Stimuli Followed by Avian Malaria Vectors in Host-Seeking Behaviour
Abstract
:Simple Summary
Abstract
1. Avian Haemosporidians and Their Vectors
2. Cues Followed by Haemosporidian Vectors to Locate Their Hosts
2.1. Visual Stimuli
2.2. Heat and Moisture Stimuli
2.3. Acoustic Stimuli
2.4. Olfactory Stimuli and the Role of Feather/Skin Microbioma
3. The Role of Uropygial Gland Secretion in Bird–Haemosporidian Vector Interactions
3.1. Uropygial Gland Secretion and Vector Attraction
3.2. Uropygial Gland Secretion May Prevent Acquiring Malaria Infection
4. Do Bird Malaria Parasites Change the Host Attractiveness to Vectors?
4.1. Manipulation of Vector to Increase Parasite Transmission
4.2. Manipulation of Vertebrate Host Attractiveness to Vectors
5. Conclusions and Future Lines of Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carter, R.; Mendis, K.N. Evolutionary and Historical Aspects of the Burden of Malaria. Clin. Microbiol. Rev. 2002, 15, 564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. WHO Guidelines for Malaria; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Martinsen, E.S.; Perkins, S.L.; Schall, J.J. A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Mol. Phylogenet. Evol. 2008, 47, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Valkiūnas, G. Avian Malaria Parasites and Other Haemosporidia; CRC Press: Boca Raton, FL, USA, 2005; ISBN 0415300975. [Google Scholar]
- Valkiūnas, G.; Atkinson, C.T. Introduction to Life Cycles, Taxonomy, Distribution, and Basic Research Techniques. In Avian Malaria and Related Parasites in the Tropics; Springer: Cham, Switzerland, 2020; pp. 45–80. [Google Scholar] [CrossRef]
- Bensch, S.; Hellgren, O.; Pérez-Tris, J. MalAvi: A public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol. Ecol. Resour. 2009, 9, 1353–1358. [Google Scholar] [CrossRef]
- Ghaemitalab, V.; Mirshamsi, O.; Valkiūnas, G.; Aliabadian, M. Prevalence and Genetic Diversity of Avian Haemosporidian Parasites in Southern Iran. Pathogens 2021, 10, 645. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Longoria, L.; Muriel, J.; Magallanes, S.; Villa-Galarce, Z.H.; Ricopa, L.; Inga-Díaz, W.G.; Fong, E.; Vecco, D.; Guerra-Saldaña, C.; Salas-Rengifo, T.; et al. Diversity and host assemblage of avian haemosporidians in different terrestrial ecoregions of Peru. Curr. Zool. 2021, 68, 27–40. [Google Scholar] [CrossRef]
- Muriel, J.; Marzal, A.; Magallanes, S.; García-Longoria, L.; Suarez-Rubio, M.; Bates, P.J.J.; Lin, H.H.; Soe, A.N.; Oo, K.S.; Aye, A.A.; et al. Prevalence and diversity of avian haemosporidians may vary with anthropogenic disturbance in tropical habitats in myanmar. Diversity 2021, 13, 111. [Google Scholar] [CrossRef]
- Santiago-Alarcón, D.; Marzal, A. Avian Malaria and Related Parasites in the Tropics. Available online: https://link.springer.com/book/10.1007/978-3-030-51633-8 (accessed on 1 January 2022).
- Asghar, M.; Hasselquist, D.; Hansson, B.; Zehtindjiev, P.; Westerdahl, H.; Bensch, S. Hidden costs of infection: Chronic malaria accelerates telomere degradation and senescence in wild birds. Science 2015, 347, 436–438. [Google Scholar] [CrossRef]
- Martínez-De La Puente, J.; Merino, S.; Tomás, G.; Moreno, J.; Morales, J.; Lobato, E.; García-Fraile, S.; Belda, E.J. The blood parasite Haemoproteus reduces survival in a wild bird: A medication experiment. Biol. Lett. 2010, 6, 663–665. [Google Scholar] [CrossRef] [Green Version]
- Marzal, A.; Balbontín, J.; Reviriego, M.; García-Longoria, L.; Relinque, C.; Hermosell, I.G.; Magallanes, S.; López-Calderón, C.; de Lope, F.; Møller, A.P. A longitudinal study of age-related changes in Haemoproteus infection in a passerine bird. Oikos 2016, 125, 1092–1099. [Google Scholar] [CrossRef]
- Marzal, A.; de Lope, F.; Navarro, C.; Møller, A.P. Malarial parasites decrease reproductive success: An experimental study in a passerine bird. Oecologia 2005, 142, 541–545. [Google Scholar] [CrossRef]
- Merino, S.; Moreno, J.; Jose, J.; Arriero, E. Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). R. Soc. 2000, 9, 2507–2510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilgunas, M.; Bukauskaite, D.; Palinauskas, V.; Iezhova, T.; Fragner, K.; Platonova, E.; Weissenböck, H.; Valkiūnas, G. Patterns of Plasmodium homocircumflexum virulence in experimentally infected passerine birds. Malar. J. 2019, 18, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzal, A.; Garcia-Longoria, L. The Role of Malaria Parasites in Invasion Biology. In Avian Malaria and Related Parasites in the Tropics; Springer: Cham, Switzerland, 2020; pp. 487–512. [Google Scholar] [CrossRef]
- Clark, N.J.; Clegg, S.M.; Lima, M.R. A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus: Haemosporida): New insights from molecular data. Int. J. Parasitol. 2014, 44, 329–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Tris, J.; Hasselquist, D.; Hellgren, O.; Krizanauskiene, A.; Waldenström, J.; Bensch, S. What are malaria parasites? Trends Parasitol. 2005, 21, 209–211. [Google Scholar] [CrossRef]
- Valkiūnas, G.; Anwar, A.M.; Atkinson, C.; Greiner, E.; Paperna, I.; Peirce, M. What distinguishes malaria parasites from other pigmented haemosporidians? Trends Parasitol. 2005, 21, 357–358. [Google Scholar] [CrossRef]
- Perkins, S.L. Malaria’s many mates: Past, present, and future of the systematics of the order haemosporida. J. Parasitol. 2014, 100, 11–25. [Google Scholar] [CrossRef]
- Valkiūnas, G.; Iezhova, T.A. Keys to the avian malaria parasites. Malar. J. 2018, 17, 212. [Google Scholar] [CrossRef]
- Cornet, S.; Nicot, A.; Rivero, A.; Gandon, S. Evolution of Plastic Transmission Strategies in Avian Malaria. PLOS Pathog. 2014, 10, e1004308. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, F.C.; Santiago-Alarcon, D.; Braga, É.M. Diptera Vectors of Avian Haemosporidians: With Emphasis on Tropical Regions. In Avian Malaria and Related Parasites in the Tropics; Springer: Cham, Switzerland, 2020; pp. 185–250. [Google Scholar] [CrossRef]
