Long-Term Outcomes of Dose-Escalated Hypofractionated Radiotherapy in Localized Prostate Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Radiotherapy
2.3. Clinical and Toxicity Assessment Follow-Up
2.4. Quality of Life
2.5. Statistical Analysis
3. Results
3.1. Clinical Outcomes
3.2. Toxicity
3.3. Patient-Reported Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolla, M.; Gonzalez, D.; Warde, P.; Dubois, J.B.; Mirimanoff, R.O.; Storme, G.; Bernier, J.; Kuten, A.; Sternberg, C.; Gil, T.; et al. Improved survival in patients with locally advanced prostate cancer treated with radiotherapy and goserelin. N. Engl. J. Med. 1997, 360, 103–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zelefsky, M.J.; Kollmeier, M.; Cox, B.; Fidaleo, A.; Sperling, D.; Pei, X.; Carver, B.; Coleman, J.; Lovelock, M.; Hunt, M. Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Kupelian, P.A.; Langen, K.M.; Zeidan, O.A.; Meeks, S.L.; Willoughby, T.R.; Wagner, T.H.; Jeswani, S.; Ruchala, K.J.; Haimerl, J.; Olivera, G.H. Daily variations in delivered doses in patients treated with radiotherapy for localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, 876–882. [Google Scholar] [CrossRef]
- Heemsbergen, W.D.; Al-Mamgani, A.; Slot, A.; Dielwart, M.F.H.; Lebesque, J.V. Long-term results of the Dutch randomized prostate cancer trial: Impact of dose-escalation on local, biochemical, clinical failure, and survival. Radiother. Oncol. 2014, 110, 104–109. [Google Scholar] [CrossRef]
- Hou, Z.; Li, G.; Bai, S. High dose versus conventional dose in external beam radiotherapy of prostate cancer: A meta-analysis of long-term follow-up. J. Cancer Res. Clin. Oncol. 2015, 141, 1063–1107. [Google Scholar] [CrossRef]
- Michalski, J.M.; Moughan, J.; Purdy, J.; Bosch, W.; Bruner, D.W.; Bahary, J.P.; Lau, H.; Duclos, M.; Parliament, M.; Morton, G.; et al. Effect of standard vs. dose-escalated radiation therapy for patients with intermediate-risk prostate cancer the nrg oncology RTOG 0126 randomized clinical trial. JAMA Oncol. 2018, 4, e180039. [Google Scholar] [CrossRef]
- Pasalic, D.; Kuban, D.A.; Allen, P.K.; Tang, C.; Mesko, S.M.; Grant, S.R.; Augustyn, A.A.; Frank, S.J.; Choi, S.; Hoffman, K.E.; et al. Dose Escalation for Prostate Adenocarcinoma: A Long-Term Update on the Outcomes of a Phase 3, Single Institution Randomized Clinical Trial. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 790–797. [Google Scholar] [CrossRef]
- Beckendorf, V.; Guerif, S.; Le Prisé, E.; Cosset, J.M.; Bougnoux, A.; Chauvet, B.; Salem, N.; Chapet, O.; Bourdain, S.; Bachaud, J.M.; et al. 70 Gy versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 1056–1063. [Google Scholar] [CrossRef]
- Ren, W.; Sun, C.; Lu, N.; Xu, Y.; Han, F.; Liu, Y.P.; Dai, J. Dosimetric comparison of intensity-modulated radiotherapy and volumetric-modulated are radiotherapy in patients with prostate cancer: A meta-analysis. J. Appl. Clin. Med. Phys. 2016, 17, 254–262. [Google Scholar] [CrossRef]
