Desert Ants Learn to Avoid Pitfall Traps While Foraging
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection and Maintenance of Ant Colonies
2.2. Experimental Design
2.3. Statistical Analysis
3. Results
3.1. First Experiment: Constant Numbers of Pits
3.2. Second Experiment: Changing Numbers of Pits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Ethics
References
- Fewell, J.H. Energetic and time costs of foraging in harvester ants, Pogonomyrmex occidentalis. Behav. Ecol. Sociobiol. 1988, 22, 401–408. [Google Scholar] [CrossRef]
- Doucet, C.M.; Fryxell, J.M. The effect of nutritional quality on forage preference by beavers. Oikos 1993, 67, 201–208. [Google Scholar] [CrossRef]
- Kohl, K.D.; Coogan, S.C.; Raubenheimer, D. Do wild carnivores forage for prey or for nutrients? Evidence for nutrient-specific foraging in vertebrate predators. BioEssays 2015, 37, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Traniello, J.F. Foraging strategies of ants. Annu. Rev. Entomol. 1989, 34, 191–210. [Google Scholar] [CrossRef]
- Mitchell, W.A.; Abramsky, Z.; Kotler, B.P.; Pinshow, B.; Brown, J.S. The effect of competition on foraging activity in desert rodents: Theory and experiments. Ecology 1990, 71, 844–854. [Google Scholar] [CrossRef]
- Brown, J.S.; Kotler, B.P. Hazardous duty pay and the foraging cost of predation. Ecol. Lett. 2004, 7, 999–1014. [Google Scholar] [CrossRef]
- Bortolotti, L.; Montanari, R.; Marcelino, J.; Medrzycki, P.; Maini, S.; Porrini, C. Effects of sublethal imidacloprid doses on the homing rate and foraging activity of honey bees. Bull. Insectology 2003, 56, 63–67. [Google Scholar]
- Glaser, S.M.; Grüter, C. Ants (Temnothorax nylanderi) adjust tandem running when food source distance exposes them to greater risks. Behav. Ecol. Sociobiol. 2018, 72, 40. [Google Scholar] [CrossRef]
- Berger-Tal, O.; Mukherjee, S.; Kotler, B.P.; Brown, J.S. Look before you leap: Is risk of injury a foraging cost? Behav. Ecol. Sociobiol. 2009, 63, 1821–1827. [Google Scholar] [CrossRef]
- Orians, G.H.; Pearson, N.E. On the theory of central place foraging. In Analysis of Ecological Systems; Horn, D.J., Mitchell, R.D., Stairs, G.R., Eds.; The Ohio State University Press: Columbus, OH, USA, 1979; pp. 154–177. [Google Scholar]
- Ohashi, K.; Thomson, J.D. Efficient harvesting of renewing resources. Behav. Ecol. 2005, 16, 592–605. [Google Scholar] [CrossRef]
- Tello-Ramos, M.C.; Hurly, T.A.; Healy, S.D. Traplining in hummingbirds: Flying short-distance sequences among several locations. Behav. Ecol. 2015, 26, 812–819. [Google Scholar] [CrossRef]
- Buatois, A.; Lihoreau, M. Evidence of trapline foraging in honeybees. J. Exp. Biol. 2016, 219, 2426–2429. [Google Scholar] [CrossRef] [PubMed]
- MacKay, W.P. The effect of predation of western widow spiders (Araneae: Theridiidae) on harvester ants (Hymenoptera: Formicidae). Oecologia 1982, 53, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.W. Timber rattlesnakes (Crotalus horridus) use chemical cues to select ambush sites. J. Chem. Ecol. 2004, 30, 607–617. [Google Scholar] [CrossRef]
- Sih, A. Predator-prey space use as an emergent outcome of a behavioral response race. In Ecology of Predator-Prey Interactions; Barbosa, P., Castellanos, I., Eds.; Oxford University Press: Oxford, UK, 2005; pp. 240–255. [Google Scholar]
- Dyer, F.C. Spatial cognition: Lessons from central-place foraging insects. In Animal Cognition in Nature; Balda, R.P., Pepperberg, I.M., Kamil, A.C., Eds.; Academic Press: San Diego, CA, USA, 1998; pp. 119–154. [Google Scholar]
- Schatz, B.; Chameron, S.; Beugnon, G.; Collett, T.S. The use of path integration to guide route learning in ants. Nature 1999, 399, 769–772. [Google Scholar] [CrossRef]