- Ejiri, H.; Sato, Y.; Sasaki, E.; Sumiyama, D.; Tsuda, Y.; Sawabe, K.; Matsui, S.; Horie, S.; Akatani, K.; Takagi, M.; et al. Detection of avian Plasmodium spp. DNA sequences from mosquitoes captured in Minami Daito Island of Japan. J. Vet. Med. Sci. 2008, 70, 1205–1210. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, F.C.; Rodrigues, R.A.; Sato, Y.; Borges, M.A.Z.; Braga, É.M. Searching for putative avian malaria vectors in a Seasonally Dry Tropical Forest in Brazil. Parasites Vectors 2016, 9, 587. [Google Scholar] [CrossRef] [Green Version]
- Santiago-Alarcon, D.; Palinauskas, V.; Schaefer, H.M. Diptera vectors of avian Haemosporidian parasites: Untangling parasite life cycles and their taxonomy. Biol. Rev. 2012, 87, 928–964. [Google Scholar] [CrossRef] [PubMed]
- Gabaldon, A.; Zerpa, N. Fallisia (Plasmodioides) neotropicalis subgen. nov. sp. nov. from Venezuela. Parasitology 1985, 90, 217–225. [Google Scholar] [CrossRef]
- Takken, W. Push-pull strategies for vector control. Malar. J. 2010, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Thongsripong, P.; Hyman, J.M.; Kapan, D.D.; Bennett, S.N. Human-Mosquito Contact: A Missing Link in Our Understanding of Mosquito-Borne Disease Transmission Dynamics. Ann. Entomol. Soc. Am. 2021, 114, 397–414. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, C.T.; Van Riper, C., III. Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon and Haemoproteus. In Bird-Parasite Interactions: Ecology, Evolution, and Behaviour; Oxford University Press: Oxford, UK, 1991; pp. 19–48. ISBN 0198577389. [Google Scholar]
- Martínez-de la Puente, J.; Dunn, J.C.; Gangoso, L. Factors Affecting Host Selection by Mosquitoes: Implications for the Transmission of Vector-Borne Pathogens; Frontiers Media SA: Lausanne, Swtizerland, 2021. [Google Scholar]
- Ganser, C.; Monadjem, A.; McCleery, R.A.; Ndlela, T.; Wisely, S.M. Is it best on the nest? Effects of avian life-history on haemosporidian parasitism. Int. J. Parasitol. Parasites Wildl. 2020, 13, 62–71. [Google Scholar] [CrossRef]
- Yan, J.; Gangoso, L.; Ruiz, S.; Soriguer, R.; Figuerola, J.; Martínez-de la Puente, J. Understanding host utilization by mosquitoes: Determinants, challenges and future directions. Biol. Rev. 2021, 96, 1367–1385. [Google Scholar] [CrossRef]
- Raji, J.I.; DeGennaro, M. Genetic analysis of mosquito detection of humans. Curr. Opin. Insect Sci. 2017, 20, 34–38. [Google Scholar] [CrossRef]
- Yan, J.; Gangoso, L.; Martínez-de la Puente, J.; Soriguer, R.; Figuerola, J. Avian phenotypic traits related to feeding preferences in two Culex mosquitoes. Sci. Nat. 2017, 104, 76. [Google Scholar] [CrossRef]
- Tomás, G.; Merino, S.; Martínez-De La Puente, J.; Moreno, J.; Morales, J.; Lobato, E. Determinants of abundance and effects of blood-sucking flying insects in the nest of a hole-nesting bird. Oecologia 2008, 156, 305–312. [Google Scholar] [CrossRef]
- Martínez-de la Puente, J.; Merino, S.; Lobato, E.; de Aguilar, J.R.; del Cerro, S.; Ruiz-de-Castañeda, R.; Moreno, J. Nest-climatic factors affect the abundance of biting flies and their effects on nestling condition. Acta Oecologica 2010, 36, 543–547. [Google Scholar] [CrossRef] [Green Version]
- Cozzarolo, C.S.; Sironi, N.; Glaizot, O.; Pigeault, R.; Christe, P. Sex-biased parasitism in vector-borne disease: Vector preference? PLoS ONE 2019, 14, e0216360. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Broggi, J.; Martínez-De La Puente, J.; Gutiérrez-López, R.; Gangoso, L.; Soriguer, R.; Figuerola, J. Does bird metabolic rate influence mosquito feeding preference? Parasites Vectors 2018, 11, 110. [Google Scholar] [CrossRef] [PubMed]
- Castaño-Vázquez, F.; Martínez, J.; Merino, S.; Lozano, M. Experimental manipulation of temperature reduce ectoparasites in nests of blue tits Cyanistes caeruleus. J. Avian Biol. 2018, 49, e01695. [Google Scholar] [CrossRef]
- Bartlett-Healy, K.; Crans, W.; Gaugler, R. Phonotaxis to Amphibian Vocalizations in Culex territans (Diptera: Culicidae). Ann. Entomol. Soc. Am. 2008, 101, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Tomás, G.; Zamora-Muñoz, C.; Martín-Vivaldi, M.; Barón, M.D.; Ruiz-Castellano, C.; Soler, J.J. Effects of Chemical and Auditory Cues of Hoopoes (Upupa epops) in Repellence and Attraction of Blood-Feeding Flies. Front. Ecol. Evol. 2020, 8, 332. [Google Scholar] [CrossRef]
- Castaño-Vázquez, F.; Merino, S.; Cuezva, S.; Sánchez-Moral, S. Nest Gasses as a Potential Attraction Cue for Biting Flying Insects and Other Ectoparasites of Cavity Nesting Birds. Front. Ecol. Evol. 2020, 8, 258. [Google Scholar] [CrossRef]
- Lowther, J.K.; Wood, D.M. Specificity of a Black Fly, Simulium euryadminiculum Davies, toward its Host, the Common Loon. Can. Entomol. 1964, 96, 911–913. [Google Scholar] [CrossRef]
- Fallis, A.M.; Smith, S.M. Ether extracts from birds and CO2 as attractants for some ornithophilic simuliids. Can. J. Zool. 1964, 42, 723–730. [Google Scholar] [CrossRef]
- Bennett, G.F.; Fallis, A.M.; Campbell, A.G. The response of Simulium (Eusimulium) euryadminiculum Davies (Diptera: Simuliidae) to some olfactory and visual stimuli. Can. J. Zool. 1972, 50, 793–800. [Google Scholar] [CrossRef]
