Maintenance of Genetic Diversity of Black Sea Bream despite Unmonitored and Large-Scale Hatchery Releases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. SSR Markers
2.3. Population Genetic Analysis
3. Results
3.1. Genetic Diversity within Populations
3.2. Genetic Differentiation among Populations
3.3. Genetic Structure of Populations
4. Discussion
4.1. Genetic Difference among/between Hatchery and Wild Populations
4.2. Dramatic Change in Genetic Structure after Fish Release
4.3. Stock Enhancement of Black Sea Bream in Taiwan
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cressey, D. Aquaculture: Future Fish. Nature 2009, 458, 398–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumaila, U.R.; Tai, T.C. End Overfishing and Increase the Resilience of the Ocean to Climate Change. Front. Mar. Sci. 2020, 7, 523. [Google Scholar] [CrossRef]
- Schiermeier, Q. How Many More Fish in the Sea? Nature 2002, 419, 662–665. [Google Scholar] [CrossRef] [PubMed]
- Pauly, D. Beyond Duplicity and Ignorance in Global Fisheries. Sci. Mar. 2009, 73, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.D.; Leber, K.M.; Blankenship, H.L.; Loneragan, N.R.; Masuda, R. A New Era for Restocking, Stock Enhancement and Sea Ranching of Coastal Fisheries Resources. Rev. Fish. Sci. 2008, 16, 1–9. [Google Scholar] [CrossRef]
- Liao, I.C.; Su, M.S.; Leano, E.M. Status of Research in Stock Enhancement and Sea Ranching. Rev. Fish Biol. Fish. 2003, 13, 151–163. [Google Scholar] [CrossRef]
- Kitada, S. Lessons from Japan Marine Stock Enhancement and Sea Ranching Programmes over 100 Years. Rev. Aquacult. 2020, 12, 1944–1969. [Google Scholar] [CrossRef]
- Liao, I.C. Status, Problems and Prospects of Stock Enhancement in Taiwan. Hydrobiologia 1997, 352, 167–180. [Google Scholar] [CrossRef]
- Adan, R.I.Y. Stock Enhancement in Japan and Taiwan. SEAFDEC Asian Aquac. 2001, 23, 20–21, 40. [Google Scholar]
- Chang, W.-C.; Lee, Y.-C.; Shih, C.-H.; Chu, T.-J.; Chang, P.-H. Population Size and Stocking Contribution Rates for Marked and Recaptured Black Porgy Acanthopagrus Schlegelli, in Northwestern Taiwan, 2005–2008. Fish. Res. 2011, 109, 252–256. [Google Scholar] [CrossRef]
- Hsu, T.-H.; Huang, C.-W.; Lin, C.-H.; Lee, H.-T.; Pan, C.-Y. Tracing the Origin of Fish without Hatchery Information: Genetic Management of Stock Enhancement for Mangrove Red Snapper (Lutjanus Argentimaculatus) in Taiwan. Fish. Aquat. Sci. 2020, 23, 13. [Google Scholar] [CrossRef]
- Hsu, T.-H.; Huang, C.-W.; Lee, H.-T.; Kuo, Y.-H.; Liu, K.-M.; Lin, C.-H.; Gong, H.-Y. Population Genetic Analysis for Stock Enhancement of Silver Sea Bream (Rhabdosargus Sarba) in Taiwan. Fishes 2020, 5, 19. [Google Scholar] [CrossRef]
- Ward, R.D. The importance of identifying spatial population structure in restocking and stock enhancement programmes. Fish. Res. 2006, 80, 9–18. [Google Scholar] [CrossRef]
- Satake, A.; Araki, H. Stocking of captive-bred fish can cause long-term population decline and gene pool replacement: Predictions from a population dynamics model incorporating density-dependent mortality. Theor. Ecol. 2012, 5, 283–296. [Google Scholar] [CrossRef]
- Baskett, M.L.; Burgess, S.C.; Waples, R.S. Assessing strategies to minimize unintended fitness consequences of aquaculture on wild populations. Evol. Appl. 2013, 6, 1090–1108. [Google Scholar] [CrossRef]
- Milot, E.; Perrier, C.; Papillon, L.; Dodson, J.J.; Bernatchez, L. Reduced fitness of Atlantic salmon released in the wild after one generation of captive breeding. Evol. Appl. 2013, 6, 472–485. [Google Scholar] [CrossRef]
- Naish, K.A.; Seamons, T.R.; Dauer, M.B.; Hauser, L.; Quinn, T.P. Relationship between effective population size, inbreeding and adult fitness-related traits in a steelhead (Oncorhynchus mykiss) population released in the wild. Mol. Ecol. 2013, 22, 1295–1309. [Google Scholar] [CrossRef]
- Boscari, E.; Congiu, L. The need for genetic support in restocking activities and ex situ conservation programmes: The case of the Adriatic sturgeon (Acipenser naccarii Bonaparte, 1836) in the Ticino River Park. J. Appl. Ichthyol. 2014, 30, 1416–1422. [Google Scholar] [CrossRef]
- An, H.S.; Nam, M.M.; Myeong, J.I.; An, C.M. Genetic diversity and differentiation of the Korean starry flounder (Platichthys stellatus) between and within cultured stocks and wild populations inferred from microsatellite DNA analysis. Mol. Biol. Rep. 2014, 41, 7281–7292. [Google Scholar] [CrossRef]
- Blanco Gonzalez, E.; Umino, T. Fine-scale genetic structure derived from stocking black sea bream, Acanthopagrus schlegelii (Bleeker, 1854), in Hiroshima Bay, Japan. J. Appl. Ichthyol. 2009, 25, 407–410. [Google Scholar] [CrossRef]
- Le Vay, L.; Carvalho, G.R.; Quinitio, E.T.; Lebata, J.H.; Ut, V.N.; Fushimi, H. Quality of hatchery-reared juveniles for marine fisheries stock enhancement. Aquaculture 2007, 268, 169–180. [Google Scholar] [CrossRef]
- Lorenzen, K.; Leber, K.M.; Blankenship, H.L. Responsible approach to marine stock enhancement: An update. Rev. Fish. Sci. 2010, 18, 189–210. [Google Scholar] [CrossRef]
- Law, C.S.W.; Sadovy de Mitcheson, Y. Age and growth of black seabream Acanthopagrus schlegelii (Sparidae) in Hong Kong and adjacent waters of the northern South China Sea. J. Fish Biol. 2018, 93, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Acanthopagrus schlegelii in Fisheries Statistics Yearbook of Taiwan Area. Available online: https://fishdb.sinica.edu.tw/chi/yearrpt2.php?id=26 (accessed on 10 January 2022).