- Thera, R.; Carr, D.T.; Groot, D.G.; Baba, N.; Jana, D.K. Understanding Medical Decision-making in Prostate Cancer Care. Am. J. Mens Health 2018, 12, 1635–1647. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.J.; Hall, E.J. Fractionation and protraction for radiotherapy of prostate carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 1999, 43, 1095–1101. [Google Scholar] [CrossRef]
- Miralbell, R.; Roberts, S.A.; Zubizarreta, E.; Hendry, J.H. Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: α/β = 1.4 (0.9-2.2) Gy. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 17–24. [Google Scholar] [CrossRef]
- Brenner, D.J.; Martinez, A.A.; Edmundson, G.K.; Mitchell, C.; Thames, H.D.; Armour, E.P. Direct evidence that prostate tumors show high sensitivity to fractionation (low α/β ratio), similar to late-responding normal tissue. Int. J. Radiat. Oncol. Biol. Phys. 2002, 52, 6–13. [Google Scholar] [CrossRef]
- Fowler, J.F.; Ritter, M.A.; Chappell, R.J.; Brenner, D.J. What hypofractionated protocols should be tested for prostate cancer? Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 1093–1104. [Google Scholar] [CrossRef]
- Kupelian, P.A.; Reddy, C.A.; Carlson, T.P.; Altsman, K.A.; Willoughby, T.R. Preliminary observations on biochemical relapse-free survival rates after short-course intensity-modulated radiotherapy (70 Gy at 2.5 Gy/fraction) for localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2002, 53, 904–912. [Google Scholar] [CrossRef]
- Lukka, H.; Hayter, C.; Julian, J.A.; Warde, P.; Morris, W.J.; Gospodarowicz, M.; Levine, M.; Sathya, J.; Choo, R.; Prichard, H.; et al. Randomized trial comparing two fractionation schedules for patients with localized prostate cancer. J. Clin. Oncol. 2005, 23, 6132–6138. [Google Scholar] [CrossRef]
- Yeoh, E.E.; Holloway, R.H.; Fraser, R.J.; Botten, R.J.; Di Matteo, A.C.; Butters, J.; Weerasinghe, S.; Prasad Abeysinghe, P. Hypofractionated versus conventionally fractionated radiation therapy for prostate carcinoma: Updated results of a phase III randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, 1072–1083. [Google Scholar] [CrossRef]
- Dearnaley, D.; Syndikus, I.; Mossop, H.; Khoo, V.; Birtle, A.; Bloomfield, D.; Graham, J.; Kirkbride, P.; Logue, J.; Malik, Z.; et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2016, 17, 1047–1060. [Google Scholar] [CrossRef] [Green Version]
- Catton, C.N.; Lukka, H.; Gu, C.S.; Martin, J.M.; Supiot, S.; Chung, P.W.M.; Bauman, G.S.; Bahary, J.P.; Ahmed, S.; Cheung, P.; et al. Randomized trial of a hypofractionated radiation regimen for the treatment of localized prostate cancer. J. Clin. Oncol. 2017, 35, 1884–1890. [Google Scholar] [CrossRef]
- Lee, W.R.; Dignam, J.J.; Amin, M.B.; Bruner, D.W.; Low, D.; Swanson, G.P.; Shah, A.B.; D’Souza, D.P.; Michalski, J.M.; Dayes, I.S.; et al. Randomized phase III noninferiority study comparing two radiotherapy fractionation schedules in patients with low-risk prostate cancer. J. Clin. Oncol. 2016, 34, 2325–2332. [Google Scholar] [CrossRef]
- Aluwini, S.; Pos, F.; Schimmel, E.; Krol, S.; van der Toorn, P.P.; de Jager, H.; Alemayehu, W.G.; Heemsbergen, W.; Heijmen, B.; Incrocci, L. Hypofractionated versus conventionally fractionated radiotherapy for patients with prostate cancer (HYPRO): Late toxicity results from a randomised, non-inferiority, phase 3 trial. Lancet Oncol. 2016, 17, 464–474. [Google Scholar] [CrossRef]