- Russell, C.B.; Hunter, F.F. Attraction of Culex pipiens/restuans (Diptera: Culicidae) mosquitoes to bird uropygial gland odors at two elevations in the Niagara region of Ontario. J. Med. Entomol. 2005, 42, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Allan, S.A.; Bernier, U.R.; Kline, D.L. Laboratory Evaluation of Avian Odors for Mosquito (Diptera: Culicidae) Attraction. J. Med. Entomol. 2006, 43, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Martínez-De La Puente, J.; Rivero-De Aguilar, J.; Del Cerro, S.; Argüello, A.; Merino, S. Do secretions from the uropygial gland of birds attract biting midges and black flies? Parasitol. Res. 2011, 109, 1715–1718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díez-Fernández, A.; Martínez-de la Puente, J.; Gangoso, L.; Ferraguti, M.; Soriguer, R.; Figuerola, J. House sparrow uropygial gland secretions do not attract ornithophilic nor mammophilic mosquitoes. Med. Vet. Entomol. 2020, 34, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Cornet, S.; Nicot, A.; Rivero, A.; Gandon, S. Malaria infection increases bird attractiveness to uninfected mosquitoes. Ecol. Lett. 2013, 16, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Martínez-de la Puente, J.; Gangoso, L.; Gutiérrez-López, R.; Soriguer, R.; Figuerola, J. Avian malaria infection intensity influences mosquito feeding patterns. Int. J. Parasitol. 2018, 48, 257–264. [Google Scholar] [CrossRef]
- Díez-Fernández, A.; Martínez-de la Puente, J.; Gangoso, L.; López, P.; Soriguer, R.; Martín, J.; Figuerola, J. Mosquitoes are attracted by the odour of Plasmodium-infected birds. Int. J. Parasitol. 2020, 50, 569–575. [Google Scholar] [CrossRef]
- Lalubin, F.; Bize, P.; van Rooyen, J.; Christe, P.; Glaizot, O. Potential evidence of parasite avoidance in an avian malarial vector. Anim. Behav. 2012, 84, 539–545. [Google Scholar] [CrossRef]
- Gutiérrez-López, R.; Martínez-De La Puente, J.; Gangoso, L.; Soriguer, R.; Figuerola, J. Effects of host sex, body mass and infection by avian Plasmodium on the biting rate of two mosquito species with different feeding preferences. Parasites Vectors 2019, 12, 87. [Google Scholar] [CrossRef] [Green Version]
- Lehane, M.J. The Biology of Blood-Sucking in Insects, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005; ISBN 9780511610493. [Google Scholar]
- McMeniman, C.J.; Corfas, R.A.; Matthews, B.J.; Ritchie, S.A.; Vosshall, L.B. Multimodal integration of carbon dioxide and other sensory cues drives mosquito attraction to humans. Cell 2014, 156, 1060–1071. [Google Scholar] [CrossRef] [Green Version]
- Cardé, R.T. Multi-Cue Integration: How Female Mosquitoes Locate a Human Host. Curr. Biol. 2015, 25, R793–R795. [Google Scholar] [CrossRef] [Green Version]
- Van Breugel, F.; Riffell, J.; Fairhall, A.; Dickinson, M.H. Mosquitoes use vision to associate odor plumes with thermal targets. Curr. Biol. 2015, 25, 2123–2129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinze, A.; Lantz, J.; Hill, S.R.; Ignell, R. Mosquito Host Seeking in 3D Using a Versatile Climate-Controlled Wind Tunnel System. Front. Behav. Neurosci. 2021, 15, 33. [Google Scholar] [CrossRef] [PubMed]
- Baik, L.S.; Nave, C.; Au, D.D.; Guda, T.; Chevez, J.A.; Ray, A.; Holmes, T.C. Circadian Regulation of Light-Evoked Attraction and Avoidance Behaviors in Daytime- versus Nighttime-Biting Mosquitoes. Curr. Biol. 2020, 30, 3252–3259.e3. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, F.; Gibson, G. Seeing is believing: The nocturnal malarial mosquito Anopheles coluzzii responds to visual host-cues when odour indicates a host is nearby. Parasites Vectors 2016, 9, 320. [Google Scholar] [CrossRef] [Green Version]
- Browne, S.M.; Bennett, G.F. Response of Mosquitoes (Diptera: Culicidae) to Visual Stimuli. J. Med. Entomol. 1981, 18, 505–521. [Google Scholar] [CrossRef]
- Liu, M.Z.; Vosshall, L.B. General Visual and Contingent Thermal Cues Interact to Elicit Attraction in Female Aedes aegypti Mosquitoes. Curr. Biol. 2019, 29, 2250–2257. [Google Scholar] [CrossRef]
- Estep, L.K.; McClure, C.J.W.; Burkett-Cadena, N.D.; Hassan, H.K.; Unnasch, T.R.; Hill, G.E. Developing models for the forage ratios of Culiseta melanura and Culex erraticus using species characteristics for avian hosts. J. Med. Entomol. 2012, 49, 378–387. [Google Scholar] [CrossRef]
- Martínez-De La Puente, J.; Merino, S.; Toms, G.; Moreno, J.; Morales, J.; Lobato, E.; Talavera, S.; Sarto, I.; Monteys, V. Factors affecting Culicoides species composition and abundance in avian nests. Parasitology 2009, 136, 1033–1041. [Google Scholar] [CrossRef] [Green Version]
- Malmqvist, B.; Strasevicius, D.; Hellgren, O.; Adler, P.H.; Bensch, S. Vertebrate host specificity of wild-caught blackflies revealed by mitochondrial DNA in blood. Proc. R. Soc. B Biol. Sci. 2004, 271, S152–S155. [Google Scholar] [CrossRef]
- Logan, J.G.; Stanczyk, N.M.; Hassanali, A.; Kemei, J.; Santana, A.E.G.; Ribeiro, K.A.L.; Pickett, J.A.; Mordue, A.J. Arm-in-cage testing of natural human-derived mosquito repellents. Malar. J. 2010, 9, 239. [Google Scholar] [CrossRef] [Green Version]
- Logan, J.G.; Birkett, M.A. Semiochemicals for biting fly control: Their identification and exploitation. Pest Manag. Sci. 2007, 63, 647–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corfas, R.A.; Vosshall, L.B. The cation channel TRPA1 tunes mosquito thermotaxis to host temperatures. eLife 2015, 4, e11750. [Google Scholar] [CrossRef] [PubMed]
- Greppi, C.; Laursen, W.J.; Budelli, G.; Chang, E.C.; Daniels, A.M.; van Giesen, L.; Smidler, A.L.; Catteruccia, F.; Garrity, P.A. Mosquito heat seeking is driven by an ancestral cooling receptor. Science 2020, 367, 681–684. [Google Scholar] [CrossRef] [PubMed]
- Carnaghi, M.; Belmain, S.R.; Hopkins, R.J.; Hawkes, F.M. Multimodal synergisms in host stimuli drive landing response in malaria mosquitoes. Sci. Rep. 2021, 11, 7379. [Google Scholar] [CrossRef]
- Hawkes, F.M.; Dabiré, R.K.; Sawadogo, S.P.; Torr, S.J.; Gibson, G. Exploiting Anopheles responses to thermal, odour and visual stimuli to improve surveillance and control of malaria. Sci. Rep. 2017, 7, 17283. [Google Scholar] [CrossRef]