- Hsu, T.-H.; Madrid, A.G.G.; Burridge, C.P.; Cheng, H.-Y.; Gwo, J.-C. Resolution of the Acanthopagrus black seabream complex based on mitochondrial and amplified fragment-length polymorphism analyses. J. Fish Biol. 2011, 79, 1182–1192. [Google Scholar] [CrossRef]
- Hsu, T.-H.; Lee, H.-T.; Chen, J.-Y.; Gong, H.-Y.; Huang, C.-W. Development of Microsatellite Multiplex PCR Assays for the Black Seabream (Acanthopagrus Schlegelii). J. Fish. Soc. Taiwan 2018, 45, 65–75. [Google Scholar] [CrossRef]
- Kim, W.J.; Kim, K.K.; Kim, Y.K.; Shin, E.H.; Kim, S.G. Isolation and characterization of 20 polymorphic microsatellite loci in the black seabream, Acanthopagrus schlegeli. Mol. Ecol. Resour. 2010, 10, 404–408. [Google Scholar] [CrossRef]
- Reid, K.; Hoareau, T.B.; Bloomer, P. High-throughput microsatellite marker development in two sparid species and verification of their transferability in the family Sparidae. Mol. Ecol. Resour. 2012, 12, 740–752. [Google Scholar] [CrossRef]
- Liu, Y.-G.; Liu, L.-X.; Wu, Z.-X.; Lin, H.; Li, B.-F.; Sun, X.-Q. Isolation and characterization of polymorphic microsatellite loci in black sea bream (Acanthopagrus schlegeli) by cross-species amplification with six species of the Sparidae family. Aquat. Living Resour. 2007, 20, 257–262. [Google Scholar] [CrossRef]
- Jeong, D.-S.; Gonzalez, E.B.; Morishima, K.; Arai, K.; Umino, T. Parentage assignment of stocked black sea bream Acanthopagrus schlegelii in Hiroshima Bay using microsatellite DNA markers. Fish. Sci. 2007, 73, 823–830. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Cao, X.; Feng, R.; Chen, S.; Zhang, Z.; Ren, W.; Xu, S. Isolation and characterization of thirteen polymorphic microsatellite loci from black porgy (Acanthopagrus schlegeli). J. Genet. 2014, 93, e97–e99. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, W.R. Analysing tables of statistical tests. Evolution 1989, 43, 223–225. [Google Scholar] [CrossRef] [PubMed]
- Borrell, Y.J.; Pinera, J.A.; Sanchez Prado, J.A.; Blanco, G. Mitochondrial DNA and microsatellite genetic differentiation in the European anchovy Engraulis encrasicolus L. ICES J. Mar. Sci. 2012, 69, 1357–1371. [Google Scholar] [CrossRef] [Green Version]
- Van Oosterhout, C.; Hutchinson, W.F.; Wills, D.P.M.; Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538. [Google Scholar] [CrossRef]
- Falush, D.; Stephens, M.; Pritchard, J.K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 2003, 164, 1567–1587. [Google Scholar] [CrossRef]
- Falush, D.; Stephens, M.; Pritchard, J.K. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Notes 2007, 7, 574–578. [Google Scholar] [CrossRef]
- Earl, D.A.; von Holdt, B.M. Structure Harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef] [Green Version]
- Ramasamy, R.K.; Ramasamy, S.; Bindroo, B.B.; Naik, V.G. STRUCTURE PLOT: A program for drawing elegant STRUCTURE bar plots in user friendly interface. SpringerPlus 2014, 3, 431. [Google Scholar] [CrossRef] [Green Version]
- Excoffier, L.; Smouse, P.E.; Quattro, J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 1992, 131, 479–491. [Google Scholar] [CrossRef]
- Dupanloup, I.; Schneider, S.; Excoffier, L.A. Simulated annealing approach to define the genetic structure of populations. Mol. Ecol. 2002, 11, 2571–2581. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Pew, J.; Muir, P.H.; Wang, J.; Frasier, T.R. Related: An R Package for Analysing Pairwise Relatedness from Codominant Molecular Markers. Mol. Ecol. Resour. 2015, 15, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. An Estimator for Pairwise Relatedness Using Molecular Markers. Genetics 2002, 160, 1203–1215. [Google Scholar] [CrossRef] [PubMed]
