Advances on Bacterial and Fungal Biofilms for the Production of Added-Value Compounds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Production of Added-Value Chemicals
2.1. Organic Acids
Product | Producers | Substrate | Immobilization Material | Reactor Type | Process Time (h) | Maximum Productivity (g·L−1·h−1) | Productivity Increment c | Ref. |
---|---|---|---|---|---|---|---|---|
Lactic acid | Lactobacillus casei subsp. rhamnosus | Glucose as CS and YE as NS | PCS | Packed-bed reactor (B) b | 1584 | 4.3 | 1.5 | [62,72,73] |
Stirred-tank reactor (C) | n.d. | 9.88 | n.a. | [24] | ||||
Lactobacillus delbrueckii | Glucose as CS and YE as NS | Glass | Tubular biofilm reactor (C) | 504 | 10 | 6–8 | [39] | |
MRS medium with molasses as CS | Polyurethane foam | Packed-bed biofilm reactor and stirred-tank reactor (C) | 1000 | 5 | 4 | [46] | ||
Rhizopus oryzae | Glucose and cornstarch as CS | Cotton cloth | Rotating fibrous bed bioreactor (FB) | 200 | 2.5 | n.a. | [51] | |
Potato starch | Loofah sponge | Airlift reactor (B) | 48 | 5 g·L−1 | 1.7 | [56] | ||
Succinic acid | Actinobacillus succinogenes | Xylose as CS and YE as NS | Wooden sticks and silicone-tubing segments | n.d. (C) | 1500 | 3.6 | n.a. | [42] |
Glucose as CS and YE as NS | PCS | Stirred-tank reactor (B, C) b | n.d. | 8.8 | 1.25 | [63,74] | ||
Glucose and CO2 as CS, and YE as NS | Poraver beads | Packed-bed reactor (C) | 80 | 10.8 | n.a. | [81] | ||
Tygon rings | 3600 | 35 | n.a. | [76] | ||||
Fumaric acid | Rhizopus oryzae | Glucose as CS | Polysulfone plastic disks | Rotary biofilm contactor (FB) b | 20 a | 4.25 | 5 | [77,78] |
Citric acid | Aspergillus niger | Sucrose as CS | Polyurethane foam | Rotary biofilm contactor (FB) b | 120 a | 0.90 | 3 | [79] |
Sucrose and sugar cane juice as CS | Cellulose microfibrils | Recycle reactor (C, FB) | 624 | 2.08 | 1.8 | [82] | ||
Glucose as CS dissolved in wheat bran extract and cassava-based medium | Polyurethane and carbon black foam | Flasks (FB) b | 72 a | 2.26 | 2 | [80] | ||
Acetic acid | Acetobacter pasteurianus | Glucose as CS and ethanol as BS | Charcoal pellets | Packed-bed reactor (C) | 4320 | 6.45 | n.a. | [54] |
Clostridium thermolacticum and Moorella thermoautotrophica | Lactose and milk permeate as CS and trypticase and YE as NS | Cotton towel overlaid with a stainless-steel wire cloth | Fibrous-bed bioreactor (B, FB) b | 336 a | 0.54 | 6 | [52] | |
Propionic acid | Propionibacterium acidipropionici | Sorghum bagasse hemicellulosic hydrolysate | Sorghum bagasse | Glass column (B) b | 146 | 1.17 | 6 | [83] |
Glycolic acid | Pseudomonas diminuta | Ethylene glycol as the BS | Stainless steel structured packing | Aerated trickle-bed biofilm reactor (C) | 1536 | 1.6 | 5 | [84] |
Gibberellic acid | Fusarium moniliforme | Milk permeate | Loofah sponge | Shaking flask (B) b | 144 | 1.6 × 10−2 | 1.4 | [55] |
Gluconic acid | Aspergillus niger | Deproteinized whey | Polyurethane foam | Erlenmeyer flasks (B) | 72 | 92 g·L−1 | 1.33 | [85] |
Fatty acids (acetate, propionate, and butyrate) | Methanogens and acid-producing bacteria | Methane as BS | Hollow fiber membranes | Membrane biofilm reactor (B) b | 12 a | 0.42 | n.a. | [86] |
Kojic acid | Aspergillus oryzae | Glucose as CS | PCS | Shaking flasks (B) b | 648 | 0.13 | >1 | [59] |
2.2. Enzymes
Product | Producers | Substrate | Immobilization Material | Reactor Type | Process Time (h) | Maximum Productivity (U·L−1) | Productivity Increment c | Ref. |
---|---|---|---|---|---|---|---|---|
Cellulase | Trichoderma viride | Glucose as CS | Stainless steel spheres | Spouted-bed reactor (C) | 336 | 31.5 U·L−1·h−1 | 3 | [88] |
Aspergillus niger | Ground rice straw | Celite and polyurethane foams | Bubble column fermenter and shaking flasks (B) | 168 | 1400 | 2 | [66] | |
Aspergillus terreus | Cellulose as CS | Woven nylon pads | n.d. (B) b | 2880 | 2400 | 4.5 | [89] | |
Lignin peroxidase and Manganese peroxidase | Phanerochaete chrysosporium | Glucose as CS | Polysulfone capillary membrane | Membrane gradostat bioreactor (C) | 336 | LiP = 35 MnP = 96 | n.a. | [30] |
PCS | Stirred-tank reactor (B) b | 144 a | LiP = 50 MnP = 63 | n.a. | [23] | |||
Polystyrene foam | Shaking flasks (B) | 192 | MnP = 421 | 1.2 | [92] | |||
Phospholipid-rich medium | Polysulfone capillary membrane | Membrane gradostat bioreactor (C) | 552 | 1.3 U·L−1·h−1 | n.a. | [90] | ||
Lipase | Rhizopus arrhizus | Peanut oil as CS and soybean flour as NS | Polyurethane | Shaking flasks (B) b | 140 | 1.76 × 104 U·L−1·h−1 | n.a. | [91] |
2.3. Polysaccharides
Product | Producers | Substrate | Immobilization Material | Reactor Type | Process Time (h) | Maximum Productivity (g·L−1·h−1) | Productivity Increment b | Ref. |
---|---|---|---|---|---|---|---|---|
Bacterial cellulose | Acetobacter xylinum | Corn steep liquor with fructose as CS | PCS | Stirred-tank reactor (B) | 120 | 5.9 × 10−2 | 2.5 | [93,94] |
Gluconacetobacter kombuchae | Sucrose as CS and YE as NS | Loofah sponge | Shaking flasks (B) | 360 | 6.7 × 10−2 | 2 | [95] | |
Gluconacetobacter xylinum | Corn steep liquor with fructose | PCS | Rotating-disk bioreactor (B) a | 120 | 1.0 × 10−2 | n.a. | [38] | |
Pullulan | Aureobasidium pullulans | Sucrose as CS, ammonium sulfate and YE as NS | PCS | Stirred-tank reactor (B, C, FB) | 168 | 1.33 | 3 | [58,96,97,98] |
Xanthan gum | Xanthomonas campestris | YM medium with sucrose as CS | Polyurethane | Shaking flask (B) | 96 | 0.62 | 3.6 | [99] |
YPD broth | Polyethylene | n.d. (B) | 72 | 8 g·L−1 | 2.5 | [100] |
2.4. Antimicrobial Compounds
Product | Producers | Substrate | Immobilization Material | Reactor Type | Process Time (h) | Maximum Productivity | Productivity Increment c | Ref. |
---|---|---|---|---|---|---|---|---|
Nisin | Lactococcus lactis subsp. lactis | Whey permeate | k-carrageenan/locust bean gum gel beads | Stirred-tank reactor (B) b | 1 a | 5.7 × 106 AU·L−1·h−1 | 6.7 | [22] |
Lactose and whey permeate as CS | Spiral wound fibrous matrix | Packed-bed reactor (C) | 4320 | 5.2 × 107 AU·L−1·h−1 | n.a. | [104] | ||
Sucrose as CS | PCS | Stirred-tank reactor (B, FB) b | 12 | 7.6 × 106 IU·L−1·h−1 | 1.8 | [106,107,108,109] | ||
Pediocin | Pediococcus acidilactici | MRS medium | Spiral wound fibrous matrix | Packed-bed biofilm reactor (C) | 2160 | 4.2 × 105 AU·L−1·h−1 | n.a. | [114] |
