Desert Ants Learn to Avoid Pitfall Traps While Foraging
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection and Maintenance of Ant Colonies
2.2. Experimental Design
2.3. Statistical Analysis
3. Results
3.1. First Experiment: Constant Numbers of Pits
3.2. Second Experiment: Changing Numbers of Pits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Ethics
References
- Fewell, J.H. Energetic and time costs of foraging in harvester ants, Pogonomyrmex occidentalis. Behav. Ecol. Sociobiol. 1988, 22, 401–408. [Google Scholar] [CrossRef]
- Doucet, C.M.; Fryxell, J.M. The effect of nutritional quality on forage preference by beavers. Oikos 1993, 67, 201–208. [Google Scholar] [CrossRef]
- Kohl, K.D.; Coogan, S.C.; Raubenheimer, D. Do wild carnivores forage for prey or for nutrients? Evidence for nutrient-specific foraging in vertebrate predators. BioEssays 2015, 37, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Traniello, J.F. Foraging strategies of ants. Annu. Rev. Entomol. 1989, 34, 191–210. [Google Scholar] [CrossRef]
- Mitchell, W.A.; Abramsky, Z.; Kotler, B.P.; Pinshow, B.; Brown, J.S. The effect of competition on foraging activity in desert rodents: Theory and experiments. Ecology 1990, 71, 844–854. [Google Scholar] [CrossRef]
- Brown, J.S.; Kotler, B.P. Hazardous duty pay and the foraging cost of predation. Ecol. Lett. 2004, 7, 999–1014. [Google Scholar] [CrossRef]
- Bortolotti, L.; Montanari, R.; Marcelino, J.; Medrzycki, P.; Maini, S.; Porrini, C. Effects of sublethal imidacloprid doses on the homing rate and foraging activity of honey bees. Bull. Insectology 2003, 56, 63–67. [Google Scholar]
- Glaser, S.M.; Grüter, C. Ants (Temnothorax nylanderi) adjust tandem running when food source distance exposes them to greater risks. Behav. Ecol. Sociobiol. 2018, 72, 40. [Google Scholar] [CrossRef]
- Berger-Tal, O.; Mukherjee, S.; Kotler, B.P.; Brown, J.S. Look before you leap: Is risk of injury a foraging cost? Behav. Ecol. Sociobiol. 2009, 63, 1821–1827. [Google Scholar] [CrossRef] [Green Version]
- Orians, G.H.; Pearson, N.E. On the theory of central place foraging. In Analysis of Ecological Systems; Horn, D.J., Mitchell, R.D., Stairs, G.R., Eds.; The Ohio State University Press: Columbus, OH, USA, 1979; pp. 154–177. [Google Scholar]
- Ohashi, K.; Thomson, J.D. Efficient harvesting of renewing resources. Behav. Ecol. 2005, 16, 592–605. [Google Scholar] [CrossRef] [Green Version]
- Tello-Ramos, M.C.; Hurly, T.A.; Healy, S.D. Traplining in hummingbirds: Flying short-distance sequences among several locations. Behav. Ecol. 2015, 26, 812–819. [Google Scholar] [CrossRef] [Green Version]
- Buatois, A.; Lihoreau, M. Evidence of trapline foraging in honeybees. J. Exp. Biol. 2016, 219, 2426–2429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacKay, W.P. The effect of predation of western widow spiders (Araneae: Theridiidae) on harvester ants (Hymenoptera: Formicidae). Oecologia 1982, 53, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.W. Timber rattlesnakes (Crotalus horridus) use chemical cues to select ambush sites. J. Chem. Ecol. 2004, 30, 607–617. [Google Scholar] [CrossRef]
- Sih, A. Predator-prey space use as an emergent outcome of a behavioral response race. In Ecology of Predator-Prey Interactions; Barbosa, P., Castellanos, I., Eds.; Oxford University Press: Oxford, UK, 2005; pp. 240–255. [Google Scholar]
- Dyer, F.C. Spatial cognition: Lessons from central-place foraging insects. In Animal Cognition in Nature; Balda, R.P., Pepperberg, I.M., Kamil, A.C., Eds.; Academic Press: San Diego, CA, USA, 1998; pp. 119–154. [Google Scholar]