- Klinei, D.L.; Lemire, G.F. Field evaluation of heat as an added attractant to traps baited with carbon dioxide and octenol for Aedes taeniorhynchus. J. Am. Mosq. Control Assoc. 1995, 1, 454–456. [Google Scholar]
- Bar-Zeev, M. The reaction of mosquitoes to moisture and high humidity. Entomol. Exp. Appl. 1960, 3, 198–211. [Google Scholar] [CrossRef]
- Opoku, A. The Effect of CO2, Sweat, Chemical Vapours and Air on Simulium ornatum: Implications for Control. West Afr. J. Appl. Ecol. 2008, 13, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Sanders, C.J.; Gubbins, S.; Mellor, P.S.; Barber, J.; Golding, N.; Harrup, L.E.; Carpenter, S.T. Investigation of diel activity of culicoides biting midges (Diptera: Ceratopogonidae) in the United Kingdom by using a vehicle-mounted trap. J. Med. Entomol. 2012, 49, 757–765. [Google Scholar] [CrossRef]
- Olanga, E.A.; Okal, M.N.; Mbadi, P.A.; Kokwaro, E.D.; Mukabana, W.R. Attraction of Anopheles gambiae to odour baits augmented with heat and moisture. Malar. J. 2010, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Cribellier, A.; Spitzen, J.; Fairbairn, H.; Van De Geer, C.; Van Leeuwen, J.L.; Muijres, F.T. Lure, retain, and catch malaria mosquitoes. How heat and humidity improve odour-baited trap performance. Malar. J. 2020, 19, 357. [Google Scholar] [CrossRef] [PubMed]
- Venter, G.J.; Boikanyo, S.N.B.; De Beer, C.J. The influence of temperature and humidity on the flight activity of Culicoides imicola both under laboratory and field conditions. Parasites Vectors 2019, 112, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.L.; Mullens, B.A. Temperature and humidity effects on off-host survival of the Northern fowl mite (Acari: Macronyssidae) and the chicken body louse (Phthiraptera: Menoponidae). J. Econ. Entomol. 2008, 101, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Matthews, R.W.; Matthews, J.R. Mechanocommunication. In Insect Behavior; Springer: New York, NY, USA, 2009; pp. 291–339. [Google Scholar] [CrossRef]
- Römer, H. Insect acoustic communication: The role of transmission channel and the sensory system and brain of receivers. Funct. Ecol. 2020, 34, 310–321. [Google Scholar] [CrossRef] [Green Version]
- Tomás, G.; Soler, J.J. Begging and ectoparasite attraction. Anim. Behav. 2016, 113, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Legett, H.D.; Aihara, I.; Bernal, X.E. Within host acoustic signal preference of frog-biting mosquitoes (Diptera: Culicidae) and midges (Diptera: Corethrellidae) on Iriomote Island, Japan. Entomol. Sci. 2021, 24, 116–122. [Google Scholar] [CrossRef]
- Steele, C.H.; McDermott, E.G. Male and Female Mosquito (Diptera: Culicidae) Attraction to Sound and Its Relevance to Potential Applications in Vector Surveillance. Ann. Entomol. Soc. Am. 2022, 115, 113–126. [Google Scholar] [CrossRef]
- Camp, J. Host Attraction and Host Selection in the Family Corethrellidae (Wood and Borkent) (Diptera). Master’s Thesis, Georgia Southern University, Statesboro, GA, USA, 2006. [Google Scholar]
- Crans, W.J. The blood feeding habits of Culex territans Walker. Mosq. News 1970, 30, 445–447. [Google Scholar]
- Takken, W.; Knols, B.G.J. Olfaction in Vector-Host Interactions; Wageningen Academic Publishers: Wageningen, The Netherlands, 2010; ISBN 978-90-8686-091-3. [Google Scholar]
- Coutinho-Abreu, I.V.; Riffell, J.A.; Akbari, O.S. Human attractive cues and mosquito host-seeking behavior. Trends Parasitol. 2021, 38, 246–264. [Google Scholar] [CrossRef]
- Gillies, M.T. The role of carbon dioxide in host-finding by mosquitoes (Diptera: Culicidae): A review. Bull. Entomol. Res. 1980, 70, 525–532. [Google Scholar] [CrossRef] [Green Version]
- Grant, A.J.; O’Connell, R.J. The detection of carbon dioxide and its role in the orientation to hosts by haematophagous insects. Olfaction Vector-Host Interact. 2010, 2, 91–114. [Google Scholar]
- Lacey, E.S.; Cardé, R.T. Activation, orientation and landing of female Culex quinquefasciatus in response to carbon dioxide and odour from human feet: 3-D flight analysis in a wind tunnel. Med. Vet. Entomol. 2011, 25, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-López, M.J. Mosquito Behavior and Vertebrate Microbiota Interaction: Implications for Pathogen Transmission. Front. Microbiol. 2020, 11, 573371. [Google Scholar] [CrossRef] [PubMed]
- Syed, Z.; Leal, W.S. Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant. Proc. Natl. Acad. Sci. USA 2009, 106, 18803–18808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McBride, C.S.; Baier, F.; Omondi, A.B.; Spitzer, S.A.; Lutomiah, J.; Sang, R.; Ignell, R.; Vosshall, L.B. Evolution of mosquito preference for humans linked to an odorant receptor. Nature 2014, 515, 222–227. [Google Scholar] [CrossRef]
- Whittaker, D.J.; Slowinski, S.P.; Greenberg, J.M.; Alian, O.; Winters, A.D.; Ahmad, M.M.; Burrell, M.J.E.; Soini, H.A.; Novotny, M.V.; Ketterson, E.D.; et al. Experimental evidence that symbiotic bacteria produce chemical cues in a songbird. J. Exp. Biol. 2019, 222, jeb202978. [Google Scholar] [CrossRef] [Green Version]
- James, A.G.; Hyliands, D.; Johnston, H. Generation of volatile fatty acids by axillary bacteria. Int. J. Cosmet. Sci. 2004, 26, 149–156. [Google Scholar] [CrossRef]
- Engel, K.; Sauer, J.; Jünemann, S.; Winkler, A.; Wibberg, D.; Kalinowski, J.; Tauch, A.; Caspers, B.A. Individual- and Species-Specific Skin Microbiomes in Three Different Estrildid Finch Species Revealed by 16S Amplicon Sequencing. Microb. Ecol. 2018, 76, 518–529. [Google Scholar] [CrossRef]
- Bernier, U.R.; Allan, S.A.; Quinn, B.P.; Kline, D.L.; Barnard, D.R.; Clark, G.G. Volatile compounds from the integument of White Leghorn Chickens (Gallus gallus domesticus L.): Candidate attractants of ornithophilic mosquito species. J. Sep. Sci. 2008, 31, 1092–1099. [Google Scholar] [CrossRef] [Green Version]