MRS medium and supplemented whey permeate medium | k-carrageenan/locust bean gum gel beads | Stirred-tank reactor (B) b | 0.75 a | 5.5 × 106 AU·L−1·h−1 | 16 | [102] | ||
Cephalosporin-C | Cephalosporium acremonium | Sucrose as CS | Siran beads | Airlift reactor (FB) | 180 | 7.1 × 10−3 g·L−1·h−1 | 1.65 | [34] |
Neomycin | Streptomyces marinensis | Maltose as CS | Alginate beads | Airlift reactor (C) | 16 | 7.5 × 10−3 g·L−1·h−1 | 2.5 | [49] |
Erlenmeyer flasks | 96 | 6.7 × 10−2 g·L−1·h−1 | 1.3 | [115] | ||||
Lysozyme | Kluyveromyces lactis | Lactose as CS | PCS | Stirred-tank reactor (B, C, FB) | 74 | 2.8 × 105 U·L−1 | 1.8 | [110,111,112,113] |
2.5. Alcohols and Solvents
Product | Producers | Substrate | Immobilization Material | Reactor Type | Process Time (h) | Maximum Productivity (g·L−1·h−1) | Productivity Increment c | Ref. |
---|---|---|---|---|---|---|---|---|
Ethanol | Zymononas mobilis | Glucose as CS and YE as NS | PCS | Packed-bed reactor (C) | 1440 | 536 | 100 | [116] |
Rice straw hydrolysate | Plastic and corn silk composites carriers | Packed-bed reactor (B, C) b | 120 | YP/S = 0.47 g·g−1 | n.a. | [68] | ||
Saccharomyces cerevisiae | Starch | Loofah sponge | Packed-bed reactor (B) b | 168 a | 0.25 | 1 | [123] | |
Potato waste hydrolysate | PCS | Stirred-tank reactor (B) b | 48 | 2.31 | n.a. | [67] | ||
Clostridium carboxidivorans | Fructose as CS and syngas as BS | AnoxKaldnes K1 carriers | Horizontal rotating packed-bed reactor (C) | 4560 | 0.28 | n.a. | [117] | |
1-Octanol | Recombinant Pseudomonas putida | Octane as BS | Silicone membrane | Biofilm membrane reactor (C) | 720 | 5.0 × 10−2 | 1.3 | [29] |
Cyclohexanol | Synechocystis sp. and Pseudomonas taiwanensis | Cyclohexane as BS | Glass | Capillary reactor (C) | 720 | 0.2 | n.a. | [118] |
1,3-propanediol | Klebsiella pneumoniae | Glycerol as CS | Porous hydrophobic polyurethane | Fixed-bed reactor (FB) b | 1460 | 1.7 | 1.1 | [47] |
ABE solvents (acetone, butanol, and ethanol) | Clostridia beijerinckii | Glucose as CS and YE as NS | Corn stalk pieces | Biofilm reactor (C) | 480 | 5.06 | 23 | [53] |
Clostridium acetobutylicum | Lactose as CS and yeast extract as NS | Tygon rings | Packed-bed biofilm reactor (C) | 750 | 4.4 | n.a. | [122] |
2.6. Other Compounds
Product | Producers | Substrate | Immobilization Material | Reactor Type | Process Time (h) | Maximum Productivity (g·L−1·h−1) | Productivity Increment c | Ref. |
---|---|---|---|---|---|---|---|---|
Hydrogen | Anaerobic sludge | Sucrose-based synthetic wastewater | Low-density polyethylene | Stirred anaerobic sequencing batch biofilm reactor (FB, B) b | 2 a | 3.4 × 10−3 mol-H2·L−1·h−1 | n.a. | [43,44] |
High-density polyethylene | Packed-bed reactor (C) | 336–504 | 0.12 L-H2·L−1·h−1 | n.a. | [45] | |||
Species of Thermoanaerobacterium | Xylose as CS | Plastic carriers | Up-flow anaerobic packed-bed reactor (C) | 1368 | 0.81 L-H2·L−1·h−1 | n.a. | [124] | |
Activated sludge | Glucose as CS | Hollow-fiber membrane module of polytetrafluoroethylene | Liquid/gas membrane bioreactor (C) | 92 | 0.26 L-H2·L−1·h−1 | n.a. | [125] | |
Polyhydroxyalkanoates | Bacillus sp. | Mineral salt media with date syrup | PCS | Stirred-tank reactor (B) b | 30 a | 0.195 | 1.4 | [127] |
Mixed microbial cultures | Acetic acid and fermented greenhouse residues | Biofilm carriers | Reactor tank | 5400 | 35 mg·g substrate−1·h−1 | n.a. | [128] | |
(S)-Styrene oxide | Pseudomonas sp. strain VLB120ΔC | Glucose as CS and styrene as BS | Silicone membrane | Tubular membrane reactor (C) | 1200 | 2.92 | n.a. | [126] |
Styrene as BS | Microporous ceramic aeration unit | Biofilm membrane reactor (C) | 720 | 1.17 | n.a. | [40] | ||
Dihydroxyacetone | Gluconobacter oxydans | Glycerol as CS and YE as NS | Silicone-coated Ralu rings | Packed-bed bubble column reactor (FB) b | 432 | 5.9 | 1.6 | [41,129] |
Poly(3-hydroxybutyrate) | Alcaligenes eutrophus | Glucose as CS | Anion exchange resin | Packed-bed reactor (C) | 74 | 0.04 | n.a. | [130] |
Carotene | Blakeslea trispora | Glucose and corn steep liquor as CS | Polypropylene disks | Rotary biofilm reactor (C) | 144 | 2.4 × 10−3 | 6 | [48] |
3. Recombinant Proteins
Recombinant Protein | Host | Cultivation Conditions | Production Levels | Productivity Increment c | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Reactor | Surface Material | Culture Medium | Temp.(°C) | Hydrodynamics | Time (Days) | Induction | |||||
β-galactosidase | Escherichia coli DH5α (pMJR1750) | PPFC | Glass | M9 minimal | 37 | Laminar flow (Re = 20) | 4–5 | IPTG (0.17–0.51 mM) | 0.08–0.12 pg·cell−1 | 0.25 | [156] |
Escherichia coli DH5α (pTKW106) | 0.027–0.050 pg·cell−1 | n.a. | [157] | ||||||||
eGFP | Escherichia coli ATCC 33456 | PPFC | Glass | LB | 37 | Laminar flow (Re = 32) | 6 | - | 0.01–0.16 g·L−1 | n.d. | [148] |
Escherichia coli JM109(DE3) | Flow cell | PVC | Nutrient medium a | 30 | Turbulent flow (Re = 4600) | 12 | - | 5.8 fg·cell−1 | 30 | [146] | |
DM and LB | 12 | - | 5.7–12 fg·cell−1 | 10 | [154] | ||||||
LB | 11 | IPTG (2 mM) | 17 fg·cell−1 | n.a. | [147] | ||||||
LB and M9ZB | 10 | - | 1.51–15.96 fg·cell−1 | 4 | [162] | ||||||
TB | Transient flow (Re = 2300) and Turbulent flow (Re = 4600) | 7 | - | 8.8–21.5 fg·cell−1 | 4 | [163] | |||||
D-Amino acid oxidase | Escherichia coli TOP10 | Static and shaken reactors | - | HSG4 | 30 | Static conditions | 7 | IPTG (0.1 mM) | 1.2 U·g−1 | n.a. | [164] |
Cellulose nanofibers | 170 rpm | 2.1 U·g−1 | n.a. | ||||||||
Iturin A | Bacillus subtilis | 24-well plates | - | LB | 28 | Static conditions | 6 | - | 0.6 g·L−1 | n.a. | [155] |
mCherry, EgTrp and EgA31 (part of fusion proteins) | Bacillus subtilis | Well plates with a 22 mm2 surface area and agar plates | - | MSgg | 30 | Static conditions | 3 | - | n.d. | n.d. | [144] |
GFP (as part of the GLA-GFP fusion protein) | Aspergillus niger | SFB and RFB reactor | Cotton cloth attached to a stainless-steel cylinder | Modified Vogel’s medium | 25 | Static conditions 100, 400, and 600 rpm | 33–34 | - | 0.1 g·L−1 0.8 g·L−1 | n.a. | [140] |
GFP (as part of the GLA-GFP fusion protein) | Aspergillus oryzae | BfR fungal reactor | Stainless steel packing | Complex medium b | 30 | n.d. | 3 | - | n.a. | n.d. | [141] |
4. Overall Advantages and Limitations of Productive Biofilms
5. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Corte, L.; Casagrande Pierantoni, D.; Tascini, C.; Roscini, L.; Cardinali, G. Biofilm Specific Activity: A Measure to Quantify Microbial Biofilm. Microorganisms 2019, 7, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabin, N.; Zheng, Y.; Opoku-Temeng, C.; Du, Y.; Bonsu, E.; Sintim, H.O. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med. Chem. 2015, 7, 493–512. [Google Scholar] [CrossRef] [PubMed]
- Carrascosa, C.; Raheem, D.; Ramos, F.; Saraiva, A.; Raposo, A. Microbial Biofilms in the Food Industry-A Comprehensive Review. Int. J. Environ. Res. Public Health 2021, 18, 2014. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C.G. The role of biofilms in reprocessing medical devices. Am. J. Infect. Control 2013, 41, S77–S80. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Chandra, N.; Kumar, S. The Role of Biofilms in Medical Devices and Implants. In Biofilms in Human Diseases: Treatment and Control; Kumar, S., Chandra, N., Singh, L., Hashmi, M.Z., Varma, A., Eds.; Springer International Publishing: Cham, Switzenland, 2019; pp. 151–165. [Google Scholar]
- Moreira, J.M.R.; Fulgêncio, R.; Alves, P.; Machado, I.; Bialuch, I.; Melo, L.F.; Simões, M.; Mergulhão, F.J. Evaluation of SICAN performance for biofouling mitigation in the food industry. Food Control 2016, 62, 201–207. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho, C.C.C.R. Marine Biofilms: A Successful Microbial Strategy with Economic Implications. Front. Mar. Sci. 2018, 5, 126. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; He, Z.; Liang, T.; Sheng, T.; Zhang, F.; Wu, D.; Ma, F. Colonization of biofilm in wastewater treatment: A review. Environ. Pollut. 2022, 293, 118514. [Google Scholar] [CrossRef]
- Edwards, S.J.; Kjellerup, B.V. Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl. Microbiol. Biotechnol. 2013, 97, 9909–9921. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Wang, J.; Yuan, X.; Jiang, X.; Wang, Y.; Zhong, C.; Xu, D.; Gu, T.; Wang, F. Bacterial biofilms as platforms engineered for diverse applications. Biotechnol. Adv. 2022, 57, 107932. [Google Scholar] [CrossRef]
- Cheng, K.C.; Demirci, A.; Catchmark, J.M. Advances in biofilm reactors for production of value-added products. Appl. Microbiol. Biotechnol. 2010, 87, 445–456. [Google Scholar] [CrossRef]
- Soares, A.; Azevedo, A.; Gomes, L.C.; Mergulhao, F.J. Recombinant protein expression in biofilms. AIMS Microbiol. 2019, 5, 232–250. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liu, Y.; Zhang, X.; Gao, H.; Mou, L.; Wu, M.; Zhang, W.; Xin, F.; Jiang, M. Biofilm application in the microbial biochemicals production process. Biotechnol. Adv. 2021, 48, 107724. [Google Scholar] [CrossRef] [PubMed]
- Germec, M.; Demirci, A.; Turhan, I. Biofilm reactors for value-added products production: An in-depth review. Biocatal. Agric. Biotechnol. 2020, 27, 101662. [Google Scholar] [CrossRef]
- Ercan, D.; Demirci, A. Current and future trends for biofilm reactors for fermentation processes. Crit. Rev. Biotechnol. 2015, 35, 1–14. [Google Scholar] [CrossRef]
- Todhanakasem, T. Developing microbial biofilm as a robust biocatalyst and its challenges. Biocatal. Biotransformation 2017, 35, 86–95. [Google Scholar] [CrossRef]
- Demirci, A.; Pongtharangkul, T.; Pometto, A.L. Applications of biofilm reactors for production of value-added products by microbial fermentation. In Biofilms in the Food Environment, 2nd ed.; Blaschek, H.P., Wang, H.H., Agle, M.E., Eds.; Blackwell Publishing: Oxford, UK, 2007; pp. 167–190. [Google Scholar]
- Mahdinia, E.; Demirci, A. Biofilms in Fermentation for the Production of Value-Added Products. In Microbial Biofilms; CRC Press: Boca Raton, FL, USA, 2020; pp. 73–108. [Google Scholar]
- Muffler, K.; Lakatos, M.; Schlegel, C.; Strieth, D.; Kuhne, S.; Ulber, R. Application of biofilm bioreactors in white biotechnology. Adv. Biochem. Eng. Biotechnol. 2014, 146, 123–161. [Google Scholar] [CrossRef]
- Rosche, B.; Li, X.Z.; Hauer, B.; Schmid, A.; Buehler, K. Microbial biofilms: A concept for industrial catalysis? Trends Biotechnol. 2009, 27, 636–643. [Google Scholar] [CrossRef]
- Halan, B.; Buehler, K.; Schmid, A. Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol. 2012, 30, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, N.; Fliss, I.; Lacroix, C. High nisin-Z production during repeated-cycle batch cultures in supplemented whey permeate using immobilized Lactococcus lactis UL719. Int. Dairy J. 2001, 11, 953–960. [Google Scholar] [CrossRef]
- Khiyami, M.A.; Pometto, A.L., 3rd; Kennedy, W.J. Ligninolytic enzyme production by Phanerochaete chrysosporium in plastic composite support biofilm stirred tank bioreactors. J. Agric. Food Chem. 2006, 54, 1693–1698. [Google Scholar] [CrossRef]
- Cotton, J.C.; Pometto, A.L., 3rd; Gvozdenovic-Jeremic, J. Continuous lactic acid fermentation using a plastic composite support biofilm reactor. Appl. Microbiol. Biotechnol. 2001, 57, 626–630. [Google Scholar] [CrossRef] [PubMed]
- Roukas, T.; Kotzekidou, P. Continuous production of lactic acid from deproteinized whey by coimmobilized lactobacillus casei and lactococcus lactis cells in a packed-bed reactor. Food Biotechnol. 1996, 10, 231–242. [Google Scholar] [CrossRef]
- Monti, M.; Scoma, A.; Martinez, G.; Bertin, L.; Fava, F. Uncoupled hydrogen and volatile fatty acids generation in a two-step biotechnological anaerobic process fed with actual site wastewater. New Biotechnol. 2015, 32, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Lienhardt, J.; Schripsema, J.; Qureshi, N.; Blaschek, H.P. Butanol production by Clostridium beijerinckii BA101 in an immobilized cell biofilm reactor: Increase in sugar utilization. Appl. Biochem. Biotechnol. 2002, 98–100, 591–598. [Google Scholar] [CrossRef]
- Venkatadri, R.; Irvine, R.L. Cultivation of Phanerochaete chrysosporium and production of lignin peroxidase in novel biofilm reactor systems: Hollow fiber reactor and silicone membrane reactor. Water Res. 1993, 27, 591–596. [Google Scholar] [CrossRef]
- Gross, R.; Buehler, K.; Schmid, A. Engineered catalytic biofilms for continuous large scale production of n-octanol and (S)-styrene oxide. Biotechnol. Bioeng. 2013, 110, 424–436. [Google Scholar] [CrossRef] [PubMed]
- Solomon, M.S.; Petersen, F.W. Membrane bioreactor production of lignin and manganese peroxidase. Membr. Technol. 2002, 2002, 6–8. [Google Scholar] [CrossRef]