- Schatz, B.; Chameron, S.; Beugnon, G.; Collett, T.S. The use of path integration to guide route learning in ants. Nature 1999, 399, 769–772. [Google Scholar] [CrossRef]
- Du Toit, L.; Bennett, N.C.; Nickless, A.; Whiting, M.J. Influence of spatial environment on maze learning in an African mole-rat. Anim. Cogn. 2012, 15, 797–806. [Google Scholar] [CrossRef]
- Iorio-Merlo, V.; Graham, I.M.; Hewitt, R.C.; Aarts, G.; Pirotta, E.; Hastie, G.D.; Thompson, P.M. Prey encounters and spatial memory influence use of foraging patches in a marine central place forager. Proc. R. Soc. B 2022, 289, 20212261. [Google Scholar] [CrossRef]
- Feener, D.H. Effects of parasites on foraging and defense behavior of a termitophagous ant, Pheidole titanis Wheeler (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 1988, 22, 421–427. [Google Scholar] [CrossRef]
- Cerdá, X.; Retana, J.; Cros, S. Critical thermal limits in Mediterranean ant species: Trade-off between mortality risk and foraging performance. Funct. Ecol. 1998, 12, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Frank, E.T.; Schmitt, T.; Hovestadt, T.; Mitesser, O.; Stiegler, J.; Linsenmair, K.E. Saving the injured: Rescue behavior in the termite-hunting ant Megaponera analis. Sci. Adv. 2017, 3, e1602187. [Google Scholar] [CrossRef] [Green Version]
- Cushing, P.E. Spider-ant associations: An updated review of myrmecomorphy, myrmecophily, and myrmecophagy in spiders. Psyche 2012, 2012, 151989. [Google Scholar] [CrossRef] [Green Version]
- Blamires, S.J. Biomechanical costs and benefits of sit-and-wait foraging traps. Isr. J. Ecol. Evol. 2020, 66, 5–14. [Google Scholar] [CrossRef]
- Miler, K.; Scharf, I. Convergent evolution of antlions and wormlions: Similarities and differences in the behavioural ecology of unrelated trap-building predators. Behav. Ecol. Sociobiol. 2022, 76, 12. [Google Scholar] [CrossRef]
- Griffiths, D. The feeding biology of ant-lion larvae: Prey capture, handling and utilization. J. Anim. Ecol. 1980, 49, 99–125. [Google Scholar] [CrossRef]
- Lomascolo, S.; Farji-Brener, A.G. Adaptive short-term changes in pit design by antlion larvae (Myrmeleon sp.) in response to different prey conditions. Ethol. Ecol. Evol. 2001, 13, 393–397. [Google Scholar] [CrossRef]
- Scharf, I.; Gilad, T.; Bar-Ziv, M.A.; Katz, N.; Gregorian, E.; Pruitt, J.N.; Subach, A. The contribution of shelter from rain to the success of pit-building predators in urban habitats. Anim. Behav. 2018, 142, 139–145. [Google Scholar] [CrossRef]
- Klokočovnik, V.; Devetak, D. Efficiency of antlion trap design and larval behavior in capture success. Behav. Ecol. 2022, 33, 184–189. [Google Scholar] [CrossRef]
- Miler, K.; Turza, F. “O sister, where art thou?”—A review on rescue of imperiled individuals in ants. Biology 2021, 10, 1079. [Google Scholar] [CrossRef]
- Hollis, K.L.; Nowbahari, E. Cause, development, function, and evolution: Toward a behavioral ecology of rescue behavior in ants. Learn. Behav. 2022; in press. [Google Scholar] [CrossRef]
- Gatti, M.G.; Farji-Brener, A.G. Low density of ant lion larva (Myrmeleon crudelis) in ant-acacia clearings: High predation risk or inadequate substrate? Biotropica 2002, 34, 458–462. [Google Scholar] [CrossRef]
- Shemesh, H.; Arbiv, A.; Gersani, M.; Ovadia, O.; Novoplansky, A. The effects of nutrient dynamics on root patch choice. PLoS ONE 2010, 5, e10824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, B.A. The behavioural response of the antlion Myrmeleon pictifrons to a sudden change in prey capture rate. Acta Oecol. 1994, 15, 231–240. [Google Scholar]
- Wystrach, A.; Buehlmann, C.; Schwarz, S.; Cheng, K.; Graham, P. Rapid aversive and memory trace learning during route navigation in desert ants. Curr. Biol. 2020, 30, 1927–1933. [Google Scholar] [CrossRef] [PubMed]