- Madigan, M.; Martinko, J.M.; Stahl, D.A.; Clark, D.P. Brock Biology of Microorganisms, 11th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2006; p. 136. [Google Scholar]
- Theis, K.R.; Schmidt, T.M.; Holekamp, K.E. Evidence for a bacterial mechanism for group-specific social odors among hyenas. Sci. Rep. 2012, 2, 615. [Google Scholar] [CrossRef]
- Leclaire, S.; Strandh, M.; Dell’Ariccia, G.; Gabirot, M.; Westerdahl, H.; Bonadonna, F. Plumage microbiota covaries with the major histocompatibility complex in blue petrels. Mol. Ecol. 2019, 28, 833–846. [Google Scholar] [CrossRef] [PubMed]
- Vincze, O.; Vágási, C.I.; Kovács, I.; Galván, I.; Pap, P.L. Sources of variation in uropygial gland size in European birds. Biol. J. Linn. Soc. 2013, 110, 543–563. [Google Scholar] [CrossRef] [Green Version]
- Johnston, D.W. Morphological Atlas of the Avian Uropygial Gland (Zoology Bulletins); British Museum (Natural History): London, UK, 1988. [Google Scholar]
- Hassanin, A.; Shoeib, M.; Massoud, D. Micro- and macroanatomical features of the uropygial gland of duck (Anas platyrhynchos) and pigeon (Columba livia). Biotech. Histochem. 2021, 96, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.; Ziswiler, V. The uropygial gland. In Avian Biology; Elsevier: Amsterdam, The Netherlands, 1982; pp. 199–324. [Google Scholar]
- Spearman, R.; Hardy, J. Form and Function in Birds; King, A.S., McLelland, J., Eds.; Academic Press: London, UK, 1985. [Google Scholar]
- Galván, I.; Møller, A.P. Odor Transmission and Olfaction: The Tuft of the Uropygial Gland and Olfactory Ability in Birds. Condor 2013, 115, 693–699. [Google Scholar] [CrossRef]
- Montalti, D.; Gutiérrez, A.M.; Reboredo, G.; Salibián, A. The chemical composition of the uropygial gland secretion of rock dove Columba livia. Comp. Biochem. Physiol.-A Mol. Integr. Physiol. 2005, 140, 275–279. [Google Scholar] [CrossRef]
- Salibian, A.; Montalti, D. Physiological and biochemical aspects of the avian uropygial gland. Braz. J. Biol. 2009, 69, 437–446. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Rueda, G. Preen oil and bird fitness: A critical review of the evidence. Biol. Rev. 2017, 92, 2131–2143. [Google Scholar] [CrossRef]
- Sweeney, R.J.; Lovette, I.J.; Harvey, E.L. Evolutionary variation in feather waxes of passerine birds. Auk 2004, 121, 435–445. [Google Scholar] [CrossRef] [Green Version]
- Haribal, M.; Dhondt, A.A.; Rosane, D.; Rodriguez, E. Chemistry of preen gland secretions of passerines: Different pathways to same goal? Why? Chemoecology 2005, 15, 251–260. [Google Scholar] [CrossRef]
- Whittaker, D.J.; Soini, H.A.; Atwell, J.W.; Hollars, C.; Novotny, M.V.; Ketterson, E.D. Songbird chemosignals: Volatile compounds in preen gland secretions vary among individuals, sexes, and populations. Behav. Ecol. 2010, 21, 608–614. [Google Scholar] [CrossRef] [Green Version]
- Amat, J.A.; Rendón, M.A.; Garrido-Fernández, J.; Garrido, A.; Rendón-Martos, M.; Pérez-Gálvez, A. Greater flamingos Phoenicopterus roseus use uropygial secretions as make-up. Behav. Ecol. Sociobiol. 2011, 65, 665–673. [Google Scholar] [CrossRef]
- Elder, W.H. The oil gland of birds. Wilson Bull. 1954, 66, 6–31. [Google Scholar]
- Jacob, S.; Sallé, L.; Zinger, L.; Chaine, A.S.; Ducamp, C.; Boutault, L.; Russell, A.F.; Heeb, P. Chemical regulation of body feather microbiota in a wild bird. Mol. Ecol. 2018, 27, 1727–1738. [Google Scholar] [CrossRef] [PubMed]
- Møller, A.P.; Laursen, K. Function of the uropygial gland in eiders (Somateria mollissima). Avian Res. 2019, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Giraudeau, M.; Czirják, G.Á.; Duval, C.; Bretagnolle, V.; Eraud, C.; McGraw, K.J.; Heeb, P. Effect of restricted preen-gland access on maternal self maintenance and reproductive investment in mallards. PLoS ONE 2010, 5, e13555. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.X.; Wei, W.; Zhang, J.H.; Yang, W.H. Uropygial gland-secreted alkanols contribute to olfactory sex signals in Budgerigars. Chem. Senses 2010, 35, 375–382. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Du, Y.F.; Zhang, J.X. Uropygial gland volatiles facilitate species recognition between two sympatric sibling bird species. Behav. Ecol. 2013, 24, 1271–1278. [Google Scholar] [CrossRef]
- Krause, E.T.; Brummel, C.; Kohlwey, S.; Baier, M.C.; Müller, C.; Bonadonna, F.; Caspers, B.A. Differences in olfactory species recognition in the females of two Australian songbird species. Behav. Ecol. Sociobiol. 2014, 68, 1819–1827. [Google Scholar] [CrossRef]
- Shawkey, M.D.; Pillai, S.R.; Hill, G.E. Chemical warfare? Effects of uropygial oil on feather-degrading bacteria. J. Avian Biol. 2003, 34, 345–349. [Google Scholar] [CrossRef]
- Reneerkens, J.; Versteegh, M.A.; Schneider, A.M.; Piersma, T.; Burtt, E.H. Seasonally changing preen-wax composition: Red knots’ (Calidris canutus) flexible defense against feather-degrading bacteria? Auk 2008, 125, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Martín-Vivaldi, M.; Peña, A.; Peralta-Sánchez, J.M.; Sánchez, L.; Ananou, S.; Ruiz-Rodríguez, M.; Soler, J.J. Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria. Proc. R. Soc. B Biol. Sci. 2010, 277, 123–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Rodríguez, M.; Tomás, G.; Martín-Gálvez, D.; Ruiz-Castellano, C.; Soler, J.J. Bacteria and the evolution of honest signals. The case of ornamental throat feathers in spotless starlings. Funct. Ecol. 2015, 29, 701–709. [Google Scholar] [CrossRef]
- Verea, C.; Vitelli–Flores, J.; Isturiz, T.; Rodríguez–Lemoine, V.; Bosque, C. The effect of uropygial gland secretions of Spectacled Thrushes (Turdus nudigenis) on feather degradation and bacterial growth in vitro. J. Ornithol. 2017, 158, 1035–1043. [Google Scholar] [CrossRef]