- Pollack, A.; Walker, G.; Horwitz, E.M.; Price, R.; Feigenberg, S.; Konski, A.A.; Stoyanova, R.; Movsas, B.; Greenberg, R.E.; Uzzo, R.G.; et al. Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J. Clin. Oncol. 2013, 31, 3860–3868. [Google Scholar] [CrossRef] [PubMed]
- Arcangeli, G.; Saracino, B.; Arcangeli, S.; Gomellini, S.; Petrongari, M.G.; Sanguineti, G.; Strigari, L. Moderate hypofractionation in high-risk, organ-confined prostate cancer: Final results of a phase III randomized trial. J. Clin. Oncol. 2017, 35, 1891–1897. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, K.E.; Voong, K.R.; Levy, L.B.; Allen, P.K.; Choi, S.; Schlembach, P.J.; Lee, A.K.; McGuire, S.E.; Nguyen, Q.; Pugh, T.J.; et al. Randomized Trial of Hypofractionated, Dose-Escalated, Intensity-Modulated Radiation Therapy (IMRT) versus conventionally fractionated IMRT for localized prostate cancer. J. Clin. Oncol. 2018, 36, 2943–2949. [Google Scholar] [CrossRef] [PubMed]
- Partin, A.W.; Mangold, L.A.; Lamm, D.M.; Walsh, P.C.; Epstein, J.I.; Pearson, J.D. Contemporary update of prostate cancer staging nomograms (Partin Tables) for the new millennium. Urology 2001, 58, 843–848. [Google Scholar] [CrossRef]
- D’Amico, A.V.; Cote, K.; Loffredo, M.; Renshaw, A.A.; Schultz, D. Determinants of prostate cancer-specific survival after radiation therapy for patients with clinically localized prostate cancer. J. Clin. Oncol. 2002, 20, 4567–4573. [Google Scholar] [CrossRef] [PubMed]
- Edge, S.B.; Compton, C.C. The american joint committee on cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Ann. Sur. Oncol. 2010, 7, 1471–1474. [Google Scholar] [CrossRef]
- Alibhai, S.M.H.; Leach, M.; Tomlinson, G.A.; Krahn, M.D.; Fleshner, N.E.; Naglie, G. Is there an optimal comorbidity index for prostate cancer? Cancer 2008, 112, 1043–1050. [Google Scholar] [CrossRef]
- Kestin, L.L.; Goldstein, N.S.; Vicini, F.A.; Yan, D.; Korman, H.J.; Martinez, A.A. Treatment of prostate cancer with radiotherapy: Should the entire seminal vesicles be included in the clinical target volume? Int. J. Radiat. Oncol. Biol. Phys. 2002, 54, 686–697. [Google Scholar] [CrossRef]
- Roach, M.; Hanks, G.; Thames, H.; Schellhammer, P.; Shipley, W.U.; Sokol, G.H.; Sandler, H. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: Recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.D.; Stetz, J.A.; Pajak, T.F. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European organization for research and treatment of cancer (EORTC). Int. J. Radiat. Oncol. Biol. Phys. 1995, 31, 1341–1346. [Google Scholar] [CrossRef]
- Ferrer, M.; Garin, O.; Pera, J.; Prats, J.M.; Mendivil, J.; Alonso, J.; De Paula, B.; Herruzo, I.; Hervas, A.; Mariño, A.; et al. Evaluation of the quality of life of patients with localizad prostate cancer: Validation of the Spanish version of the EPIC. Med. Clin. 2009, 132, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Incrocci, L.; Wortel, R.C.; Alemayehu, W.G.; Aluwini, S.; Schimmel, E.; Krol, S.; van der Toorn, P.P.; de Jager, H.; Heemsbergen, W.; Heijmen, B.; et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): Final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2016, 17, 1061–1069. [Google Scholar] [CrossRef]