- Du Toit, L.; Bennett, N.C.; Nickless, A.; Whiting, M.J. Influence of spatial environment on maze learning in an African mole-rat. Anim. Cogn. 2012, 15, 797–806. [Google Scholar] [CrossRef]
- Iorio-Merlo, V.; Graham, I.M.; Hewitt, R.C.; Aarts, G.; Pirotta, E.; Hastie, G.D.; Thompson, P.M. Prey encounters and spatial memory influence use of foraging patches in a marine central place forager. Proc. R. Soc. B 2022, 289, 20212261. [Google Scholar] [CrossRef]
- Feener, D.H. Effects of parasites on foraging and defense behavior of a termitophagous ant, Pheidole titanis Wheeler (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 1988, 22, 421–427. [Google Scholar] [CrossRef]
- Cerdá, X.; Retana, J.; Cros, S. Critical thermal limits in Mediterranean ant species: Trade-off between mortality risk and foraging performance. Funct. Ecol. 1998, 12, 45–55. [Google Scholar] [CrossRef]
- Frank, E.T.; Schmitt, T.; Hovestadt, T.; Mitesser, O.; Stiegler, J.; Linsenmair, K.E. Saving the injured: Rescue behavior in the termite-hunting ant Megaponera analis. Sci. Adv. 2017, 3, e1602187. [Google Scholar] [CrossRef]
- Cushing, P.E. Spider-ant associations: An updated review of myrmecomorphy, myrmecophily, and myrmecophagy in spiders. Psyche 2012, 2012, 151989. [Google Scholar] [CrossRef]
- Blamires, S.J. Biomechanical costs and benefits of sit-and-wait foraging traps. Isr. J. Ecol. Evol. 2020, 66, 5–14. [Google Scholar] [CrossRef]
- Miler, K.; Scharf, I. Convergent evolution of antlions and wormlions: Similarities and differences in the behavioural ecology of unrelated trap-building predators. Behav. Ecol. Sociobiol. 2022, 76, 12. [Google Scholar] [CrossRef]
- Griffiths, D. The feeding biology of ant-lion larvae: Prey capture, handling and utilization. J. Anim. Ecol. 1980, 49, 99–125. [Google Scholar] [CrossRef]
- Lomascolo, S.; Farji-Brener, A.G. Adaptive short-term changes in pit design by antlion larvae (Myrmeleon sp.) in response to different prey conditions. Ethol. Ecol. Evol. 2001, 13, 393–397. [Google Scholar] [CrossRef]
- Scharf, I.; Gilad, T.; Bar-Ziv, M.A.; Katz, N.; Gregorian, E.; Pruitt, J.N.; Subach, A. The contribution of shelter from rain to the success of pit-building predators in urban habitats. Anim. Behav. 2018, 142, 139–145. [Google Scholar] [CrossRef]
- Klokočovnik, V.; Devetak, D. Efficiency of antlion trap design and larval behavior in capture success. Behav. Ecol. 2022, 33, 184–189. [Google Scholar] [CrossRef]
- Miler, K.; Turza, F. “O sister, where art thou?”—A review on rescue of imperiled individuals in ants. Biology 2021, 10, 1079. [Google Scholar] [CrossRef]
- Hollis, K.L.; Nowbahari, E. Cause, development, function, and evolution: Toward a behavioral ecology of rescue behavior in ants. Learn. Behav. 2022; in press. [Google Scholar] [CrossRef]
- Gatti, M.G.; Farji-Brener, A.G. Low density of ant lion larva (Myrmeleon crudelis) in ant-acacia clearings: High predation risk or inadequate substrate? Biotropica 2002, 34, 458–462. [Google Scholar] [CrossRef]
- Shemesh, H.; Arbiv, A.; Gersani, M.; Ovadia, O.; Novoplansky, A. The effects of nutrient dynamics on root patch choice. PLoS ONE 2010, 5, e10824. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, B.A. The behavioural response of the antlion Myrmeleon pictifrons to a sudden change in prey capture rate. Acta Oecol. 1994, 15, 231–240. [Google Scholar]
- Wystrach, A.; Buehlmann, C.; Schwarz, S.; Cheng, K.; Graham, P. Rapid aversive and memory trace learning during route navigation in desert ants. Curr. Biol. 2020, 30, 1927–1933. [Google Scholar] [CrossRef] [PubMed]