- Dyer, R.J.; Nason, J.D. Population Graphs: The Graph Theoretic Shape of Genetic Structure. Mol. Ecol. 2004, 13, 1713–1727. [Google Scholar] [CrossRef] [PubMed]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising How the Computer Program Cervus Accommodates Genotyping Error Increases Success in Paternity Assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Kitada, S.; Nakajima, K.; Hamasaki, K.; Shishidou, H.; Waples, R.S.; Kishino, H. Rigorous Monitoring of a Large-Scale Marine Stock Enhancement Program Demonstrates the Need for Comprehensive Management of Fisheries and Nursery Habitat. Sci. Rep. 2019, 9, 5290. [Google Scholar] [CrossRef] [Green Version]
- Hsu, T.-H.; Gwo, J.-C. Fine-Scale Genetic Structure of Rabbitfish, Siganus Fuscescens, in Penghu Archipelago Following a Mass Mortality Event Caused by Extreme Cold Winter Weather. Genes Genom. 2017, 39, 645–652. [Google Scholar] [CrossRef]
- Hansen, M.M.; Fraser, D.J.; Meier, K.; Mensberg, K.-L.D. Sixty Years of Anthropogenic Pressure: A Spatio-Temporal Genetic Analysis of Brown Trout Populations Subject to Stocking and Population Declines. Mol. Ecol. 2009, 18, 2549–2562. [Google Scholar] [CrossRef]
- Araki, H.; Schmid, C. Is Hatchery Stocking a Help or Harm?: Evidence, Limitations and Future Directions in Ecological and Genetic Surveys. Aquaculture 2010, 308, S2–S11. [Google Scholar] [CrossRef]
- Weng, Z.; Yang, Y.; Wang, X.; Wu, L.; Hua, S.; Zhang, H.; Meng, Z. Parentage Analysis in Giant Grouper (Epinephelus lanceolatus) Using Microsatellite and SNP Markers from Genotyping-by-Sequencing Data. Genes 2021, 12, 1042. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, E.B.; Umino, T.; Nagasawa, K. Stock Enhancement Programme for Black Sea Bream, Acanthopagrus Schlegelii (Bleeker), in Hiroshima Bay, Japan: A Review. Aquac. Res. 2008, 39, 1307–1315. [Google Scholar] [CrossRef]
- Gonzalez, E.B.; Nagasawa, K.; Umino, T. Stock Enhancement Program for Black Sea Bream (Acanthopagrus schlegelii) in Hiroshima Bay: Monitoring the Genetic Effects. Aquaculture 2008, 276, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Weng, Z.; Yang, Y.; Hua, S.; Zhang, H.; Meng, Z. Genetic Evaluation of Black Sea Bream (Acanthopagrus schlegelii) Stock Enhancement in the South China Sea Based on Microsatellite DNA Markers. Fishes 2021, 6, 47. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Chang, P.-H.; Shih, C.-H.; Shiao, J.-C.; Tzeng, T.-D.; Chang, W.-C. The Impact of Religious Release Fish on Conservation. Glob. Ecol. Conserv. 2021, 27, e01556. [Google Scholar] [CrossRef]
- Kawai, K.; Fujita, H.; Sanchez, G.; Umino, T. Oyster Farms Are the Main Spawning Grounds of the Black Sea Bream Acanthopagrus Schlegelii in Hiroshima Bay, Japan. PeerJ 2021, 9, e11475. [Google Scholar] [CrossRef]
- Saito, H.; Nakanishi, Y.; Shigeta, T.; Umino, T.; Kawai, K.; Imabayashi, H. Effect of predation of fishes on oyster spats in Hiroshima Bay. Nippon. Suisan Gakkaishi 2008, 74, 809–815. [Google Scholar] [CrossRef] [Green Version]
- Laikre, L.; Schwartz, M.K.; Waples, R.S.; Ryman, N. Compromising Genetic Diversity in the Wild: Unmonitored Large-Scale Release of Plants and Animals. Trends Ecol. Evol. 2010, 25, 520–529. [Google Scholar] [CrossRef] [Green Version]
0 | n | Year | Sampling Location | Fish Types | Source Information |
---|---|---|---|---|---|
Cultured populations | |||||
KS_C1 | 94 | 2015 | Kaohsiung, Taiwan | bloodstock | For release project during 2013–2015 |
KS_C2 | 46 | 2016 | - | - | Import new stock from an unknown source |
KS_C3 | 48 | 2017 | - | - | Import new stock from an unknown source |
PR_C1 | 39 | 2015 | unknown hatchery | juveniles | Private (religious) release |
PR_C2 | 41 | 2015 | - | - | - |