- Wolf, H.; Wehner, R. Pinpointing food sources: Olfactory and anemotactic orientation in desert ants, Cataglyphis fortis. J. Exp. Biol. 2000, 203, 857–868. [Google Scholar] [CrossRef]
- Wehner, R.; Müller, M. The significance of direct sunlight and polarized skylight in the ant’s celestial system of navigation. Proc. Nat. Acad. Sci. USA 2006, 103, 12575–12579. [Google Scholar] [CrossRef] [Green Version]
- Collett, M. How desert ants use a visual landmark for guidance along a habitual route. Proc. Nat. Acad. Sci. USA 2010, 107, 11638–11643. [Google Scholar] [CrossRef] [Green Version]
- Wystrach, A.; Beugnon, G.; Cheng, K. Landmarks or panoramas: What do navigating ants attend to for guidance? Front. Zool. 2011, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Cheng, K. How to navigate without maps: The power of taxon-like navigation in ants. Comp. Cogn. Behav. Rev. 2012, 7, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Nowbahari, E.; Scohier, A.; Durand, J.L.; Hollis, K.L. Ants, Cataglyphis cursor, use precisely directed rescue behavior to free entrapped relatives. PLoS ONE 2009, 4, e6573. [Google Scholar] [CrossRef]
- Wehner, R.; Wehner, S. Parallel evolution of thermophilia: Daily and seasonal foraging patterns of heat-adapted desert ants: Cataglyphis and Ocymyrmex species. Physiol. Entomol. 2011, 36, 271–281. [Google Scholar] [CrossRef]
- Bega, D.; Samocha, Y.; Yitzhak, N.; Saar, M.; Subach, A.; Scharf, I. The effect of maze complexity on maze-solving time in a desert ant. Behav. Proc. 2019, 166, 103893. [Google Scholar] [CrossRef] [PubMed]
- Nowbahari, E.; Hollis, K.L.; Bey, M.; Demora, L.; Durand, J.L. Rescue specialists in Cataglyphis piliscapa ants: The nature and development of ant first responders. Learn. Behav. 2022, 50, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Saar, M.; Gilad, T.; Kilon-Kallner, T.; Rosenfeld, A.; Subach, A.; Scharf, I. The interplay between maze complexity, colony size, learning and memory in ants while solving a maze: A test at the colony level. PLoS ONE 2017, 12, e0183753. [Google Scholar] [CrossRef] [PubMed]
- Bega, D.; Samocha, Y.; Yitzhak, N.; Saar, M.; Subach, A.; Scharf, I. Non-spatial information on the presence of food elevates search intensity in ant workers, leading to faster maze solving in a process parallel to spatial learning. PLoS ONE 2020, 15, e0229709. [Google Scholar] [CrossRef] [Green Version]
- Gilad, T.; Dorfman, A.; Subach, A.; Libbrecht, R.; Foitzik, S.; Scharf, I. Evidence for the effect of brief exposure to food, but not learning interference, on maze solving in desert ants. Integr. Zool. 2022; in press. [Google Scholar] [CrossRef]
- Saar, M.; Subach, A.; Reato, I.; Liber, T.; Pruitt, J.N.; Scharf, I. Consistent differences in foraging behavior in 2 sympatric harvester ant species may facilitate coexistence. Curr. Zool. 2018, 64, 653–661. [Google Scholar] [CrossRef] [Green Version]
- Miler, K.; Scharf, I. Behavioral differences between pit-building antlions and wormlions suggest limits to convergent evolution. Integr. Zool. 2022; in press. [Google Scholar] [CrossRef]
- Abràmoff, M.D.; Magalhães, P.J.; Ram, S.J. Image processing with ImageJ. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Barkae, E.D.; Scharf, I.; Abramsky, Z.; Ovadia, O. Jack of all trades, master of all: A positive association between habitat niche breadth and foraging performance in pit-building antlion larvae. PLoS ONE 2012, 7, e33506. [Google Scholar] [CrossRef]
- Warfe, D.M.; Barmuta, L.A. Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 2004, 141, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Gibb, H.; Parr, C.L. How does habitat complexity affect ant foraging success? A test using functional measures on three continents. Oecologia 2010, 164, 1061–1073. [Google Scholar] [CrossRef] [PubMed]