- De Vries, K.C.; Wortel, R.C.; Oomen-de Hoop, E.; Heemsbergen, W.D.; Pos, F.J.; Incrocci, L. Hyprofractionated Versus Conventionally Fractionated Radiation Therapy for Patients with Intermediate- or High-Risk, Localized, Prostate Cancer: 7-Year Outcomes from the Randomized, Multicenter, Open-Label, Phase 3 HYPRO Trial. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Avkshtol, V.; Ruth, K.J.; Ross, E.A.; Hallman, M.A.; Greenberg, R.E.; Price, R.A.; Leachman, B.; Uzzo, R.G.; Ma, C.; Chen, D.; et al. Ten-Year Update of a Randomized, Prospective Trial of Conventional Fractionated Versus Moderate Hypofractionated Radiation Therapy for Localized Prostate. Cancer J. Clin. Oncol. 2020, 38, 1676–1684. [Google Scholar] [CrossRef] [PubMed]
- Arrayeh, E.; Westphalen, A.C.; Kurhanewicz, J.; Roach, M.; Jung, A.J.; Carroll, P.R.; Coakley, F.V. Does local recurrence of prostate cancer after radiation therapy occur at the site of primary tumor? Results of a longitudinal MRI and MRSI study. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Jalloh, M.; Leapman, M.S.; Cowan, J.E.; Shinohara, K.; Greene, K.L.; Roach, M.; Chang, A.J.; Chan, J.M.; Simko, J.P.; Carroll, P.R. Patterns of local failure following radiation therapy for prostate cancer. J. Urol. 2015, 194, 977–982. [Google Scholar] [CrossRef]
- Ferella, L.; Limoncin, E.; Vittorini, F.; Chalaszczyk, A.; Sorce, C.; Grimaldi, G.; Franzese, P.; Ruggieri, V.; Varrassi, E.; Di Staso, M.; et al. Are we ready for a paradigm shift from high-dose conventional to moderate hypofractionated radiotherapy in intermediate-high risk prostate cancer? A systematic review of randomized controlled trials with trial sequential analysis. Crit. Rev. Oncol. Hematol. 2019, 139, 75–82. [Google Scholar] [CrossRef]
- Carvalho, I.T.; Baccaglini, W.; Claros, O.R.; Chen, F.K.; Kayano, P.P.; Lemos, G.C.; Weltman, E.; Kuban, D.A.; Carneiro, A. Genitourinary and gastrointestinal toxicity among patients with localized prostate cancer treated with conventional versus moderately hypofractionated radiation therapy: Systematic review and meta-analysis. Acta Oncol. 2018, 57, 1003–1010. [Google Scholar] [CrossRef]
- Vogelius, I.R.; Bentzen, S.M. Dose Response and Fractionation Sensitivity of Prostate Cancer After External Beam Radiation Therapy: A Meta-analysis of Randomized Trials. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 858–865. [Google Scholar] [CrossRef] [PubMed]
- Hall, W.A.; Colbert, L.; Nickleach, D.; Shelton, J.; Marcus, D.M.; Switchenko, J.; Peter, J.; Rossi, P.J.; Godette, K.; Cooper, S.; et al. Reduced acute toxicity associated with the use of volumetric modulated arc therapy for the treatment of adenocarcinoma of the prostate. Pract. Radiat. Oncol. 2013, 3, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Myrehaug, S.; Chan, G.; Craig, T.; Weinberg, V.; Cheng, C.; Roach, M.; Cheung, P.; Sahgal, A. A treatment planning and acute toxicity comparison of two pelvic nodal volume delineation techniques and delivery comparison of intensity-modulated radiotherapy versus volumetric modulated arc therapy for hypofractionated high-risk prostate cancer radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 657–662. [Google Scholar] [CrossRef]