- Dumsday, G.J.; Zhou, B.; Buhmann, S.; Stanley, G.A.; Pamment, N.B. Continuous Ethanol Production by Escherichia Coli KO11 in Continuous Stirred Tank and Fluidized Bed Fermenters. Australas. Biotechnol. 1997, 7, 300–303. [Google Scholar]
- Barros, A.R.; Cavalcante de Amorim, E.L.; Reis, C.M.; Shida, G.M.; Silva, E.L. Biohydrogen production in anaerobic fluidized bed reactors: Effect of support material and hydraulic retention time. Int. J. Hydrogen Energy 2010, 35, 3379–3388. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.L.; Bai, S. Modeling of continuous L(+)-lactic acid production with immobilized R. oryzae in an airlift bioreactor. Biochem. Eng. J. 1999, 3, 87–90. [Google Scholar] [CrossRef]
- Srivastava, P.; Kundu, S. Studies on cephalosporin-C production in an air lift reactor using different growth modes of Cephalosporium acremonium. Process Biochem. 1999, 34, 329–333. [Google Scholar] [CrossRef]
- Vassilev, N.B.; Vassileva, M.C.; Spassova, D.I. Production of gluconic acid by Aspergillus niger immobilized on polyurethane foam. Appl. Microbiol. Biotechnol. 1993, 39, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Lee, C.W.; Chang, H.N. Citric acid production by Aspergillus niger immobilized on polyurethane foam. Appl. Microbiol. Biotechnol. 1989, 30, 141–143. [Google Scholar] [CrossRef]
- Amin, G.; Doelle, H.W. Production of high ethanol concentrations from glucose using a vertical rotating immobilized cell reactor of the bacterium zymomonas mobilis. Acta Biotechnol. 1990, 10, 35–40. [Google Scholar] [CrossRef]
- Lin, S.-P.; Hsieh, S.-C.; Chen, K.-I.; Demirci, A.; Cheng, K.-C. Semi-continuous bacterial cellulose production in a rotating disk bioreactor and its materials properties analysis. Cellulose 2014, 21, 835–844. [Google Scholar] [CrossRef]
- Cuny, L.; Pfaff, D.; Luther, J.; Ranzinger, F.; Ödman, P.; Gescher, J.; Guthausen, G.; Horn, H.; Hille-Reichel, A. Evaluation of productive biofilms for continuous lactic acid production. Biotechnol. Bioeng. 2019, 116, 2687–2697. [Google Scholar] [CrossRef]
- Halan, B.; Schmid, A.; Buehler, K. Maximizing the productivity of catalytic biofilms on solid supports in membrane aerated reactors. Biotechnol. Bioeng. 2010, 106, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Hekmat, D.; Bauer, R.; Neff, V. Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans. Process Biochem. 2007, 42, 71–76. [Google Scholar] [CrossRef]
- Bradfield, M.F.; Nicol, W. Continuous succinic acid production from xylose by Actinobacillus succinogenes. Bioprocess Biosyst. Eng. 2016, 39, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Inoue, R.K.; Lima, D.M.; Rodrigues, J.A.; Ratusznei, S.M.; Zaiat, M. Effect of organic loading rate and fill time on the biohydrogen production in a mechanically stirred AnSBBR treating synthetic sucrose-based wastewater. Appl. Biochem. Biotechnol. 2014, 174, 2326–2349. [Google Scholar] [CrossRef]
- Manssouri, M.; Rodrigues, J.A.; Ratusznei, S.M.; Zaiat, M. Effects of organic loading, influent concentration, and feed time on biohydrogen production in a mechanically stirred AnSBBR treating sucrose-based wastewater. Appl. Biochem. Biotechnol. 2013, 171, 1832–1854. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, W.; Ferrasse, J.-H.; Giudici-Orticoni, M.-T.; Soric, A. Effect of hydraulic retention time on a continuous biohydrogen production in a packed bed biofilm reactor with recirculation flow of the liquid phase. Int. J. Hydrogen Energy 2018, 43, 18883–18895. [Google Scholar] [CrossRef] [Green Version]
- Rangaswamy, V.; Ramakrishna, S.V. Lactic acid production by Lactobacillus delbrueckii in a dual reactor system using packed bed biofilm reactor. Lett. Appl. Microbiol. 2008, 46, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Jun, S.A.; Moon, C.; Kang, C.H.; Kong, S.W.; Sang, B.I.; Um, Y. Microbial fed-batch production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumoniae. Appl. Biochem. Biotechnol. 2010, 161, 491–501. [Google Scholar] [CrossRef]
- Roukas, T. Modified rotary biofilm reactor: A new tool for enhanced carotene productivity by Blakeslea trispora. J. Clean. Prod. 2018, 174, 1114–1121. [Google Scholar] [CrossRef]
- Srinivasulu, B.; Prakasham, R.S.; Jetty, A.; Srinivas, S.; Ellaiah, P.; Ramakrishna, S.V. Neomycin production with free and immobilized cells of Streptomyces marinensis in an airlift reactor. Process Biochem. 2002, 38, 593–598. [Google Scholar] [CrossRef]
- Chaganti, S.; Reddy Shetty, P.; Rao, A.; Yadav, J. Production of L-(+)-lactic acid by Lactobacillus delbrueckii immobilized in functionalized alginate matrices. World J. Microbiol. Biotechnol. 2008, 24, 1411–1415. [Google Scholar] [CrossRef]
- Tay, A.; Yang, S.T. Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnol. Bioeng. 2002, 80, 1–12. [Google Scholar] [CrossRef]
- Talabardon, M.; Schwitzguébel, J.P.; Péringer, P.; Yang, S.T. Acetic acid production from lactose by an anaerobic thermophilic coculture immobilized in a fibrous-bed bioreactor. Biotechnol. Prog. 2000, 16, 1008–1017. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, Y.; Yang, F.; Zhang, C. Continuous acetone-butanol-ethanol production by corn stalk immobilized cells. J. Ind. Microbiol. Biotechnol. 2009, 36, 1117–1121. [Google Scholar] [CrossRef]
- Horiuchi, J.; Tabata, K.; Kanno, T.; Kobayashi, M. Continuous acetic acid production by a packed bed bioreactor employing charcoal pellets derived from waste mushroom medium. J. Biosci. Bioeng. 2000, 89, 126–130. [Google Scholar] [CrossRef]
- Meleigy, S.A.; Khalaf, M.A. Biosynthesis of gibberellic acid from milk permeate in repeated batch operation by a mutant Fusarium moniliforme cells immobilized on loofa sponge. Bioresour. Technol. 2009, 100, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Shahri, S.Z.; Vahabzadeh, F.; Mogharei, A. Lactic acid production by loofah-immobilized Rhizopus oryzae through one-step fermentation process using starch substrate. Bioprocess Biosyst. Eng. 2020, 43, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Kunduru, M.R.; Pometto, A.L. Evaluation of plastic composite-supports for enhanced ethanol production in biofilm reactors. J. Ind. Microbiol. 1996, 16, 241–248. [Google Scholar] [CrossRef]
- Cheng, K.C.; Demirci, A.; Catchmark, J.M. Effects of plastic composite support and pH profiles on pullulan production in a biofilm reactor. Appl. Microbiol. Biotechnol. 2010, 86, 853–861. [Google Scholar] [CrossRef]