- Wolf, H.; Wehner, R. Pinpointing food sources: Olfactory and anemotactic orientation in desert ants, Cataglyphis fortis. J. Exp. Biol. 2000, 203, 857–868. [Google Scholar] [CrossRef]
- Wehner, R.; Müller, M. The significance of direct sunlight and polarized skylight in the ant’s celestial system of navigation. Proc. Nat. Acad. Sci. USA 2006, 103, 12575–12579. [Google Scholar] [CrossRef]
- Collett, M. How desert ants use a visual landmark for guidance along a habitual route. Proc. Nat. Acad. Sci. USA 2010, 107, 11638–11643. [Google Scholar] [CrossRef]
- Wystrach, A.; Beugnon, G.; Cheng, K. Landmarks or panoramas: What do navigating ants attend to for guidance? Front. Zool. 2011, 8, 21. [Google Scholar] [CrossRef]
- Cheng, K. How to navigate without maps: The power of taxon-like navigation in ants. Comp. Cogn. Behav. Rev. 2012, 7, 1–22. [Google Scholar] [CrossRef]
- Nowbahari, E.; Scohier, A.; Durand, J.L.; Hollis, K.L. Ants, Cataglyphis cursor, use precisely directed rescue behavior to free entrapped relatives. PLoS ONE 2009, 4, e6573. [Google Scholar] [CrossRef]
- Wehner, R.; Wehner, S. Parallel evolution of thermophilia: Daily and seasonal foraging patterns of heat-adapted desert ants: Cataglyphis and Ocymyrmex species. Physiol. Entomol. 2011, 36, 271–281. [Google Scholar] [CrossRef]
- Bega, D.; Samocha, Y.; Yitzhak, N.; Saar, M.; Subach, A.; Scharf, I. The effect of maze complexity on maze-solving time in a desert ant. Behav. Proc. 2019, 166, 103893. [Google Scholar] [CrossRef] [PubMed]
- Nowbahari, E.; Hollis, K.L.; Bey, M.; Demora, L.; Durand, J.L. Rescue specialists in Cataglyphis piliscapa ants: The nature and development of ant first responders. Learn. Behav. 2022, 50, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Saar, M.; Gilad, T.; Kilon-Kallner, T.; Rosenfeld, A.; Subach, A.; Scharf, I. The interplay between maze complexity, colony size, learning and memory in ants while solving a maze: A test at the colony level. PLoS ONE 2017, 12, e0183753. [Google Scholar] [CrossRef] [PubMed]
- Bega, D.; Samocha, Y.; Yitzhak, N.; Saar, M.; Subach, A.; Scharf, I. Non-spatial information on the presence of food elevates search intensity in ant workers, leading to faster maze solving in a process parallel to spatial learning. PLoS ONE 2020, 15, e0229709. [Google Scholar] [CrossRef]
- Gilad, T.; Dorfman, A.; Subach, A.; Libbrecht, R.; Foitzik, S.; Scharf, I. Evidence for the effect of brief exposure to food, but not learning interference, on maze solving in desert ants. Integr. Zool. 2022; in press. [Google Scholar] [CrossRef]
- Saar, M.; Subach, A.; Reato, I.; Liber, T.; Pruitt, J.N.; Scharf, I. Consistent differences in foraging behavior in 2 sympatric harvester ant species may facilitate coexistence. Curr. Zool. 2018, 64, 653–661. [Google Scholar] [CrossRef]
- Miler, K.; Scharf, I. Behavioral differences between pit-building antlions and wormlions suggest limits to convergent evolution. Integr. Zool. 2022; in press. [Google Scholar] [CrossRef]
- Abràmoff, M.D.; Magalhães, P.J.; Ram, S.J. Image processing with ImageJ. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Barkae, E.D.; Scharf, I.; Abramsky, Z.; Ovadia, O. Jack of all trades, master of all: A positive association between habitat niche breadth and foraging performance in pit-building antlion larvae. PLoS ONE 2012, 7, e33506. [Google Scholar] [CrossRef]
- Warfe, D.M.; Barmuta, L.A. Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 2004, 141, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Gibb, H.; Parr, C.L. How does habitat complexity affect ant foraging success? A test using functional measures on three continents. Oecologia 2010, 164, 1061–1073. [Google Scholar] [CrossRef] [PubMed]