- Patel, N.; Faria, S.; Cury, F.; David, M.; Duclos, M.; Shenouda, G.; Ruo, R.; Souhami, L. Hypofractionated radiation therapy (66 gy in 22 fractions at 3 Gy per fraction) for favorable-risk prostate cancer: Long-term outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 534–539. [Google Scholar] [CrossRef]
- Lieng, H.; Pintilie, M.; Bayley, A.; Berlin, A.; Bristow, R.; Chung, P.; Gospodarowicz, M.; Huang, R.; Ménard, C.; Warde, P.; et al. Long-term outcomes of a phase II trial of moderate hypofractionated image-guided intensity modulated radiotherapy (IG-IMRT) for localized prostate cancer. Radiother. Oncol. 2017, 122, 93–98. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Motegi, A.; Akimoto, T.; Mitsuhashi, N.; Iizuka, J.; Tanabe, K.; Ishii, Y.; Kono, S.; Izumi, S.; Karasawa, K. The 5-year outcomes of moderately hypofractionated radiotherapy (66 Gy in 22 fractions, 3 fractions per week) for localized prostate cancer: A retrospective study. Int. J. Clin. Oncol. 2018, 23, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Bruner, D.W.; Pugh, S.L.; Lee, W.R.; Hall, W.A.; Dignam, J.J.; Low, D.; Swanson, G.P.; Shah, A.B.; Malone, S.; Michalski, J.M.; et al. Quality of Life in Patients with Low-Risk Prostate Cancer Treated with Hypofractionated vs Conventional Radiotherapy: A Phase 3 Randomized Clinical Trial. JAMA Oncol. 2019, 5, 664–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaikh, T.; Li, T.; Handorf, E.A.; Johnson, M.E.; Wang, L.S.; Hallman, M.A.; Greenberg, R.E.; Price, R.A.; Uzzo, R.G.; Ma, C.; et al. Long-Term Patient-Reported Outcomes from a Phase 3 Randomized Prospective Trial of Conventional Versus Hypofractionated Radiation Therapy for Localized Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 722–731. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, K.E.; Skinner, H.; Pugh, T.J.; Voong, K.R.; Levy, L.B.; Choi, S.; Frank, S.J.; Lee, A.K.; Mahmood, U.; McGuire, S.E.; et al. Patient-reported Urinary, Bowel, and Sexual Function After Hypofractionated Intensity-modulated Radiation Therapy for Prostate Cancer. Am. J. Clin. Oncol. Cancer 2018, 41, 558–567. [Google Scholar] [CrossRef]
- Nossiter, J.; Sujenthiran, A.; Cowling, T.E.; Parry, M.G.; Charman, S.C.; Cathcart, P.; Clarke, N.W.; Payne, H.; van der Meulen, J.; Aggarwal, A. Patient-reported functional outcomes after hypofractionated or conventionally fractionated radiation for prostate cancer: A national cohort study in England. J. Clin. Oncol. 2020, 38, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Wortel, R.C.; Oomen-de Hoop, E.; Heemsbergen, W.D.; Pos, F.J.; Incrocci, L. Moderate Hypofractionation in Intermediate- and High-Risk, Localized Prostate Cancer: Health-Related Quality of Life from the Randomized, Phase 3 HYPRO Trial. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Raziee, H.; Moraes, F.Y.; Murgic, J.; Chua, M.L.K.; Pintilie, M.; Chung, P.; Ménard, C.; Bayley, A.; Gospodarowicz, M.; Warde, P.; et al. Improved outcomes with dose escalation in localized prostate cancer treated with precision image-guided radiotherapy. Radiother Oncol. 