- Liu, J.M.; Yu, T.C.; Lin, S.P.; Hsu, R.J.; Hsu, K.D.; Cheng, K.C. Evaluation of kojic acid production in a repeated-batch PCS biofilm reactor. J. Biotechnol. 2016, 218, 41–48. [Google Scholar] [CrossRef]
- Velázquez, A.C.; Pometto, A.L., 3rd; Ho, K.L.; Demirci, A. Evaluation of plastic-composite supports in repeated fed-batch biofilm lactic acid fermentation by Lactobacillus casei. Appl. Microbiol. Biotechnol. 2001, 55, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Demirci, A.; Pometto, A.L. Repeated-batch fermentation in biofilm reactors with plastic-composite supports for lactic acid production. Appl. Microbiol. Biotechnol. 1995, 43, 585–589. [Google Scholar] [CrossRef]
- Ho, K.L.; Pometto, A.L., 3rd; Hinz, P.N. Optimization of L-(+)-lactic acid production by ring and disc plastic composite supports through repeated-batch biofilm fermentation. Appl. Environ. Microbiol. 1997, 63, 2533–2542. [Google Scholar] [CrossRef] [Green Version]
- Urbance, S.E.; Pometto, A.L., 3rd; Dispirito, A.A.; Denli, Y. Evaluation of succinic acid continuous and repeat-batch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors. Appl. Microbiol. Biotechnol. 2004, 65, 664–670. [Google Scholar] [CrossRef]
- Van Dien, S. From the first drop to the first truckload: Commercialization of microbial processes for renewable chemicals. Curr. Opin. Biotechnol. 2013, 24, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Bradfield, M.F.; Mohagheghi, A.; Salvachúa, D.; Smith, H.; Black, B.A.; Dowe, N.; Beckham, G.T.; Nicol, W. Continuous succinic acid production by Actinobacillus succinogenes on xylose-enriched hydrolysate. Biotechnol. Biofuels 2015, 8, 181. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.W.; Kim, S.W.; Lee, J.S. Production of cellulase and xylanase in a bubble column using immobilized Aspergillus niger KKS. Appl. Biochem. Biotechnol. 1995, 53, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Izmirlioglu, G.; Demirci, A. Ethanol production in biofilm reactors from potato waste hydrolysate and optimization of growth parameters for Saccharomyces cerevisiae. Fuel 2016, 181, 643–651. [Google Scholar] [CrossRef]
- Todhanakasem, T.; Salangsing, O.-l.; Koomphongse, P.; Kaewket, S.; Kanokratana, P.; Champreda, V. Zymomonas mobilis Biofilm Reactor for Ethanol Production Using Rice Straw Hydrolysate Under Continuous and Repeated Batch Processes. Front. Microbiol. 2019, 10, 1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jönsson, L.J.; Martín, C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 2016, 199, 103–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonov, P.S.; Flores-Alsina, X.; Gernaey, K.V.; Sternberg, C. Microbial biofilms in biorefinery—Towards a sustainable production of low-value bulk chemicals and fuels. Biotechnol. Adv. 2021, 50, 107766. [Google Scholar] [CrossRef]
- Rodrigues, C.; Vandenberghe, L.P.S.; Woiciechowski, A.L.; de Oliveira, J.; Letti, L.A.J.; Soccol, C.R. 24—Production and Application of Lactic Acid. In Current Developments in Biotechnology and Bioengineering; Pandey, A., Negi, S., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 543–556. [Google Scholar]
- Ho, K.G.; Pometto, A.I.; Hinz, P.N.; Demirci, A. Nutrient leaching and end product accumulation in plastic composite supports for L-(+)-lactic Acid biofilm fermentation. Appl. Environ. Microbiol. 1997, 63, 2524–2532. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.L.; Pometto, A.L., III; Hinz, P.N.; Dickson, J.S.; Demirci, A. Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus. Appl. Environ. Microbiol. 1997, 63, 2516–2523. [Google Scholar] [CrossRef] [Green Version]
- Urbance, S.E.; Pometto, A.L.; DiSpirito, A.A.; Demirci, A. Medium Evaluation and Plastic Composite Support Ingredient Selection for Biofilm Formation and Succinic Acid Production by Actinobacillus succinogenes. Food Biotechnol. 2003, 17, 53–65. [Google Scholar] [CrossRef]
- Bradfield, M.F.A.; Nicol, W. Continuous succinic acid production by Actinobacillus succinogenes in a biofilm reactor: Steady-state metabolic flux variation. Biochem. Eng. J. 2014, 85, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ferone, M.; Raganati, F.; Ercole, A.; Olivieri, G.; Salatino, P.; Marzocchella, A. Continuous succinic acid fermentation by Actinobacillus succinogenes in a packed-bed biofilm reactor. Biotechnol. Biofuels 2018, 11, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, N.; Du, J.; Chen, C.; Gong, C.S.; Tsao, G.T. Production of fumaric acid by immobilized rhizopus using rotary biofilm contactor. Appl. Biochem. Biotechnol. 1997, 63–65, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Cao, N.; Du, J.; Gong, C.S.; Tsao, G.T. Simultaneous Production and Recovery of Fumaric Acid from Immobilized Rhizopus oryzae with a Rotary Biofilm Contactor and an Adsorption Column. Appl. Environ. Microbiol. 1996, 62, 2926–2931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jianlong, W. Production of citric acid by immobilized Aspergillus niger using a rotating biological contactor (RBC). Bioresour. Technol. 2000, 75, 245–247. [Google Scholar] [CrossRef]
- Yu, B.; Zhang, X.; Sun, W.; Xi, X.; Zhao, N.; Huang, Z.; Ying, Z.; Liu, L.; Liu, D.; Niu, H.; et al. Continuous citric acid production in repeated-fed batch fermentation by Aspergillus niger immobilized on a new porous foam. J. Biotechnol. 2018, 276–277, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Maharaj, K.; Bradfield, M.F.; Nicol, W. Succinic acid-producing biofilms of Actinobacillus succinogenes: Reproducibility, stability and productivity. Appl. Microbiol. Biotechnol. 2014, 98, 7379–7386. [Google Scholar] [CrossRef] [Green Version]
- Sankpal, N.V.; Joshi, A.P.; Kulkarni, B.D. Citric acid production by Aspergillus niger immobilized on cellulose microfibrils: Influence of morphology and fermenter conditions on productivity. Process Biochem. 2001, 36, 1129–1139. [Google Scholar] [CrossRef]