KM_C | 96 | 2015 | Kinmen, Taiwan | subadult/adult | Farm fish from offshore islands of Taiwan |
MT_C | 24 | 2015 | Matsu, Taiwan | - | Farm fish from offshore islands of Taiwan |
XM_C | 48 | 2015 | Xiamen, China | - | Farm fish from southern China |
non-native | |||||
QD_C | 22 | 2015 | Qingdao, China | - | Farm fish from northern China for comparison |
Total | 458 | ||||
Wild populations | |||||
ML_W1 | 62 | 2015 | Miaoli, Taiwan | subadult/adult | Release project during 2013–2015 |
ML_W2 | 106 | 2016 | - | - | - |
ML_W3 | 192 | 2017 | - | - | - |
YL_W | 47 | 2015 | Yunlin, Taiwan | - | Release history during 2004–2015 |
PH_W | 48 | 2015 | Penghu, Taiwan | - | - |
TN_W | 47 | 2015 | Tainan, Taiwan | - | - |
TP_W | 47 | 2015 | Taipei, Taiwan | - | - |
KM_W | 94 | 2015 | Kinmen, Taiwan | - | - |
CY_W | 96 | 2015 | Chiayi, Taiwan | - | No release history during 2004–2015 |
non-native | |||||
JP_W | 34 | 2015 | Nagasaki, Japan | - | Wild population from Japan for comparison |
Total | 773 |
Locus | Primer Sequences (5′–3′) | Repeat Motif | Ta (°C) | Size Range (bp) | Accession No. | Reference |
---|---|---|---|---|---|---|
AS144 | F: CGACGTGATGGGTTATTCTTAGAC R: GCCATTCCACAGATTTCTTTCTC | (AC)n | 60 | 96–128 | GU121415 | Kim et al., 2010 [27] |
AS194 | F: GATCCTGTCCAGTTGCCCAGTA R: TCCACAGCTGAAACACGACTACAT | (AC)n | 60 | 122–192 | GU121416 | |
AS324 | F: CCCAAAAACTACGTAATGCACCTT R: GCCGGATGAAGATTCTGCTC | (GT)n | 60 | 168–238 | GU121417 | |
AS392 | F: AACCTGACCAGCCTGGCTCTTC R: ACCTCCTCTGATGCTTTTGTGTGC | (AC)nAT(AC)n | 60 | 124–188 | GU121420 | |
CL011 | F: CCATCGCTTGACACTAGCAC R: GCCACACTTGAGCCTTTCTC | (GATA)nGATG (GATA)n | 60 | 212–256 | FJ554545 | Reid et al., 2012 [28] |
SaI10 | F: TCACGGGGGACCAAGACTG R: CTCACACTGCCTAATTAGCACAGA | (GT)n | 60 | 173–211 | AY322107 | Liu et al., 2007 [29] |
SaI19 | F: ATTCTTCACAGGCCCAACACAAA R: GAAAACACCGGCCCAGTACGA | (GT)n | 60 | 232–278 | AY322111 | |
ACS-4 | F: TTTACACACCGGGAGCTCAA R: GTAAAGATCCATGGAGGTGC | (GT)n | 60 | 76–112 | AB095009 | Jeong et al., 2007 [30] |
AC229 | F: TGTCCGTTCTGCTTTGCTC R: TGCGGTAGTGCCTTCTCTG | (TG)n | 60 | 297–327 | GU166144 | Yang et al., 2014 [31] |
Pop (n) | AS144 | AS194 | AS324 | AS392 | CL011 | SaI10 | SaI19 | ACS-4 | AC229 | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|
All hatchery in Taiwan (388) | Na | 12 | 11 | 29 | 14 | 11 | 13 | 20 | 15 | 14 | 139 |
Ne | 2.420 | 3.165 | 15.209 | 3.222 | 6.514 | 1.792 | 5.853 | 5.114 | 4.227 | Mean 5.280 | |
All hatchery in this study (458) | Na | 14 | 13 | 29 | 14 | 11 | 13 | 20 | 15 | 15 | 144 |
Ne | 2.420 | 3.231 | 16.036 | 3.174 | 6.441 | 1.777 | 5.903 | 5.119 | 4.148 | Mean 5.361 | |
All wild in Taiwan (739) | Na | 16 | 17 | 27 | 15 | 10 | 13 | 19 | 17 | 15 | 149 |
Ne | 2.174 | 3.484 | 14.317 | 3.054 | 5.508 | 1.812 | 5.845 | 5.719 | 4.122 | Mean 5.115 | |
All wild in this study (773) | Na | 16 | 18 | 29 | 15 | 11 | 13 | 19 | 17 | 15 | 153 |
Ne | 2.190 | 3.473 | 14.663 | 3.023 | 5.520 | 1.854 | 5.713 | 5.730 | 4.227 | Mean 5.155 | |
All populations (1231) | Na | 17 | 20 | 31 | 18 | 12 | 16 | 21 | 18 | 17 | 170 |
Ne | 2.275 | 3.391 | 16.094 | 3.101 | 5.890 | 1.826 | 5.796 | 5.548 | 4.213 | Mean 5.348 |
Pop (n) | AS144 | AS194 | AS324 | AS392 | CL011 | SaI10 | SaI19 | ACS-4 | AC229 | Average | |
---|---|---|---|---|---|---|---|---|---|---|---|
KS_C1 (94) | Na | 6 | 6 | 20 | 8 | 10 | 8 | 15 | 9 | 11 | 10.3 |
Ne | 2.074 | 3.010 | 12.264 | 3.048 | 6.550 | 2.115 | 6.100 | 4.982 | 3.671 | 4.868 | |
Ho | 0.468 | 0.734 | 0.926 | 0.606 | 0.915 | 0.532 | 0.862 | 0.840 | 0.617 | 0.722 | |
He | 0.518 | 0.668 | 0.918 | 0.672 | 0.847 | 0.527 | 0.836 | 0.799 | 0.728 | 0.724 | |
FIS | 0.096 NS | −0.099 NS | −0.008 *** | 0.098 ** | −0.080 NS | −0.009 *** | −0.031 *** | −0.051 *** | 0.152 *** | 0.008 | |