2017, 123, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Fransson, P.; Nilsson, P.; Gunnlaugsson, A.; Beckman, L.; Tavelin, B.; Norman, D.; Thellenberg-Karlsson, C.; Hoyer, M.; Lagerlund, M.; Kindblom, J.; et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer (HYPO-RT-PC): Patient-reported quality-of-life outcomes of a randomised, controlled, non-inferiority, phase 3 trial. Lancet Oncol. 2021, 22, 235–245. [Google Scholar] [CrossRef]
- Brand, D.H.; Tree, A.C.; Ostler, P.; van der Voet, H.; Loblaw, A.; Chu, W.; Ford, D.; Tolan, S.; Jain, S.; Martin, A.; et al. Intensity-modulated fractionated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): Acute toxicity findings from an international, randomised, open-label, phase 3, non-inferiority trial. Lancet Oncol. 2019, 20, 1531–1543. [Google Scholar] [CrossRef]
- Vanneste, B.G.L.; Hoffmann, A.L.; van Lin, E.N.; Van De Voorde, L.; Pinkawa, M.; Lambin, P. Who will benefit most from hydrogel rectum spacer implantation in prostate cancer radiotherapy? A model-based approach for patient selection. Radiother. Oncol. 2016, 121, 118–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Median (Range) | Percentage of Patients (%) |
---|---|---|
Follow-up (months) | 75 (15–118) * | |
Age (years) | 70 (54–82) | |
T stage | ||
T1c | 54.1 | |
T2a–c | 45.08 | |
T3a | 0.82 | |
ADT | 41.8 | |
Gleason score | ||
<7 | 64.7 | |
=7 | 31.15 | |
>7 | 4.15 | |
Risk group | ||
Low | 40.2 | |
Intermediate | 47.5 | |
High | 12.3 | |
Charlson CI | 3.16 (1.16) |
Predictors | OR | CI95 LB | CI95 UB | Z |
---|---|---|---|---|
Age | 0.78 | 0.27 | 2.26 | −0.45 |
Stage T (ref.: stage T1) a | 0.92 | 0.13 | 6.67 | −0.08 |
PSA | 28.83 | 4.20 | 198.03 | 3.42 * |
Gleason score b | 0.56 | 0.15 | 2.12 | −0.85 |
Risk group (ref.: low) | ||||
Intermediate | 6.21 | 0.52 | 74.42 | 1.44 |
High | 112.84 | 4.71 | 2702.91 | 2.92 * |
Charlson CI | 0.49 | 0.17 | 1.39 | 1.35 |
Toxicity | Low Risk (%) | Intermediate Risk (%) | High Risk (%) |
---|---|---|---|
Acute GU | |||
Grade 0 | 30.61 | 24.14 | 46.15 |
Grade 1 | 44.9 | 39.66 | 38.46 |
Grade 2 | 24.49 | 36.21 | 15.38 |
Acute GI | |||
Grade 0 | 69.39 | 63.79 | 76.92 |
Grade 1 | 30.61 | 18.97 | 7.69 |
Grade 2 | 0 | 17.24 | 15.38 |
Late GU | |||
Grade 0 | 81.63 | 72.42 | 92.31 |
Grade 1 | 12.24 | 24.14 | 7.69 |
Grade 2 | 6.12 | 1.72 | 0 |
Grade 3 | 0 | 1.72 | 0 |
Late GI | |||
Grade 0 | 89.8 | 91.38 | 100 |
Grade 1 | 10.2 | 5.17 | 0 |
Grade 2 | 0 | 3.45 | 0 |
EPIC Domain | Mean (SD) |
---|---|
Incontinence * | |
2 years | 90.40 (19.69) |
5 years | 85.07 (26.58) |
Irritative urinary symptoms | |
2 years | 92.75 (11.66) |
5 years | 94.18 (10.73) |
Bowel symptoms | |
2 years | 97.38 (6.80) |
5 years | 96.19 (9.74) |
OR | CI95 LB | CI95 UB | t | |
---|---|---|---|---|
Age | 1.00 | 0.96 | 1.03 | −0.20 |
Clinical T stage (ref.: T1) | 0.95 | 0.89 | 0.99 | −1.42 |
PSA | 1.02 | 0.99 | 1.06 | 1.51 |
Gleason score (ref.: <7) | 1.02 | 0.95 | 1.10 | 0.63 |
Charlson CoI | 0.99 | 0.96 | 1.03 | −0.49 |