- Braun, M.S.; Sporer, F.; Zimmermann, S.; Wink, M. Birds, feather-degrading bacteria and preen glands: The antimicrobial activity of preen gland secretions from turkeys (Meleagris gallopavo) is amplified by keratinase. FEMS Microbiol. Ecol. 2018, 94, fiy117. [Google Scholar] [CrossRef]
- Fülöp, A.; Czirják, G.Á.; Pap, P.L.; Vágási, C.I. Feather-degrading bacteria, uropygial gland size and feather quality in House Sparrows Passer domesticus. Ibis 2016, 158, 362–370. [Google Scholar] [CrossRef] [Green Version]
- Møller, A.P.; Czirjak, G.Ã.; Heeb, P. Feather micro-organisms and uropygial antimicrobial defences in a colonial passerine bird. Funct. Ecol. 2009, 23, 1097–1102. [Google Scholar] [CrossRef]
- Ruiz-Rodriguez, M.; Valdivia, E.; Soler, J.J.; Martin-Vivaldi, M.; Martín-Platero, A.M.; Martínez-Bueno, M. Symbiotic bacteria living in the hoopoe’s uropygial gland prevent feather degradation. J. Exp. Biol. 2009, 212, 3621–3626. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Rodríguez, M.; Martínez-Bueno, M.; Martín-Vivaldi, M.; Valdivia, E.; Soler, J.J. Bacteriocins with a broader antimicrobial spectrum prevail in enterococcal symbionts isolated from the hoopoe’s uropygial gland. FEMS Microbiol. Ecol. 2013, 85, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.H.; Price, E.R.; Seewagen, C.L.; Mackenzie, S.A.; Bernards, M.A.; Guglielmo, C.G. Use of TLC-FID and GC-MS/FID to examine the effects of migratory state, diet and captivity on preen wax composition in White-throated Sparrows Zonotrichia albicollis. Ibis 2010, 152, 782–792. [Google Scholar] [CrossRef]
- Gutiérrez, A.M.; Montalti, D.; Reboredo, G.R.; Salibián, A.; Catalá, A. Lindane distribution and fatty acid profiles of uropygial gland and liver of Columba livia after pesticide treatment. Pestic. Biochem. Physiol. 1998, 59, 137–141. [Google Scholar] [CrossRef]
- López-Rull, I.; Pagán, I.; Macías Garcia, C. Cosmetic enhancement of signal coloration: Experimental evidence in the house finch. Behav. Ecol. 2010, 21, 781–787. [Google Scholar] [CrossRef]
- Møller, A.P.; Laursen, K.; Izaguirre, J.; Marzal, A. Antibacterial and anatomical defenses in an oil contaminated, vulnerable seaduck. Ecol. Evol. 2021, 11, 12520–12528. [Google Scholar] [CrossRef] [PubMed]
- Magallanes, S.; Møller, A.P.; García-Longoria, L.; De Lope, F.; Marzal, A. Volume and antimicrobial activity of secretions of the uropygial gland are correlated with malaria infection in house sparrows. Parasites Vectors 2016, 9, 232. [Google Scholar] [CrossRef] [Green Version]
- Marzal, A.; Møller, A.P.; Espinoza, K.; Morales, S.; Luján-Vega, C.; Cárdenas-Callirgos, J.M.; Mendo, L.; Álvarez-Barrientos, A.; González-Blázquez, M.; García-Longoria, L.; et al. Variation in malaria infection and immune defence in invasive and endemic house sparrows. Anim. Conserv. 2018, 21, 505–514. [Google Scholar] [CrossRef]
- Magallanes, S.; Møller, A.P.; Luján-Vega, C.; Fong, E.; Vecco, D.; Flores-Saavedra, W.; García-Longoriaa, L.; de Lope, F.; Iannacone, J.A.; Marzal, A. Exploring the adjustment to parasite pressure hypothesis: Differences in uropygial gland volume and haemosporidian infection in palearctic and neotropical birds. Curr. Zool. 2020, 67, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Takken, W.; Verhulst, N.O. Host preferences of blood-feeding mosquitoes. Annu. Rev. Entomol. 2013, 58, 433–453. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, A.; Bhattacharyya, S.P. Influence of fowl uropygial gland and its secretory lipid components on the growth of skin surface fungi of fowl. Indian J. Exp. Biol. 1999, 37, 1218–1222. [Google Scholar]
- Bodawatta, K.H.; Schierbech, S.K.; Petersen, N.R.; Sam, K.; Bos, N.; Jønsson, K.A.; Poulsen, M. Great Tit (Parus major) Uropygial Gland Microbiomes and Their Potential Defensive Roles. Front. Microbiol. 2020, 11, 1735. [Google Scholar] [CrossRef]
- Czirják, G.Á.; Pap, P.L.; Vágási, C.I.; Giraudeau, M.; Mureşan, C.; Mirleau, P.; Heeb, P. Preen gland removal increases plumage bacterial load but not that of feather-degrading bacteria. Naturwissenschaften 2013, 100, 145–151. [Google Scholar] [CrossRef]
- Clayton, D.H.; Koop, J.A.H.; Harbison, C.W.; Moyer, B.R.; Bush, S.E. How Birds Combat Ectoparasites. Open Ornithol. J. 2010, 3, 41–71. [Google Scholar] [CrossRef] [Green Version]
- Moyer, B.; Rock, A.N.; Clayton, D.H. Experimental Test of the Importance of Preen Oil in Rock Doves (Columba livia). Auk 2003, 120, 490–496. [Google Scholar] [CrossRef]
- Williams, W.G.; Kennedy, G.G.; Yamamoto, R.T.; Thacker, J.D.; Bordner, J. 2-Tridecanone: A naturally occurring insecticide from the wild tomato Lycopersicon hirsutum f. glabratum. Science 1980, 207, 888–889. [Google Scholar] [CrossRef] [PubMed]
- Anuradha, V.; Syed, A.M.; Yogananath, N. Efficacy of Mosquito Repellent and Adulticidal Activities of Halophila ovalis Extract Against Filaria Vectors. J. Trop. Dis. 2016, 4, 1000191. [Google Scholar] [CrossRef]
- Shaw, C.L.; Rutter, J.E.; Austin, A.L.; Garvin, M.C.; Whelan, R.J. Volatile and Semivolatile Compounds in Gray Catbird Uropygial Secretions Vary with Age and between Breeding and Wintering Grounds. J. Chem. Ecol. 2011, 37, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Amo, L.; Avilés, J.M.; Parejo, D.; Peña, A.; Rodríguez, J.; Tomás, G. Sex recognition by odour and variation in the uropygial gland secretion in starlings. J. Anim. Ecol. 2012, 81, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Tuttle, E.M.; Sebastian, P.J.; Posto, A.L.; Soini, H.A.; Novotny, M.V.; Gonser, R.A. Variation in Preen Oil Composition Pertaining to Season, Sex, and Genotype in the Polymorphic White-Throated Sparrow. J. Chem. Ecol. 2014, 40, 1025–1038. [Google Scholar] [CrossRef]
- Dumbacher, J.; Pruett-Jones, S. Avian chemical defenses. In Current Ornithology; Nolan, V., Jr., Ketterson, E.D., Eds.; Plenum Press: New Jersey, NJ, USA, 1996; pp. 137–174. [Google Scholar]