KS_C2 (46) | Na | 9 | 8 | 20 | 6 | 10 | 5 | 13 | 8 | 8 | 9.7 |
Ne | 2.332 | 3.338 | 13.478 | 3.132 | 6.003 | 1.716 | 5.658 | 3.992 | 4.240 | 4.877 | |
Ho | 0.543 | 0.761 | 0.891 | 0.630 | 0.935 | 0.435 | 0.739 | 0.804 | 0.761 | 0.722 | |
He | 0.571 | 0.700 | 0.926 | 0.681 | 0.833 | 0.417 | 0.823 | 0.750 | 0.764 | 0.718 | |
FIS | 0.048 *** | −0.086 NS | 0.037 NS | 0.074 ** | −0.122 NS | −0.042 NS | 0.102 NS | −0.073 NS | 0.004 NS | −0.006 | |
KS_C3 (48) | Na | 7 | 6 | 19 | 6 | 7 | 4 | 10 | 6 | 9 | 8.2 |
Ne | 1.983 | 2.703 | 12.659 | 3.388 | 4.174 | 1.475 | 3.882 | 4.067 | 5.525 | 4.428 | |
Ho | 0.583 | 0.729 | 0.917 | 0.667 | 0.771 | 0.354 | 0.771 | 0.688 | 0.854 | 0.704 | |
He | 0.496 | 0.630 | 0.921 | 0.705 | 0.760 | 0.322 | 0.742 | 0.754 | 0.819 | 0.683 | |
FIS | −0.177 NS | −0.157 NS | 0.005 * | 0.054 NS | −0.014 NS | −0.100 NS | −0.038 NS | 0.088 *** | −0.043 NS | −0.042 | |
PR_C1 (39) | Na | 5 | 7 | 19 | 8 | 8 | 5 | 9 | 9 | 9 | 8.8 |
Ne | 2.222 | 3.045 | 10.864 | 2.477 | 5.707 | 1.783 | 5.012 | 5.750 | 4.527 | 4.599 | |
Ho | 0.564 | 0.692 | 0.949 | 0.641 | 0.718 | 0.308 | 0.795 | 0.667 | 0.897 | 0.692 | |
He | 0.550 | 0.672 | 0.908 | 0.596 | 0.825 | 0.439 | 0.800 | 0.826 | 0.779 | 0.711 | |
FIS | −0.026 NS | −0.031 NS | −0.045 * | −0.075 *** | 0.130 * | 0.299 *** | 0.007 *** | 0.193 *** | −0.152 NS | 0.033 | |
PR_C2 (41) | Na | 11 | 9 | 19 | 9 | 7 | 7 | 12 | 7 | 9 | 10.0 |
Ne | 2.957 | 3.928 | 11.207 | 2.478 | 6.180 | 2.079 | 6.380 | 5.003 | 4.197 | 4.934 | |
Ho | 0.610 | 0.732 | 0.805 | 0.463 | 0.634 | 0.293 | 0.780 | 0.780 | 0.805 | 0.656 | |
He | 0.662 | 0.745 | 0.911 | 0.596 | 0.838 | 0.519 | 0.843 | 0.800 | 0.762 | 0.742 | |
FIS | 0.079 *** | 0.018 *** | 0.116 *** | 0.223 *** | 0.243 *** | 0.436 *** | 0.074 NS | 0.025 NS | −0.057 *** | 0.129 | |
KM_C (96) | Na | 7 | 4 | 16 | 9 | 7 | 4 | 15 | 7 | 9 | 8.7 |
Ne | 3.143 | 3.098 | 9.974 | 2.805 | 6.002 | 1.387 | 5.635 | 4.266 | 3.488 | 4.422 | |
Ho | 0.677 | 0.667 | 0.740 | 0.729 | 0.781 | 0.240 | 0.802 | 0.802 | 0.760 | 0.689 | |
He | 0.682 | 0.677 | 0.900 | 0.644 | 0.833 | 0.279 | 0.823 | 0.766 | 0.713 | 0.702 | |
FIS | 0.007 NS | 0.016 NS | 0.178 *** | −0.133 NS | 0.063 NS | 0.141 NS | 0.025 NS | −0.048 NS | −0.066 NS | 0.020 | |
MT_C (24) | Na | 6 | 4 | 15 | 9 | 8 | 6 | 11 | 10 | 7 | 8.4 |
Ne | 1.725 | 2.477 | 8.113 | 4.220 | 5.908 | 2.618 | 4.129 | 6.400 | 3.182 | 4.308 | |
Ho | 0.500 | 0.625 | 0.958 | 0.833 | 0.750 | 0.417 | 0.667 | 0.875 | 0.667 | 0.699 | |
He | 0.420 | 0.596 | 0.877 | 0.763 | 0.831 | 0.618 | 0.758 | 0.844 | 0.686 | 0.710 | |
FIS | −0.190 NS | −0.048 NS | −0.093 NS | −0.092 *** | 0.097 NS | 0.326 ** | 0.120 NS | −0.037 *** | 0.028 NS | 0.012 | |
XM_C (48) | Na | 10 | 5 | 21 | 7 | 9 | 4 | 11 | 9 | 9 | 9.4 |
Ne | 1.987 | 3.550 | 12.288 | 2.553 | 5.408 | 1.515 | 5.626 | 4.934 | 2.673 | 4.504 | |
Ho | 0.521 | 0.688 | 0.917 | 0.500 | 0.667 | 0.292 | 0.292 | 0.771 | 0.438 | 0.565 | |
He | 0.497 | 0.718 | 0.919 | 0.608 | 0.815 | 0.340 | 0.822 | 0.797 | 0.626 | 0.683 | |
FIS | −0.048 *** | 0.043 NS | 0.002 NS | 0.178 *** | 0.182 NS | 0.142 NS | 0.645 *** | 0.033 NS | 0.301 *** | 0.164 | |
QD_C (22) | Na | 5 | 7 | 11 | 4 | 6 | 4 | 5 | 6 | 7 | 6.1 |
Ne | 2.960 | 2.898 | 8.566 | 2.310 | 5.661 | 2.127 | 4.155 | 4.102 | 4.137 | 4.102 | |
Ho | 0.409 | 0.364 | 0.864 | 0.727 | 0.773 | 0.727 | 0.773 | 0.318 | 1.000 | 0.662 | |
He | 0.662 | 0.655 | 0.883 | 0.567 | 0.823 | 0.530 | 0.759 | 0.756 | 0.758 | 0.711 | |
FIS | 0.382 *** | 0.445 *** | 0.022 *** | −0.282 NS | 0.061 *** | −0.372 NS | −0.018 * | 0.579 *** | −0.319 * | 0.055 |
Pop (n) | AS144 | AS194 | AS324 | AS392 | CL011 | SaI10 | SaI19 | ACS-4 | AC229 | Average | |
---|---|---|---|---|---|---|---|---|---|---|---|