- Radnan, G.N.; Gibb, H.; Eldridge, D.J. Soil surface complexity has a larger effect on food exploitation by ants than a change from grassland to shrubland. Ecol. Entomol. 2018, 43, 379–388. [Google Scholar] [CrossRef]
- Kagel, J.H.; Green, L.; Caraco, T. When foragers discount the future: Constraint or adaptation? Anim. Behav. 1986, 34, 271–283. [Google Scholar] [CrossRef]
- Benson, K.E.; Stephens, D.W. Interruptions, tradeoffs, and temporal discounting. Am. Zool. 1996, 36, 506–517. [Google Scholar] [CrossRef] [Green Version]
- Schmid-Hempel, P. Individually different foraging methods in the desert ant Cataglyphis bicolor (Hymenoptera, Formicidae). Behav. Ecol. Sociobiol. 1984, 14, 263–271. [Google Scholar] [CrossRef]
- Farji-Brener, A.G.; Amador-Vargas, S.; Chinchilla, F.; Escobar, S.; Cabrera, S.; Herrera, M.I.; Sandoval, C.A. Information transfer in head-on encounters between leaf-cutting ant workers: Food, trail condition or orientation cues? Anim. Behav. 2010, 79, 343–349. [Google Scholar] [CrossRef]
- Middleton, E.J.; Garnier, S.; Latty, T.; Reid, C.R. Temporal and spatial pattern of trail clearing in the Australian meat ant, Iridomyrmex purpureus. Anim. Behav. 2019, 150, 97–111. [Google Scholar] [CrossRef]
- Linton, M.C.; Crowley, P.H.; Williams, J.T.; Dillon, P.M.; Aral, H.; Strohmeier, K.L.; Wood, C. Pit relocation by antlion larvae: A simple model and laboratory test. Evol. Ecol. 1991, 5, 93–104. [Google Scholar] [CrossRef]
- Lubin, Y.; Henschel, J.R.; Baker, M.B. Costs of aggregation: Shadow competition in a sit-and-wait predator. Oikos 2001, 95, 59–68. [Google Scholar] [CrossRef]
- Rao, D. Experimental evidence for the amelioration of shadow competition in an orb-web spider through the ‘Ricochet effect’. Ethology 2009, 115, 691–697. [Google Scholar] [CrossRef]
- Tsao, Y.J.; Okuyama, T. Evolutionarily stable relocation strategy in an antlion larva. J. Insect Behav. 2013, 26, 563–576. [Google Scholar] [CrossRef]
- Scharf, I. Factors that can affect the spatial positioning of large and small individuals in clusters of sit-and-wait predators. Am. Nat. 2020, 195, 649–663. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Wignall, A.E. Honeybees (Apis mellifera) holding on to memories: Response competition causes retroactive interference effects. Anim. Cogn. 2006, 9, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.G.; Foucaud, J.; Mery, F. Costs of memory: Lessons from ‘mini’ brains. Proc. R. Soc. B 2011, 278, 923–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, S.L. Putting predators back into behavioral predator-prey interactions. Trends Ecol. Evol. 2002, 17, 70–75. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bar, A.; Marom, C.; Zorin, N.; Gilad, T.; Subach, A.; Foitzik, S.; Scharf, I. Desert Ants Learn to Avoid Pitfall Traps While Foraging. Biology 2022, 11, 897. https://doi.org/10.3390/biology11060897
Bar A, Marom C, Zorin N, Gilad T, Subach A, Foitzik S, Scharf I. Desert Ants Learn to Avoid Pitfall Traps While Foraging. Biology. 2022; 11(6):897. https://doi.org/10.3390/biology11060897
Chicago/Turabian StyleBar, Adi, Chen Marom, Nikol Zorin, Tomer Gilad, Aziz Subach, Susanne Foitzik, and Inon Scharf. 2022. "Desert Ants Learn to Avoid Pitfall Traps While Foraging" Biology 11, no. 6: 897. https://doi.org/10.3390/biology11060897
APA StyleBar, A., Marom, C., Zorin, N., Gilad, T., Subach, A., Foitzik, S., & Scharf, I. (2022). Desert Ants Learn to Avoid Pitfall Traps While Foraging. Biology, 11(6), 897. https://doi.org/10.3390/biology11060897