Biochemical failure (ref.: no) | 0.87 | 0.77 | 0.99 | −2.16 * |
Late toxicity (ref.: grade 0) | 0.87 | 0.81 | 0.94 | −3.75 ** |
Risk group (ref.: low) | ||||
Intermediate | 0.95 | 0.88 | 1.03 | −1.29 |
High | 0.96 | 0.85 | 1.08 | −0.73 |
OR | CI95 LB | CI95 UB | t | |
Age | 1.00 | 0.96 | 1.03 | −0.20 |
Clinical T stage (ref.: T1) | 0.95 | 0.89 | 0.99 | −1.42 |
PSA | 1.02 | 0.99 | 1.06 | 1.51 |
Gleason score (ref.: <7) | 1.02 | 0.95 | 1.10 | 0.63 |
Charlson CoI | 0.99 | 0.96 | 1.03 | −0.49 |
Biochemical failure (ref.: no) | 0.87 | 0.77 | 0.99 | −2.16 * |
Late toxicity (ref.: grade 0) | 0.87 | 0.81 | 0.94 | −3.75 ** |
Risk group (ref.: low) | ||||
Intermediate | 0.95 | 0.88 | 1.03 | −1.29 |
High | 0.96 | 0.85 | 1.08 | −0.73 |
Author [Ref] (Study) | Study Design | Year | N | RT Technique | HFRT Scheme | EQD21.5/EQD23 | Biochemical Control | Late Toxicity GU ≥ G2 | Late Toxicity GI ≥ G2 |
---|---|---|---|---|---|---|---|---|---|
Dearnaley et al. [19] (CHHiP) | Non-inferiority | 2016 | 3216 | IMRT | 60 Gy/3 Gy | 77 Gy/74 Gy | 90.6% (5-years) | 9.1% | 13.7% |
Catton et al. [20] (PROFIT) | Non-inferiority | 2017 | 1206 | IMRT | 60 Gy/3 Gy | 77 Gy/74 Gy | 85% (5-years) | 22% | 8.9% |
Lee et al. [21] (RTOG 0415) | Non-inferiority | 2016 | 1105 | 3DCRT/IMRT | 70 Gy/2.5 Gy | 80 Gy/77 Gy | 86.35 (5-years) | 29.7% | 22.4% |
Aluwini et al. [22] Incrocci et al. [34] De Vries et al. [35] (HYPRO) | Superiority | 2016 | 820 | IMRT | 64,6 Gy/3.4 Gy | 90.4 Gy/82.7 Gy | 80.5% (5-years) | 41.3% | 21.9% |
Arcangeli et al. [24] | Superiority | 2017 | 168 | 3DCRT | 62 Gy/3.1 Gy | 81 Gy/75 Gy | 72% (10-years) | 11% | 14% |
Hoffman et al. [25] (MDACC) | Superiority | 2018 | 206 | IMRT | 72 Gy/2.4 Gy | 80.2 Gy/77.7 Gy | 89.3% (10 years) | 15% | 12% |
Pollack et al. [23] Avkshtol et al. [36] (Fox Chase) | Superiority | 2013 2020 | 303 | IMRT | 70.2 Gy/2.7 Gy | 84.4 Gy/80 Gy | 69.4% (10-years) | 15.3% | 18.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazo, A.; de la Torre-Luque, A.; Arregui, G.; Rivas, D.; Serradilla, A.; Gómez, J.; Jurado, F.; Núñez, M.I.; López, E. Long-Term Outcomes of Dose-Escalated Hypofractionated Radiotherapy in Localized Prostate Cancer. Biology 2022, 11, 435. https://doi.org/10.3390/biology11030435
Lazo A, de la Torre-Luque A, Arregui G, Rivas D, Serradilla A, Gómez J, Jurado F, Núñez MI, López E. Long-Term Outcomes of Dose-Escalated Hypofractionated Radiotherapy in Localized Prostate Cancer. Biology. 2022; 11(3):435. https://doi.org/10.3390/biology11030435
Chicago/Turabian StyleLazo, Antonio, Alejandro de la Torre-Luque, Gregorio Arregui, Daniel Rivas, Ana Serradilla, Joaquin Gómez, Francisca Jurado, María Isabel Núñez, and Escarlata López. 2022. "Long-Term Outcomes of Dose-Escalated Hypofractionated Radiotherapy in Localized Prostate Cancer" Biology 11, no. 3: 435. https://doi.org/10.3390/biology11030435
APA StyleLazo, A., de la Torre-Luque, A., Arregui, G., Rivas, D., Serradilla, A., Gómez, J., Jurado, F., Núñez, M. I., & López, E. (2022). Long-Term Outcomes of Dose-Escalated Hypofractionated Radiotherapy in Localized Prostate Cancer. Biology, 11(3), 435. https://doi.org/10.3390/biology11030435