ML_W1 (62) | Na | 7 | 6 | 19 | 7 | 9 | 5 | 12 | 7 | 10 | 9.1 |
Ne | 2.644 | 2.887 | 12.835 | 2.733 | 5.142 | 1.883 | 5.539 | 4.754 | 4.288 | 4.745 | |
Ho | 0.597 | 0.710 | 0.919 | 0.758 | 0.710 | 0.468 | 0.726 | 0.742 | 0.823 | 0.717 | |
He | 0.622 | 0.654 | 0.922 | 0.634 | 0.806 | 0.469 | 0.819 | 0.790 | 0.767 | 0.720 | |
FIS | 0.040 NS | −0.086 NS | 0.003 *** | −0.195 NS | 0.119 NS | 0.003 NS | 0.114 *** | 0.060 NS | −0.073 NS | −0.002 | |
ML_W2 (106) | Na | 9 | 10 | 17 | 9 | 9 | 5 | 15 | 8 | 12 | 10.444 |
Ne | 2.254 | 3.012 | 7.531 | 3.205 | 4.858 | 1.462 | 4.640 | 5.247 | 5.368 | 4.2 | |
Ho | 0.566 | 0.736 | 0.877 | 0.689 | 0.755 | 0.330 | 0.792 | 0.774 | 0.689 | 0.690 | |
He | 0.556 | 0.668 | 0.867 | 0.688 | 0.794 | 0.316 | 0.784 | 0.809 | 0.814 | 0.700 | |
FIS | −0.017 NS | −0.102 NS | −0.012 NS | −0.001 *** | 0.050 NS | −0.045 NS | −0.010 NS | 0.044 NS | 0.154 *** | 0.007 | |
ML_W3 (192) | Na | 10 | 10 | 21 | 10 | 9 | 7 | 14 | 8 | 13 | 11.333 |
Ne | 2.356 | 3.706 | 10.602 | 2.927 | 5.338 | 1.883 | 5.296 | 6.164 | 3.932 | 4.7 | |
Ho | 0.521 | 0.839 | 0.594 | 0.547 | 0.672 | 0.396 | 0.745 | 0.641 | 0.646 | 0.622 | |
He | 0.576 | 0.730 | 0.906 | 0.658 | 0.813 | 0.469 | 0.811 | 0.838 | 0.746 | 0.727 | |
FIS | 0.095 *** | −0.148 *** | 0.344 *** | 0.169 *** | 0.173 ** | 0.156 *** | 0.082 *** | 0.235 *** | 0.134 *** | 0.138 | |
YL_W (47) | Na | 6 | 6 | 19 | 7 | 9 | 6 | 12 | 10 | 9 | 9.333 |
Ne | 1.730 | 2.847 | 11.505 | 3.081 | 5.844 | 2.021 | 4.569 | 4.766 | 3.809 | 4.5 | |
Ho | 0.319 | 0.617 | 0.894 | 0.702 | 0.915 | 0.447 | 0.468 | 0.809 | 0.681 | 0.650 | |
He | 0.422 | 0.649 | 0.913 | 0.675 | 0.829 | 0.505 | 0.781 | 0.790 | 0.737 | 0.700 | |
FIS | 0.244 * | 0.049 NS | 0.021 * | −0.040 ** | −0.104 NS | 0.116 NS | 0.401 *** | −0.023 *** | 0.077 NS | 0.082 | |
PH_W (48) | Na | 8 | 6 | 21 | 6 | 8 | 6 | 9 | 6 | 10 | 8.889 |
Ne | 2.102 | 2.570 | 13.921 | 1.848 | 5.870 | 2.525 | 5.183 | 4.535 | 5.020 | 4.8 | |
Ho | 0.458 | 0.583 | 0.896 | 0.333 | 0.833 | 0.563 | 0.792 | 0.688 | 0.813 | 0.662 | |
He | 0.524 | 0.611 | 0.928 | 0.459 | 0.830 | 0.604 | 0.807 | 0.780 | 0.801 | 0.705 | |
FIS | 0.126 *** | 0.045 *** | 0.035 NS | 0.273 *** | −0.004 NS | 0.069 * | 0.019 NS | 0.118 NS | −0.015 NS | 0.074 | |
TN_W (47) | Na | 6 | 5 | 17 | 7 | 8 | 5 | 10 | 6 | 8 | 8.0 |
Ne | 2.277 | 2.895 | 11.845 | 2.092 | 5.336 | 1.687 | 4.981 | 4.781 | 3.832 | 4.414 | |
Ho | 0.596 | 0.745 | 0.872 | 0.426 | 0.745 | 0.447 | 0.894 | 0.723 | 0.702 | 0.683 | |
He | 0.561 | 0.655 | 0.916 | 0.522 | 0.813 | 0.407 | 0.799 | 0.791 | 0.739 | 0.689 | |
FIS | −0.062 NS | −0.138 NS | 0.047 *** | 0.185 *** | 0.084 *** | −0.097 NS | −0.118 NS | 0.085 NS | 0.050 NS | 0.004 | |
TP_W (47) | Na | 7 | 8 | 18 | 7 | 8 | 6 | 11 | 7 | 9 | 9.0 |
Ne | 1.660 | 4.064 | 11.475 | 2.780 | 5.247 | 1.578 | 5.032 | 5.375 | 3.144 | 4.484 | |
Ho | 0.404 | 0.936 | 0.872 | 0.574 | 0.872 | 0.404 | 0.979 | 0.745 | 0.702 | 0.721 | |
He | 0.397 | 0.754 | 0.913 | 0.640 | 0.809 | 0.366 | 0.801 | 0.814 | 0.682 | 0.686 | |
FIS | −0.017 *** | −0.242 *** | 0.044 * | 0.103 *** | −0.078 ** | −0.104 *** | −0.221 *** | 0.085 * | −0.030 NS | −0.051 | |
KM_W (94) | Na | 10 | 10 | 20 | 7 | 8 | 8 | 16 | 8 | 11 | 10.9 |
Ne | 2.413 | 3.848 | 10.507 | 3.252 | 5.497 | 1.511 | 6.175 | 4.796 | 4.061 | 4.673 | |
Ho | 0.574 | 0.734 | 0.755 | 0.532 | 0.819 | 0.277 | 0.766 | 0.713 | 0.606 | 0.642 | |
He | 0.586 | 0.740 | 0.905 | 0.693 | 0.818 | 0.338 | 0.838 | 0.791 | 0.754 | 0.718 | |
FIS | 0.019 NS | 0.008 *** | 0.165 *** | 0.232 *** | −0.001 NS | 0.182 *** | 0.086 *** | 0.099 NS | 0.195 *** | 0.110 | |
CY_W (96) | Na | 7 | 6 | 19 | 10 | 9 | 7 | 13 | 13 | 10 | 10.4 |
Ne | 1.741 | 3.889 | 9.958 | 3.105 | 5.569 | 2.049 | 6.338 | 6.227 | 3.398 | 4.697 | |