- Radnan, G.N.; Gibb, H.; Eldridge, D.J. Soil surface complexity has a larger effect on food exploitation by ants than a change from grassland to shrubland. Ecol. Entomol. 2018, 43, 379–388. [Google Scholar] [CrossRef]
- Kagel, J.H.; Green, L.; Caraco, T. When foragers discount the future: Constraint or adaptation? Anim. Behav. 1986, 34, 271–283. [Google Scholar] [CrossRef]
- Benson, K.E.; Stephens, D.W. Interruptions, tradeoffs, and temporal discounting. Am. Zool. 1996, 36, 506–517. [Google Scholar] [CrossRef][Green Version]
- Schmid-Hempel, P. Individually different foraging methods in the desert ant Cataglyphis bicolor (Hymenoptera, Formicidae). Behav. Ecol. Sociobiol. 1984, 14, 263–271. [Google Scholar] [CrossRef]
- Farji-Brener, A.G.; Amador-Vargas, S.; Chinchilla, F.; Escobar, S.; Cabrera, S.; Herrera, M.I.; Sandoval, C.A. Information transfer in head-on encounters between leaf-cutting ant workers: Food, trail condition or orientation cues? Anim. Behav. 2010, 79, 343–349. [Google Scholar] [CrossRef]
- Middleton, E.J.; Garnier, S.; Latty, T.; Reid, C.R. Temporal and spatial pattern of trail clearing in the Australian meat ant, Iridomyrmex purpureus. Anim. Behav. 2019, 150, 97–111. [Google Scholar] [CrossRef]
- Linton, M.C.; Crowley, P.H.; Williams, J.T.; Dillon, P.M.; Aral, H.; Strohmeier, K.L.; Wood, C. Pit relocation by antlion larvae: A simple model and laboratory test. Evol. Ecol. 1991, 5, 93–104. [Google Scholar] [CrossRef]
- Lubin, Y.; Henschel, J.R.; Baker, M.B. Costs of aggregation: Shadow competition in a sit-and-wait predator. Oikos 2001, 95, 59–68. [Google Scholar] [CrossRef]
- Rao, D. Experimental evidence for the amelioration of shadow competition in an orb-web spider through the ‘Ricochet effect’. Ethology 2009, 115, 691–697. [Google Scholar] [CrossRef]
- Tsao, Y.J.; Okuyama, T. Evolutionarily stable relocation strategy in an antlion larva. J. Insect Behav. 2013, 26, 563–576. [Google Scholar] [CrossRef]
- Scharf, I. Factors that can affect the spatial positioning of large and small individuals in clusters of sit-and-wait predators. Am. Nat. 2020, 195, 649–663. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Wignall, A.E. Honeybees (Apis mellifera) holding on to memories: Response competition causes retroactive interference effects. Anim. Cogn. 2006, 9, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.G.; Foucaud, J.; Mery, F. Costs of memory: Lessons from ‘mini’ brains. Proc. R. Soc. B 2011, 278, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Lima, S.L. Putting predators back into behavioral predator-prey interactions. Trends Ecol. Evol. 2002, 17, 70–75. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bar, A.; Marom, C.; Zorin, N.; Gilad, T.; Subach, A.; Foitzik, S.; Scharf, I. Desert Ants Learn to Avoid Pitfall Traps While Foraging. Biology 2022, 11, 897. https://doi.org/10.3390/biology11060897
Bar A, Marom C, Zorin N, Gilad T, Subach A, Foitzik S, Scharf I. Desert Ants Learn to Avoid Pitfall Traps While Foraging. Biology. 2022; 11(6):897. https://doi.org/10.3390/biology11060897
Chicago/Turabian StyleBar, Adi, Chen Marom, Nikol Zorin, Tomer Gilad, Aziz Subach, Susanne Foitzik, and Inon Scharf. 2022. "Desert Ants Learn to Avoid Pitfall Traps While Foraging" Biology 11, no. 6: 897. https://doi.org/10.3390/biology11060897
APA StyleBar, A., Marom, C., Zorin, N., Gilad, T., Subach, A., Foitzik, S., & Scharf, I. (2022). Desert Ants Learn to Avoid Pitfall Traps While Foraging. Biology, 11(6), 897. https://doi.org/10.3390/biology11060897