0.05 ± 0.00 b | 0.09 ± 0.01 c | |
Pf | 0.05 ± 0.00 b | 0.18 ± 0.01 a | 0.39 ± 0.02 b | |
Ej-Pf (Pf) | 0.08 ± 0.01 a | 0.17 ± 0.01 a | 0.46 ± 0.02 a | |
MRER | Ej-Pf | 2.48 | 2.85 | 3.32 |
LER | Ej-Pf | 3.26 |
Treatments | Ej | Ej-Pf (Ej) | Pf | Ej-Pf (Pf) | |
---|---|---|---|---|---|
The chemical characteristics of Soil | pH | 5.21 ± 0.04 a | 4.87 ± 0.03 b | 4.82 ± 0.01 b | 4.84 ± 0.05 b |
Total N (g/kg) | 6.37 ± 0.13 b | 9.37 ± 0.22 a | 6.75 ± 0.22 b | 8.76 ± 0.38 a | |
SOM (g/kg) | 27.81 ± 0.68 ab | 25.67 ± 0.51 c | 28.80 ± 0.81 a | 26.07 ± 0.51 bc | |
TOC (mg/kg) | 127.25 ± 10.33 a | 151.35 ± 5.67 a | 141.31 ± 12.27 a | 141.98 ± 3.42 a | |
Available N (mg/kg) | 141.40 ± 2.84 b | 229.05 ± 2.74 a | 153.31 ± 8.98 b | 223.96 ± 3.66 a | |
Available P (mg/kg) | 2.40 ± 0.06 b | 3.10 ± 0.08 a | 3.10 ± 0.13 a | 2.54 ± 0.12 b | |
Available K (mg/kg) | 39.37 ± 1.69 b | 36.51 ± 1.96 b | 51.64 ± 0.69 a | 35.05 ± 0.93 b | |
Available heavy metal concentrations | Cu (mg/kg) | 8.06 ± 0.58 a | 5.06 ± 0.08 b | 8.75 ± 0.98 a | 5.42 ± 0.10 b |
Zn (mg/kg) | 16.22 ± 0.36 a | 14.38 ± 0.40 b | 16.47 ± 0.56 a | 15.35 ± 0.73 ab | |
Cd (mg/kg) | 1.97 ± 0.12 a | 1.39 ± 0.03 b | 2.13 ± 0.04 a | 1.62 ± 0.05 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Qiu, G.; Liu, C.; Lin, Y.; Chen, X.; Li, H.; Fu, Q.; Guo, B. Intercropping of Euonymus japonicus with Photinia × fraseri Improves Phytoremediation Efficiency in Cd/Cu/Zn Contaminated Field. Biology 2022, 11, 1133. https://doi.org/10.3390/biology11081133
Liu J, Qiu G, Liu C, Lin Y, Chen X, Li H, Fu Q, Guo B. Intercropping of Euonymus japonicus with Photinia × fraseri Improves Phytoremediation Efficiency in Cd/Cu/Zn Contaminated Field. Biology. 2022; 11(8):1133. https://doi.org/10.3390/biology11081133
Chicago/Turabian StyleLiu, Junli, Gaoyang Qiu, Chen Liu, Yicheng Lin, Xiaodong Chen, Hua Li, Qinglin Fu, and Bin Guo. 2022. "Intercropping of Euonymus japonicus with Photinia × fraseri Improves Phytoremediation Efficiency in Cd/Cu/Zn Contaminated Field" Biology 11, no. 8: 1133. https://doi.org/10.3390/biology11081133
APA StyleLiu, J., Qiu, G., Liu, C., Lin, Y., Chen, X., Li, H., Fu, Q., & Guo, B. (2022). Intercropping of Euonymus japonicus with Photinia × fraseri Improves Phytoremediation Efficiency in Cd/Cu/Zn Contaminated Field. Biology, 11(8), 1133. https://doi.org/10.3390/biology11081133