- Castro, P.G.M.; Maeda, R.N.; Rocha, V.A.L.; Fernandes, R.P.; Pereira Jr, N. Improving propionic acid production from a hemicellulosic hydrolysate of sorghum bagasse by means of cell immobilization and sequential batch operation. Biotechnol. Appl. Biochem. 2021, 68, 1120–1127. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Z.; Hauer, B.; Rosche, B. Catalytic biofilms on structured packing for the production of glycolic acid. J. Microbiol. Biotechnol. 2013, 23, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, R.; Chatterjee, S.; Chatterjee, B.P.; Banerjee, P.C.; Guha, A.K. Production of gluconic acid from whey by free and immobilized Aspergillus niger. Int. Dairy J. 2005, 15, 299–303. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, L.; Hu, S.; Yuan, Z.; Guo, J. High-Rate Production of Short-Chain Fatty Acids from Methane in a Mixed-Culture Membrane Biofilm Reactor. Environ. Sci. Technol. Lett. 2018, 5, 662–667. [Google Scholar] [CrossRef]
- Jayasekara, S.; Ratnayake, R. Microbial Cellulases: An Overview and Applications. In Cellulose; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Webb, C.; Fukuda, H.; Atkinson, B. The production of cellulase in a spouted bed fermentor using cells immobilized in biomass support particles. Biotechnol. Bioeng. 1986, 28, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Hui, Y.; Amirul, A.A.; Yahya, A.; Azizan, M. Cellulase production by free and immobilized Aspergillus terreus. World J. Microbiol. Biotechnol. 2010, 26, 79–84. [Google Scholar] [CrossRef]
- Govender, S.; Pillay, V.L.; Odhav, B. Nutrient manipulation as a basis for enzyme production in a gradostat bioreactor. Enzym. Microb. Technol. 2010, 46, 603–609. [Google Scholar] [CrossRef]
- Yang, X.; Wang, B.; Cui, F.; Tan, T. Production of lipase by repeated batch fermentation with immobilized Rhizopus arrhizus. Process Biochem. 2005, 40, 2095–2103. [Google Scholar] [CrossRef]
- Urek, R.O.; Pazarlioğlu, N.K. A novel carrier for Phanerochaete chrysosporium immobilization. Artif. Cells Blood Substit. Biotechnol. 2004, 32, 563–574. [Google Scholar] [CrossRef]
- Cheng, K.-C.; Catchmark, J.M.; Demirci, A. Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose 2009, 16, 1033–1045. [Google Scholar] [CrossRef]
- Cheng, K.-C.; Catchmark, J.M.; Demirci, A. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J. Biol. Eng. 2009, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S.S.A.; Vaishnavi, T.; Vidyasri, G.S.; Sathya, K.; Priyanka, P.; Venkatachalam, P.; Karuppiah, S. Production of bacterial cellulose using Gluconacetobacter kombuchae immobilized on Luffa aegyptiaca support. Sci. Rep. 2021, 11, 2912. [Google Scholar] [CrossRef]
- Cheng, K.C.; Demirci, A.; Catchmark, J.M. Enhanced pullulan production in a biofilm reactor by using response surface methodology. J. Ind. Microbiol. Biotechnol. 2010, 37, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.-C.; Demirci, A.; Catchmark, J.M.; Puri, V.M. Effects of initial ammonium ion concentration on pullulan production by Aureobasidium pullulans and its modeling. J. Food Eng. 2011, 103, 115–122. [Google Scholar] [CrossRef]
- Cheng, K.C.; Demirci, A.; Catchmark, J.M. Continuous pullulan fermentation in a biofilm reactor. Appl. Microbiol. Biotechnol. 2011, 90, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, R.A.; Hassemer, G.; Marchiori, V.; Kiedis, J.; Valduga, E.; Junges, A.; Malvessi, E.; Cansian, R.L.; Zeni, J. Synthesis of Xanthan Gum from Xanthomonas campestris Immobilized in Polyurethane. Ind. Biotechnol. 2018, 14, 276–281. [Google Scholar] [CrossRef]
- Nejadmansouri, M.; Shad, E.; Razmjooei, M.; Safdarianghomsheh, R.; Delvigne, F.; Khalesi, M. Production of xanthan gum using immobilized Xanthomonas campestris cells: Effects of support type. Biochem. Eng. J. 2020, 157, 107554. [Google Scholar] [CrossRef]
- Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocins—A viable alternative to antibiotics? Nat. Rev. Microbiol. 2013, 11, 95–105. [Google Scholar] [CrossRef]
- Naghmouchi, K.; Fliss, I.; Drider, D.; Lacroix, C. Pediocin PA-1 production during repeated-cycle batch culture of immobilized Pediococcus acidilactici UL5 cells. J. Biosci. Bioeng. 2008, 105, 513–517. [Google Scholar] [CrossRef]
- Klaenhammer, T.R. Bacteriocins of lactic acid bacteria. Biochimie 1988, 70, 337–349. [Google Scholar] [CrossRef]
- Liu, X.; Chung, Y.-K.; Yang, S.-T.; Yousef, A.E. Continuous nisin production in laboratory media and whey permeate by immobilized Lactococcus lactis. Process Biochem. 2005, 40, 13–24. [Google Scholar] [CrossRef]
- Benmechernene, Z.; Fernandez-No, I.; Kihal, M.; Böhme, K.; Calo-Mata, P.; Barros-Velazquez, J. Recent patents on bacteriocins: Food and biomedical applications. Recent Pat. DNA Gene Seq. 2013, 7, 66–73. [Google Scholar] [CrossRef]
- Pongtharangkul, T.; Demirci, A. Evaluation of culture medium for nisin production in a repeated-batch biofilm reactor. Biotechnol. Prog. 2006, 22, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Pongtharangkul, T.; Demirci, A. Effects of pH profiles on nisin production in biofilm reactor. Appl. Microbiol. Biotechnol. 2006, 71, 804–811. [Google Scholar] [CrossRef]
- Pongtharangkul, T.; Demirci, A. Effects of fed-batch fermentation and pH profiles on nisin production in suspended-cell and biofilm reactors. Appl. Microbiol. Biotechnol. 2006, 73, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Pongtharangku, T.; Demirci, A. Online recovery of nisin during fermentation and its effect on nisin production in biofilm reactor. Appl. Microbiol. Biotechnol. 2007, 74, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Ercan, D.; Demirci, A. Production of human lysozyme in biofilm reactor and optimization of growth parameters of Kluyveromyces lactis K7. Appl. Microbiol. Biotechnol. 2013, 97, 6211–6221. [Google Scholar] [CrossRef] [PubMed]
- Ercan, D.; Demirci, A. Enhanced human lysozyme production in biofilm reactor by Kluyveromyces lactis K7. Biochem. Eng. J. 2014, 92, 2–8. [Google Scholar] [CrossRef]
- Ercan, D.; Demirci, A. Effects of fed-batch and continuous fermentations on human lysozyme production by Kluyveromyces lactis K7 in biofilm reactors. Bioprocess Biosyst. Eng. 2015, 38, 2461–2468. [Google Scholar] [CrossRef]
- Ercan, D.; Demirci, A. Enhanced human lysozyme production by Kluyveromyces lactis K7 in biofilm reactor coupled with online recovery system. Biochem. Eng. J. 2015, 98, 68–74. [Google Scholar] [CrossRef]
- Cho, H.Y.; Yousef, A.E.; Yang, S.T. Continuous production of pediocin by immobilized Pediococcus acidilactici PO2 in a packed-bed bioreactor. Appl. Microbiol. Biotechnol. 1996, 45, 589–594. [Google Scholar] [CrossRef]