Ho | 0.438 | 0.646 | 0.885 | 0.625 | 0.948 | 0.458 | 0.917 | 0.833 | 0.771 | 0.725 | |
He | 0.426 | 0.743 | 0.900 | 0.678 | 0.820 | 0.512 | 0.842 | 0.839 | 0.706 | 0.718 | |
FIS | −0.028 NS | 0.131 NS | 0.016 NS | 0.078 NS | −0.155 *** | 0.105 *** | −0.088 ** | 0.007 *** | −0.092 *** | −0.003 | |
JP_W (34) | Na | 8 | 7 | 19 | 5 | 9 | 4 | 5 | 6 | 10 | 8.1 |
Ne | 2.532 | 3.066 | 10.557 | 2.388 | 4.429 | 2.183 | 3.256 | 4.587 | 5.928 | 4.325 | |
Ho | 0.618 | 0.765 | 0.882 | 0.588 | 0.500 | 0.147 | 0.735 | 0.706 | 0.912 | 0.650 | |
He | 0.605 | 0.674 | 0.905 | 0.581 | 0.774 | 0.542 | 0.693 | 0.782 | 0.831 | 0.710 | |
FIS | −0.021 NS | −0.135 NS | 0.025 NS | −0.012 NS | 0.354 *** | 0.729 *** | −0.061 NS | 0.097 ** | −0.097 NS | 0.098 |
KS_C1 | KS_C2 | KS_C3 | PR_C1 | PR_C2 | KM_C | MT_C | XM_C | QD_C | ML_W1 | ML_W2 | ML_W3 | YL_W | PH_W | TN_W | TP_W | KM_W | CY_W | JP_W | |
KS_C1 | - | 0 * | 0 * | 0.025 | 0.036 | 0 * | 0 * | 0 * | 0 * | 0.465 | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * |
KS_C2 | 0.023 | - | 0 * | 0 * | 0 * | 0 * | 0 * | 0.001 | 0 * | 0 * | 0 * | 0 * | 0.168 | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * |
KS_C3 | 0.018 | 0.023 | - | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * |
PR_C1 | 0.005 | 0.025 | 0.027 | - | 0.065 | 0 * | 0.003 | 0 * | 0.001 | 0.044 | 0 * | 0 * | 0 * | 0 * | 0.001 | 0 * | 0 * | 0 * | 0.001 |
PR_C2 | 0.005 | 0.028 | 0.024 | 0.006 | - | 0 * | 0 * | 0 * | 0.040 | 0.061 | 0 * | 0 * | 0 * | 0.001 | 0 * | 0 * | 0 * | 0 * | 0 * |
KM_C | 0.024 | 0.028 | 0.037 | 0.019 | 0.023 | - | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * |
MT_C | 0.012 | 0.029 | 0.031 | 0.015 | 0.026 | 0.029 | - | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * |
XM_C | 0.024 | 0.012 | 0.034 | 0.028 | 0.031 | 0.030 | 0.028 | - | 0 * | 0 * | 0 * | 0 * | 0.022 | 0 * | 0 * | 0.001 | 0 * | 0 * | 0 * |
QD_C | 0.022 | 0.045 | 0.037 | 0.022 | 0.012 | 0.043 | 0.047 | 0.052 | - | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * |
ML_W1 | 0.000 | 0.026 | 0.012 | 0.005 | 0.005 | 0.024 | 0.021 | 0.031 | 0.022 | - | 0 * | 0 * | 0 * | 0.001 | 0 * | 0 * | 0 * | 0 * | 0 * |
ML_W2 | 0.023 | 0.031 | 0.017 | 0.022 | 0.025 | 0.023 | 0.027 | 0.032 | 0.049 | 0.018 | - | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * |
ML_W3 | 0.015 | 0.023 | 0.024 | 0.012 | 0.016 | 0.019 | 0.019 | 0.022 | 0.041 | 0.013 | 0.007 | - | 0 * | 0 * | 0 * | 0 * | 0.001 | 0 * | 0 * |
YL_W | 0.013 | 0.003 | 0.015 | 0.016 | 0.022 | 0.027 | 0.019 | 0.008 | 0.037 | 0.016 | 0.017 | 0.014 | - | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * |
PH_W | 0.010 | 0.029 | 0.026 | 0.019 | 0.014 | 0.039 | 0.033 | 0.031 | 0.029 | 0.010 | 0.034 | 0.023 | 0.017 | - | 0.040 | 0 * | 0 * | 0 * | 0 * |
TN_W | 0.011 | 0.016 | 0.025 | 0.012 | 0.014 | 0.024 | 0.029 | 0.016 | 0.029 | 0.012 | 0.026 | 0.013 | 0.014 | 0.006 | - | 0.001 | 0 * | 0 * | 0 * |
TP_W | 0.017 | 0.023 | 0.019 | 0.019 | 0.020 | 0.027 | 0.021 | 0.012 | 0.048 | 0.020 | 0.022 | 0.012 | 0.017 | 0.024 | 0.011 | - | 0 * | 0 * | 0 * |
KM_W | 0.019 | 0.021 | 0.022 | 0.015 | 0.022 | 0.014 | 0.023 | 0.019 | 0.047 | 0.015 | 0.007 | 0.005 | 0.014 | 0.032 | 0.020 | 0.014 | - | 0 * | 0 * |
CY_W | 0.011 | 0.029 | 0.029 | 0.017 | 0.015 | 0.031 | 0.024 | 0.025 | 0.046 | 0.017 | 0.028 | 0.016 | 0.024 | 0.029 | 0.020 | 0.010 | 0.019 | - | 0 * |
JP_W | 0.022 | 0.051 | 0.052 | 0.018 | 0.032 | 0.054 | 0.032 | 0.056 | 0.042 | 0.020 | 0.049 | 0.035 | 0.040 | 0.034 | 0.042 | 0.051 | 0.041 | 0.041 | - |
Source | Df | Sum of Squares | Mean Squares | Variance | % Total |
---|---|---|---|---|---|
19 populations (All) | |||||
Among sampling localities | 18 | 224.668 | 12.482 | 0.071 | 2.17 |