- Sivakumar, R.; Jebanesan, A.; Govindarajan, M.; Rajasekar, P. Larvicidal and repellent activity of tetradecanoic acid against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.) (Diptera: Culicidae). Asian Pac. J. Trop. Med. 2011, 4, 706–710. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, D.J.; Rosvall, K.A.; Slowinski, S.P.; Soini, H.A.; Novotny, M.V.; Ketterson, E.D. Songbird chemical signals reflect uropygial gland androgen sensitivity and predict aggression: Implications for the role of the periphery in chemosignaling. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2018, 204, 5–15. [Google Scholar] [CrossRef]
- Poulin, R.; Maure, F. Host Manipulation by Parasites: A Look Back Before Moving Forward. Trends Parasitol. 2015, 31, 563–570. [Google Scholar] [CrossRef]
- Heil, M. Host manipulation by parasites: Cases, patterns, and remaining doubts. Front. Ecol. Evol. 2016, 4, 80. [Google Scholar] [CrossRef] [Green Version]
- Cozzarolo, C.S.; Glaizot, O.; Christe, P.; Pigeault, R. Enhanced Attraction of Arthropod Vectors to Infected Vertebrates: A Review of Empirical Evidence. Front. Ecol. Evol. 2020, 8, 296. [Google Scholar] [CrossRef]
- Lefèvre, T.; Lebarbenchon, C.; Gauthier-Clerc, M.; Missé, D.; Poulin, R.; Thomas, F. The ecological significance of manipulative parasites. Trends Ecol. Evol. 2009, 24, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Spence Beaulieu, M.R. The role of parasite manipulation in vector-borne diseases. Evol. Med. Public Health 2019, 2019, 106–107. [Google Scholar] [CrossRef] [PubMed]
- Stanczyk, N.M.; Mescher, M.C.; De Moraes, C.M. Effects of malaria infection on mosquito olfaction and behavior: Extrapolating data to the field. Curr. Opin. Insect Sci. 2017, 20, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Rossignol, P.A.; Ribeiro, J.M.; Spielman, A. Increased intradermal probing time in sporozoite-infected mosquitoes. Am. J. Trop. Med. Hyg. 1984, 33, 17–20. [Google Scholar] [CrossRef]
- Rossignol, P.A.; Ribeiro, J.M.C.; Spielman, A. Increased biting rate and reduced fertility in sporozoite-infected mosquitoes. Am. J. Trop. Med. Hyg. 1986, 35, 277–279. [Google Scholar] [CrossRef]
- Cornet, S.; Nicot, A.; Rivero, A.; Gandon, S. Avian malaria alters the dynamics of blood feeding in Culex pipiens mosquitoes. Malar. J. 2019, 18, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Valkiūnas, G.; Iezhova, T.A. Detrimental Effects of Haemoproteus Infections on the Survival of Biting Midge Culicoides impunctatus (Diptera: Ceratopogonidae). J. Parasitol. 2004, 90, 194–196. [Google Scholar] [CrossRef]
- Gutiérrez-López, R.; Martínez-de la Puente, J.; Gangoso, L.; Yan, J.; Soriguer, R.; Figuerola, J. Experimental reduction of host Plasmodium infection load affects mosquito survival. Sci. Rep. 2019, 9, 8782. [Google Scholar] [CrossRef]
- Nacher, M. Charming the mosquito: Do malaria symptoms increase the attractiveness of the host for the vector? Med. Hypotheses 2005, 64, 788–791. [Google Scholar] [CrossRef]
- Katsuragawa, T.H.; Gil, L.H.S.; Tada, M.S.; Silva, A.D.A.; Costa, J.D.A.N.; Araújo, M.D.S.; Escobar, A.L.; Pereira Da Silva, L.H. The dynamics of transmission and spatial distribution of malaria in riverside areas of Porto Velho, Rondônia, in the Amazon Region of Brazil. PLoS ONE 2010, 5, e9245. [Google Scholar] [CrossRef] [PubMed]
- Emami, S.N.; Lindberg, B.G.; Hua, S.; Hill, S.R.; Mozuraitis, R.; Lehmann, P.; Birgersson, G.; Borg-Karlson, A.K.; Ignell, R.; Faye, I. A key malaria metabolite modulates vector blood seeking, feeding, and susceptibility to infection. Science 2017, 355, 1076–1080. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.; Busula, A.O.; Voets, M.A.; Beshir, K.B.; Caulfield, J.C.; Powers, S.J.; Verhulst, N.O.; Winskill, P.; Muwanguzi, J.; Birkett, M.A.; et al. Plasmodium-associated changes in human odor attract mosquitoes. Proc. Natl. Acad. Sci. USA 2018, 115, E4209–E4218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaber, C.L.; Katta, N.; Bollinger, L.B.; Mwale, M.; Mlotha-Mitole, R.; Trehan, I.; Raman, B.; Odom John, A.R. Breathprinting Reveals Malaria-Associated Biomarkers and Mosquito Attractants. J. Infect. Dis. 2018, 217, 1553–1560. [Google Scholar] [CrossRef] [Green Version]
- Grieves, L.A.; Kelly, T.R.; Bernards, M.A.; Macdougall-Shackleton, E.A. Malarial infection alters wax ester composition of preen oil in songbirds: Results of an experimental study. Auk 2018, 135, 767–776. [Google Scholar] [CrossRef]
- Díez-Fernández, A.; Martínez-de la Puente, J.; Martín, J.; Gangoso, L.; López, P.; Soriguer, R.; Figuerola, J. Sex and age, but not blood parasite infection nor habitat, affect the composition of the uropygial gland secretions in European blackbirds. J. Avian Biol. 2021, 52. [Google Scholar] [CrossRef]
- Busula, A.O.; Verhulst, N.O.; Bousema, T.; Takken, W.; de Boer, J.G. Mechanisms of Plasmodium-Enhanced Attraction of Mosquito Vectors. Trends Parasitol. 2017, 33, 961–973. [Google Scholar] [CrossRef]
- Penn, D.; Potts, W. How do major histocompatibility complex genes influence odor and mating preferences? Adv. Immunol. 1998, 69, 411–436. [Google Scholar] [CrossRef]
- Lacroix, R.; Mukabana, W.R.; Gouagna, L.C.; Koella, J.C. Malaria infection increases attractiveness of humans to mosquitoes. PLoS Biol. 2005, 3, e298. [Google Scholar] [CrossRef] [Green Version]
- Batista, E.P.A.; Costa, E.F.M.; Silva, A.A. Anopheles darlingi (Diptera: Culicidae) displays increased attractiveness to infected individuals with Plasmodium vivax gametocytes. Parasites Vectors 2014, 7, 251. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, H.M.; Rivero, A.; Read, A.F. The influence of malaria parasite genetic diversity and anaemia on mosquito feeding and fecundity. Parasitology 2003, 127, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Moraes, C.M.; Stanczyk, N.M.; Betz, H.S.; Pulido, H.; Sim, D.G.; Read, A.F.; Mescher, M.C. Malaria-induced changes in host odors enhance mosquito attraction. Proc. Natl. Acad. Sci. USA 2014, 111, 11079–11084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazorra-Alonso, M.; Tomás, G.; Soler, J.J. Microbially Mediated Chemical Ecology of Animals: A Review of Its Role in Conspecific Communication, Parasitism and Predation. Biology 2021, 10, 274. [Google Scholar] [CrossRef] [PubMed]