- Srinivasulu, B.; Adinarayana, K.; Ellaiah, P. Investigations on neomycin production with immobilized cells of Streptomyces marinensis NUV-5 in calcium alginate matrix. AAPS PharmSciTech 2003, 4, E57. [Google Scholar] [CrossRef] [Green Version]
- Kunduru, M.R.; Pometto, A.L., 3rd. Continuous ethanol production by Zymomonas mobilis and Saccharomyces cerevisiae in biofilm reactors. J. Ind. Microbiol. 1996, 16, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Brown, R.C.; Wen, Z. Syngas fermentation by Clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production. Appl. Energy 2017, 187, 585–594. [Google Scholar] [CrossRef]
- Hoschek, A.; Heuschkel, I.; Schmid, A.; Bühler, B.; Karande, R.; Bühler, K. Mixed-species biofilms for high-cell-density application of Synechocystis sp. PCC 6803 in capillary reactors for continuous cyclohexane oxidation to cyclohexanol. Bioresour. Technol. 2019, 282, 171–178. [Google Scholar] [CrossRef]
- Qureshi, N.; Schripsema, J.; Lienhardt, J.; Blaschek, H.P. Continuous solvent production by Clostridium beijerinckii BA101 immobilized by adsorption onto brick. World J. Microbiol. Biotechnol. 2000, 16, 377–382. [Google Scholar] [CrossRef]
- Qureshi, N.; Karcher, P.; Cotta, M.; Blaschek, H.P. High-productivity continuous biofilm reactor for butanol production. Appl. Biochem. Biotechnol. 2004, 114, 713–721. [Google Scholar] [CrossRef]
- Lee, S.-M.; Cho, M.O.; Park, C.H.; Chung, Y.-C.; Kim, J.H.; Sang, B.-I.; Um, Y. Continuous Butanol Production Using Suspended and Immobilized Clostridium beijerinckii NCIMB 8052 with Supplementary Butyrate. Energy Fuels 2008, 22, 3459–3464. [Google Scholar] [CrossRef]
- Napoli, F.; Olivieri, G.; Russo, M.E.; Marzocchella, A.; Salatino, P. Butanol production by Clostridium acetobutylicum in a continuous packed bed reactor. J. Ind. Microbiol. Biotechnol. 2010, 37, 603–608. [Google Scholar] [CrossRef]
- Chen, J.P.; Wu, K.W.; Fukuda, H. Bioethanol production from uncooked raw starch by immobilized surface-engineered yeast cells. Appl. Biochem. Biotechnol. 2008, 145, 59–67. [Google Scholar] [CrossRef]
- Kongjan, P.; Inchan, S.; Chanthong, S.; Jariyaboon, R.; Reungsang, A.; O-Thong, S. Hydrogen production from xylose by moderate thermophilic mixed cultures using granules and biofilm up-flow anaerobic reactors. Int. J. Hydrogen Energy 2019, 44, 3317–3324. [Google Scholar] [CrossRef]
- Renaudie, M.; Dumas, C.; Vuilleumier, S.; Ernst, B. Biohydrogen production in a continuous liquid/gas hollow fiber membrane bioreactor: Efficient retention of hydrogen producing bacteria via granule and biofilm formation. Bioresour. Technol. 2021, 319, 124203. [Google Scholar] [CrossRef]
- Gross, R.; Lang, K.; Bühler, K.; Schmid, A. Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis. Biotechnol. Bioeng. 2010, 105, 705–717. [Google Scholar] [CrossRef] [PubMed]
- Khiyami, M.; Alfadul, S.; Bahkali, A. Polyhydroxyalkanoates production via Bacillus PCS biofilm and date palm syrup. J. Med. Plant Res. 2011, 5, 3312–3320. [Google Scholar]
- Bengtsson, S.; Karlsson, A.; Alexandersson, T.; Quadri, L.; Hjort, M.; Johansson, P.; Morgan-Sagastume, F.; Anterrieu, S.; Arcos-Hernandez, M.; Karabegovic, L.; et al. A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale. New Biotechnol. 2017, 35, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Hekmat, D.; Bauer, R.; Fricke, J. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst. Eng. 2003, 26, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Norrlöw, O.; Wawrzynczyk, J.; Dey, E.S. Poly(3-hydroxybutyrate) biosynthesis in the biofilm of Alcaligenes eutrophus, using glucose enzymatically released from pulp fiber sludge. Appl. Environ. Microbiol. 2004, 70, 6776–6782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Overton, T.W. Recombinant protein production in bacterial hosts. Drug Discov. Today 2014, 19, 590–601. [Google Scholar] [CrossRef] [PubMed]
- Rosano, G.L.; Ceccarelli, E.A. Recombinant protein expression in Escherichia coli: Advances and challenges. Front. Microbiol. 2014, 5, 172. [Google Scholar] [CrossRef] [Green Version]
- Demain, A.L.; Vaishnav, P. Production of recombinant proteins by microbes and higher organisms. Biotechnol. Adv. 2009, 27, 297–306. [Google Scholar] [CrossRef]
- Chen, R. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol. Adv. 2012, 30, 1102–1107. [Google Scholar] [CrossRef]
- Gomes, L.; Mergulhão, F. Production of Recombinant Proteins in Escherichia coli Biofilms: Challenges and Opportunities. In Advances in Medicine and Biology; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2019; p. 181. [Google Scholar]
- Burdette, L.A.; Leach, S.A.; Wong, H.T.; Tullman-Ercek, D. Developing Gram-negative bacteria for the secretion of heterologous proteins. Microb. Cell Factories 2018, 17, 196. [Google Scholar] [CrossRef] [Green Version]
- Peng, M.; Margetts, T.J.; Rayana, N.P.; Sugali, C.K.; Dai, J.; Mao, W. The application of lentiviral vectors for the establishment of TGFβ2-induced ocular hypertension in C57BL/6J mice. Exp. Eye Res. 2022, 221, 109137. [Google Scholar] [CrossRef] [PubMed]
- Al-Aridhi, T. GFP-coated microparticles to quantify and compare wild-type desmin with known desmin mutations in human heart disease via quantitative live-cell fluorescence Imaging; Universität Bielefeld: Bielefeld, Germany, 2022. [Google Scholar]
- Hoffman, R.M. Application of GFP imaging in cancer. Lab. Investig. 2015, 95, 432–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talabardon, M.; Yang, S.T. Production of GFP and glucoamylase by recombinant Aspergillus niger: Effects of fermentation conditions on fungal morphology and protein secretion. Biotechnol. Prog. 2005, 21, 1389–1400. [Google Scholar] [CrossRef]
- Zune, Q.; Delepierre, A.; Gofflot, S.; Bauwens, J.; Twizere, J.C.; Punt, P.J.; Francis, F.; Toye, D.; Bawin, T.; Delvigne, F. A fungal biofilm reactor based on metal structured packing improves the quality of a Gla::GFP fusion protein produced by Aspergillus oryzae. Appl. Microbiol. Biotechnol. 2015, 99, 6241–6254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saqib, S.; Akram, A.; Halim, S.A.; Tassaduq, R. Sources of β-galactosidase and its applications in food industry. 3 Biotech 2017, 7, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husain, Q. Beta galactosidases and their potential applications: A review. Crit. Rev. Biotechnol. 2010, 30, 41–62. [Google Scholar] [CrossRef] [PubMed]