Among individuals | 1212 | 4139.426 | 3.415 | 0.189 | 5.74 |
Within individuals | 1231 | 3738.000 | 3.037 | 3.037 | 92.09 |
Total | 2461 | 8102.094 | 3.297 | 100 | |
Average FST value = 0.022 (p = 0 < 0.001); Nm = 11.291 | |||||
17 populations (All without JP_W, QD_C) | |||||
Among sampling localities | 16 | 190.135 | 11.883 | 0.063 | 1.90 |
Among individuals | 1158 | 3946.553 | 3.408 | 0.184 | 5.59 |
Within individuals | 1175 | 3573.000 | 3.041 | 3.041 | 92.51 |
Total | 2349 | 7709.689 | 3.287 | 100 | |
Average FST value = 0.019 (p = 0 < 0.001); Nm = 12.882 | |||||
9 populations (TW wild) | |||||
Among sampling localities | 8 | 91.506 | 11.438 | 0.051 | 1.55 |
Among individuals | 730 | 2508.436 | 3.436 | 0.210 | 6.42 |
Within individuals | 739 | 2228.500 | 3.016 | 3.016 | 92.04 |
Total | 1477 | 4828.442 | 3.277 | 100 | |
Average FST value = 0.015 (p = 0 < 0.001), Nm = 15.929 | |||||
8 populations (TW cultured) | |||||
Among sampling localities | 7 | 78.304 | 11.186 | 0.074 | 2.24 |
Among individuals | 428 | 1438.117 | 3.360 | 0.138 | 4.19 |
Within individuals | 436 | 1344.500 | 3.084 | 3.084 | 93.56 |
Total | 871 | 2860.921 | 3.296 | 100 | |
Average FST value = 0.022 (p = 0 < 0.001), Nm = 10.895 |
Region Groupings | ΦCT | p | % Variance among Groups | |
---|---|---|---|---|
19 pops (All) | ||||
K = 2 | (18pops); (JP_W) | 0.021 | 0.051 | 2.05 |
K = 3 | (17pops); (JP_W); (QD_C) | 0.021 | 0.009 | 2.09 |
K = 4 | (16pops); (JP_W); (QD_C); (PH_W) | 0.015 | 0.003 | 1.47 |
17 pops (no JP_W, QD_C) | ||||
K = 14 | (PH_W; TN_W); (PR_C1; PR_C2); (ML_W2; ML_W3); etc… | 0.012 | 0.001 | 1.24 |
K = 15 | (PH_W; TN_W); (KS_C2; YL_W); etc… | 0.015 | 0.001 | 1.47 |
K = 16 | (PH_W; TN_W); etc… | 0.013 | 0.044 | 1.33 |
9 pops (TW wild) | ||||
K = 5 | (ML_W2; ML_W3; KM_W); (PH_W; TN_W); (TP_W; CY_W); (ML_W1); (YL_W) | 0.011 | 0.001 | 1.15 |
K = 6 | (ML_W2; ML_W3; KM_W); (PH_W; TN_W); (TP_W); (CY_W); (ML_W1); (YL_W) | 0.012 | 0 | 1.20 |
K = 7 | (ML_W2; ML_W3; KM_W); (PH_W); (TN_W); (TP_W); (CY_W); (ML_W1); (YL_W) | 0.012 | 0.011 | 1.17 |
8 pops (TW cultured) | ||||
K = 4 | (KS_C; PR_C1; PR_C2; MT_C); (KS_C2; XM_C); (KS_C3); (KM_C) | 0.016 | 0 | 1.64 |
K = 6 | (KS_C); (PR_C1; PR_C2); (MT_C); (KS_C2; XM_C); (KS_C3); (KM_C) | 0.014 | 0.015 | 1.44 |
K = 7 | (KS_C); (PR_C1; PR_C2); (MT_C); (KS_C2); (XM_C); (KS_C3); (KM_C) | 0.017 | 0.017 | 1.65 |
Level | Confidence | Critical LOD | Assignments | Assignments | ||
---|---|---|---|---|---|---|
Observed | % | Expected | % | |||
Strict | 95 | 5.01 | 12 | 3 | 22 | 6 |
Relaxed | 80 | 2.50 | 49 | 13 | 34 | 9 |
Unassigned | - | - | 335 | 87 | 350 | 91 |
Total | - | - | 384 | 100 | 384 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, T.-H.; Lee, H.-T.; Lu, H.-J.; Liao, C.-H.; Gong, H.-Y.; Huang, C.-W. Maintenance of Genetic Diversity of Black Sea Bream despite Unmonitored and Large-Scale Hatchery Releases. Biology 2022, 11, 554. https://doi.org/10.3390/biology11040554
Hsu T-H, Lee H-T, Lu H-J, Liao C-H, Gong H-Y, Huang C-W. Maintenance of Genetic Diversity of Black Sea Bream despite Unmonitored and Large-Scale Hatchery Releases. Biology. 2022; 11(4):554. https://doi.org/10.3390/biology11040554
Chicago/Turabian StyleHsu, Te-Hua, Hung-Tai Lee, Hsueh-Jung Lu, Cheng-Hsin Liao, Hong-Yi Gong, and Chang-Wen Huang. 2022. "Maintenance of Genetic Diversity of Black Sea Bream despite Unmonitored and Large-Scale Hatchery Releases" Biology 11, no. 4: 554. https://doi.org/10.3390/biology11040554
APA StyleHsu, T. -H., Lee, H. -T., Lu, H. -J., Liao, C. -H., Gong, H. -Y., & Huang, C. -W. (2022). Maintenance of Genetic Diversity of Black Sea Bream despite Unmonitored and Large-Scale Hatchery Releases. Biology, 11(4), 554. https://doi.org/10.3390/biology11040554