- Videvall, E.; Marzal, A.; Magallanes, S.; Fleischer, R.C.; Espinoza, K.; García-Longoria, L. The uropygial gland microbiome of house sparrows with malaria infection. J. Avian Biol. 2021, 52. [Google Scholar] [CrossRef]
Stimulus | Host | Vector | Effect | Explanation | Reference | |
---|---|---|---|---|---|---|
Visual | Colour | 49 North American bird species | Culex pipiens | + | Mosquitoes fed preferably on birds with lighter-coloured plumage. | [36] |
Motion | Cyanistes caeruleus | Biting midges | + | Abundance of biting midges was positively associated with parental provisioning effort (increased motion activity). | [37] | |
Size | 49 North American bird species | Culex pipiens | + | Mosquitoes fed preferably on birds with longer tarsi. | [36] | |
Heat and moisture | Temperature | Ficedula hypoleuca | Biting midges | + | Abundance of biting midges increased with temperature inside the bird nests. | [38] |
Temperature | Parus major | Culex pipiens | − | Birds with a lower body temperature were preferentially chosen by mosquitoes. | [39] | |
Metabolic rate | Passer domesticus | Culex pipiens | − | House sparrows with lower metabolic rate suffered more mosquito bites. | [40] | |
Moisture and temperature | Cyanistes caerules | Biting midges and black flies | 0 | No higher abundance of biting midges and black flies in nests with higher temperature and lower humidity. | [41] | |
Acoustic | Bird calls | Passer, Fringila, Emberiza | Culex territans | + | 60% of female mosquitoes oriented toward the bird songs in phonotaxis experiments. | [42] |
Auditory stimulus | Upupa epops | Mosquitoes, blackflies and biting midges | 0 | Auditory cues of nestling hoopoes did not affect the abundance of vectors. | [43] | |
Olfactory | Carbon dioxide (CO2) | Cyanistes caeruleus | Biting midges | + | Higher biting midge abundance in nests boxes with CO2 levels higher than in the forest air. | [44] |
Uropygial gland secretions | Uropygial secretion | Gavia immer | Simulium euryadminiculum | + | Black flies were attracted to the odour of the common loon’s uropygial gland. | [45] |
Uropygial secretion | Gavia immer | Simulium euryadminiculum | + | Higher attraction of black flies to a combination of ether extract of the uropygial glands and CO2 than to CO2 alone. | [46] | |
Ether extract | Gavia immer | Simulium euryadminiculum | + | Black flies were attracted to ether components of the uropygial gland. | [47] | |
Cotton swabs coated with uropygial secretions | Corvus brachyrhynchus | Culex pipiens, Culex restuans | + | CDC traps baited with uropygial secretions captured more mosquitos than control traps. | [48] | |
Diol volatile compounds from Natasauropygial gland secretion | Culex quinquefasciatus Culex tarsalis, Culex nigripalpus, Aedes aegypti | 0 | Meso-2,3-butanediol, 2,3-butanediol, and 2,3- docosanediol were not attractive to mosquitoes. | [49] | ||
Uropygial secretions | Columba livia Cyanistes caeruleus | Biting midges and black flies | 0 | No differences in the number of vectors captured in CDC traps or nests with this stimulus. | [50] | |
Uropygial secretions | Passer domesticus | Culex pipiens, Aedes caspius | 0 | Mosquitoes were attracted equally to the ports containing uropygial secretion and to the control in olfactometer assays. | [51] | |
Uropygial secretions | Upupa epops | Biting midges | − | Traps baited with uropygial secretion in pine forest significantly captured less biting midges than control traps. | [43] | |
Haemosporidian infection | Bird infected with malaria | Serinus canaria | Culex pipiens | + | Chronically infected birds attracted more vectors than either uninfected or acutely infected birds. | [52] |
Bird infected with malaria | Passer domesticus | Culex pipiens | + | Higher feeding preference of mosquitoes on infected sparrows. | [53] | |
Bird infected with malaria | Passer domesticus | Culex pipiens | + | Mosquitoes were more attracted to the odour of malaria-infected sparrows. | [54] | |
Bird infected with malaria | Cyanistes caeruleus | Biting midges | − | Higher abundance of biting midges in the nest attended by medicated birds with reduced parasitaemia. | [37] | |
Bird infected with malaria | Parus major | Culex pipiens | − | Plasmodium-infected birds attracted significantly fewer mosquitoes than the uninfected ones. | [55] | |
Bird infected with malaria | Corvus monedula Passer domesticus | Culex pipiens, Aedes caspius | 0 | Similar biting rates of mosquitoes on malaria infected and uninfected birds. | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marzal, A.; Magallanes, S.; Garcia-Longoria, L. Stimuli Followed by Avian Malaria Vectors in Host-Seeking Behaviour. Biology 2022, 11, 726. https://doi.org/10.3390/biology11050726
Marzal A, Magallanes S, Garcia-Longoria L. Stimuli Followed by Avian Malaria Vectors in Host-Seeking Behaviour. Biology. 2022; 11(5):726. https://doi.org/10.3390/biology11050726
Chicago/Turabian StyleMarzal, Alfonso, Sergio Magallanes, and Luz Garcia-Longoria. 2022. "Stimuli Followed by Avian Malaria Vectors in Host-Seeking Behaviour" Biology 11, no. 5: 726. https://doi.org/10.3390/biology11050726
APA StyleMarzal, A., Magallanes, S., & Garcia-Longoria, L. (2022). Stimuli Followed by Avian Malaria Vectors in Host-Seeking Behaviour. Biology, 11(5), 726. https://doi.org/10.3390/biology11050726