- Vogt, C.M.; Schraner, E.M.; Aguilar, C.; Eichwald, C. Heterologous expression of antigenic peptides in Bacillus subtilis biofilms. Microb. Cell Factories 2016, 15, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, P.V. Chapter 19 Medical Biotechnology Techniques and Applications. In Omics Technologies and Bio-Engineering; Academic Press: Cambridge, MA, USA, 2018; pp. 449–469. [Google Scholar]
- Gomes, L.; Mergulhão, F. Heterologous protein production in Escherichia coli biofilms: A non-conventional form of high cell density cultivation. Process Biochem. 2017, 57, 1–8. [Google Scholar] [CrossRef]
- Gomes, L.; Monteiro, G.; Mergulhao, F. The Impact of IPTG Induction on Plasmid Stability and Heterologous Protein Expression by Escherichia coli Biofilms. Int. J. Mol. Sci. 2020, 21, 576. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, H.A.; Niu, C.; Gilbert, E.S. Enhanced high copy number plasmid maintenance and heterologous protein production in an Escherichia coli biofilm. Biotechnol. Bioeng. 2007, 97, 439–446. [Google Scholar] [CrossRef]
- Hoffmann, F.; Rinas, U. Stress induced by recombinant protein production in Escherichia coli. Adv. Biochem. Eng. Biotechnol. 2004, 89, 73–92. [Google Scholar] [CrossRef] [PubMed]
- Donlan, R.M. Role of Biofilms in Antimicrobial Resistance. ASAIO J. 2000, 46, S47–S52. [Google Scholar] [CrossRef] [PubMed]
- Landini, P. Cross-talk mechanisms in biofilm formation and responses to environmental and physiological stress in Escherichia coli. Res. Microbiol. 2009, 160, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.; Gomes, L.C.; Mergulhão, F.J. Comparing the Recombinant Protein Production Potential of Planktonic and Biofilm Cells. Microorganisms 2018, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Gomes, L.C.; Carvalho, D.; Briandet, R.; Mergulhao, F.J. Temporal variation of recombinant protein expression inEscherichia coli biofilms analysed at single-cell level. Process Biochem. 2016, 51, 1155–1161. [Google Scholar] [CrossRef] [Green Version]
- Gomes, L.C.; Mergulhao, F.J. Effects of antibiotic concentration and nutrient medium composition on Escherichia coli biofilm formation and green fluorescent protein expression. FEMS Microbiol. Lett. 2017, 364, fnx042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, M.S.; Ano, T.; Shoda, M. Biofilm fermentation of iturin A by a recombinant strain of Bacillus subtilis 168. J. Biotechnol. 2007, 127, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.T.; Peretti, S.W.; Bryers, J.D. Plasmid retention and gene expression in suspended and biofilm cultures of recombinant Escherichia coli DH5alpha(pMJR1750). Biotechnol. Bioeng. 1992, 41, 211–220. [Google Scholar] [CrossRef]
- Huang, C.T.; Peretti, S.W.; Bryers, J.D. Effects of inducer levels on a recombinant bacterial biofilm formation and gene expression. Biotechnol. Lett. 1994, 16, 903–908. [Google Scholar] [CrossRef]
- Huang, C.T.; Peretti, S.W.; Bryers, J.D. Effects of medium carbon-to-nitrogen ratio on biofilm formation and plasmid stability. Biotechnol. Bioeng. 1994, 44, 329–336. [Google Scholar] [CrossRef]
- Gomes, L.C.; Moreira, J.M.; Teodósio, J.S.; Araújo, J.D.; Miranda, J.M.; Simões, M.; Melo, L.F.; Mergulhão, F.J. 96-well microtiter plates for biofouling simulation in biomedical settings. Biofouling 2014, 30, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Gomes, L.C.; Mergulhão, F.J.M. A Selection of Platforms to Evaluate Surface Adhesion and Biofilm Formation in Controlled Hydrodynamic Conditions. Microorganisms 2021, 9, 1993. [Google Scholar] [CrossRef]
- Alves, P.; Gomes, L.C.; Vorobii, M.; Rodriguez-Emmenegger, C.; Mergulhão, F.J. The potential advantages of using a poly(HPMA) brush in urinary catheters: Effects on biofilm cells and architecture. Colloids Surf. B Biointerfaces 2020, 191, 110976. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.; Gomes, L.; Monteiro, G.; Mergulhao, F. The Influence of Nutrient Medium Composition on Escherichia coli Biofilm Development and Heterologous Protein Expression. Appl. Sci. 2021, 11, 8667. [Google Scholar] [CrossRef]
- Soares, A.; Gomes, L.C.; Monteiro, G.A.; Mergulhão, F.J. Hydrodynamic Effects on Biofilm Development and Recombinant Protein Expression. Microorganisms 2022, 10, 931. [Google Scholar] [CrossRef] [PubMed]
- Setyawati, M.I.; Chien, L.J.; Lee, C.K. Self-immobilized recombinant Acetobacter xylinum for biotransformation. Biochem. Eng. J. 2008, 43, 78–84. [Google Scholar] [CrossRef]
- Donovan, R.S.; Robinson, C.W.; Glick, B.R. Review: Optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J. Ind. Microbiol. 1996, 16, 145–154. [Google Scholar] [CrossRef]
- Teodosio, J.S.; Simoes, M.; Melo, L.F.; Mergulhao, F.J. Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow. Biofouling 2011, 27, 1–11. [Google Scholar] [CrossRef]
Protein | Application | Reference |
---|---|---|
GFP | Biotechnology Gene reporter | [137,138,139] |
Fusion tag | [140,141] | |
β-galactosidase | Food industry Hydrolyzation of milk products | [142,143] |
Production of galacto-oligosaccharides | [142] | |
mCherry | Biotechnology Gene reporter | [137] |
Fusion tag | [144] | |
Insulin (humulin, humalog) | Therapeutic (diabetes) | [145] |
Somatropin | Therapeutic (growth) | [145] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, F.M.; Azevedo, A.; Ferreira, M.M.; Mergulhão, F.J.M.; Gomes, L.C. Advances on Bacterial and Fungal Biofilms for the Production of Added-Value Compounds. Biology 2022, 11, 1126. https://doi.org/10.3390/biology11081126
Carvalho FM, Azevedo A, Ferreira MM, Mergulhão FJM, Gomes LC. Advances on Bacterial and Fungal Biofilms for the Production of Added-Value Compounds. Biology. 2022; 11(8):1126. https://doi.org/10.3390/biology11081126
Chicago/Turabian StyleCarvalho, Fábio M., Ana Azevedo, Marta M. Ferreira, Filipe J. M. Mergulhão, and Luciana C. Gomes. 2022. "Advances on Bacterial and Fungal Biofilms for the Production of Added-Value Compounds" Biology 11, no. 8: 1126. https://doi.org/10.3390/biology11081126
APA StyleCarvalho, F. M., Azevedo, A., Ferreira, M. M., Mergulhão, F. J. M., & Gomes, L. C. (2022). Advances on Bacterial and Fungal Biofilms for the Production of Added-Value Compounds. Biology, 11(8), 1126. https://doi.org/10.3390/biology11081126