Control of Cholesterol Metabolism Using a Systems Approach
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Research Context
1.2. Biological Background
1.2.1. Cholesterol de Novo Synthesis
Endogenous Cholesterol Synthesis
HMGR Activity Regulation
1.2.2. The Interactions between Enterohepatic Cholesterol and Bile Metabolism
1.2.3. The Role of Cholesterol in Aterosclerotic Plaque Formation
2. Methods
2.1. Petri Nets
2.1.1. t-Invariants
2.1.2. MCT Sets
2.1.3. Knockout Analysis
3. Results and Discussion
3.1. The Model Presentation and the Results of Its Formal Analysis
3.2. The Knockout Analysis Based on t-Invariants
3.3. The Knockout Analysis Based on Simulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klipp, E.; Liebermeister, W.; Wierling, C.; Kowald, A.; Lehrach, H.; Herwig, R. Systems Biology: A Textbook; Wiley-VCH: Weinheim, Germany, 2009. [Google Scholar]
- Koch, I.; Reisig, W.; Schreiber, F. (Eds.) Modeling in Systems Biology. The Petri Net Approach; Springer: London, UK, 2011. [Google Scholar]
- David, R.; Alla, H. Discrete, Continuous and Hybrid Petri Nets; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Vodovotz, Y. Computational modelling of the inflammatory response in trauma, sepsis and wound healing: Implications for modelling resilience. Interface Focus 2014, 4, 20140004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parton, A.; McGilligan, V.; O’Kane, M.; Baldrick, F.; Watterson, S. Computational modelling of atherosclerosis. Briefings Bioinform. 2015, 17, 562–575. [Google Scholar] [CrossRef] [PubMed]
- Zhiwei, J.; Yan, K.; Wenyang, L.; Hu, H.; Zhu, X. Mathematical and Computational Modeling in Complex Biological Systems. Biomed. Res. Int. 2017, 2017, 5958321. [Google Scholar] [CrossRef]
- Cohen, A.; Myerscough, M.; Thompson, R. Athero-protective Effects of High Density Lipoproteins (HDL): An ODE Model of the Early Stages of Atherosclerosis. Bull. Math. Biol. 2014, 76, 1117–1142. [Google Scholar] [CrossRef] [PubMed]
- Friedman, A.; Hao, W. A Mathematical Model of Atherosclerosis with Reverse Cholesterol Transport and Associated Risk Factors. Bull. Math. Biol. 2015, 77, 758–781. [Google Scholar] [CrossRef] [PubMed]
- Friedman, A.; Hao, W.; Hu, B. A free boundary problem for steady small plaques in the artery and their stability. J. Differ. Equ. 2015, 259, 1227–1255. [Google Scholar] [CrossRef]
- Mukherjee, D.; Guin, L.; Chakravarty, S. A reaction—Diffusion mathematical model on mild atherosclerosis. Model. Earth Syst. Environ. 2019, 5, 1853–1865. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, B. Bifurcation for a free boundary problem modeling a small arterial plaque. J. Differ. Equ. 2021, 288, 250–287. [Google Scholar] [CrossRef]
- Yang, Y.; Jäger, W.; Neuss-Radu, M.; Richter, T. Mathematical modeling and simulation of the evolution of plaques in blood vessels. J. Math. Biol. 2016, 72, 973–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, T.; Jäger, W.; Neuss-Radu, M.; Sequeira, A. Modeling of the Early Stage of Atherosclerosis with Emphasis on the Regulation of the Endothelial Permeability. J. Theor. Biol. 2020, 496, 110229. [Google Scholar] [CrossRef] [PubMed]
- Corti, A.; Chiastra, C.; Colombo, M.; Garbey, M.; Migliavacca, F.; Casarin, S. A fully coupled computational fluid dynamics-agent-based model of atherosclerotic plaque development: Multiscale modeling framework and parameter sensitivity analysis. Comput. Biol. Med. 2020, 118, 103623. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, S.; Redaelli, A.; Vergara, C.; Votta, E.; Zunino, P. Mathematical Modeling and Numerical Simulation of Atherosclerotic Plaque Progression Based on Fluid-Structure Interaction. J. Math. Fluid Mech. 2021, 23, 74. [Google Scholar] [CrossRef]
- Paalvast, Y.; Kuivenhoven, J.; Groen, A. Evaluating computational models of cholesterol metabolism. Biochim. Biophys. Acta-(Bba)-Mol. Cell Biol. Lipids 2015, 1851, 1360–1376. [Google Scholar] [CrossRef] [PubMed]
- Tindall, M.; Wattis, J.; O’Malley, B.; Pickersgill, L.; Jackson, K. A continuum receptor model of hepatic lipoprotein metabolism. J. Theor. Biol. 2009, 257, 371–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pool, F.; Sweby, P.; Tindall, M. An integrated mathematical model of cellular cholesterol biosynthesis and lipoprotein metabolism. Processes 2018, 6, 134. [Google Scholar] [CrossRef] [Green Version]
- Cromwell, W.; Otvos, J.; Keyes, M.; Pencina, M.; Sullivan, L.; Vasan, R.; Wilson, P.W.; D’Agostino, R. LDL particle number and risk of future cardiovascular disease in the Framingham Offspring Study—Implications for LDL management. J. Clin. Lipidol. 2007, 1, 583–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wattis, J.; O’Malley, B.; Blackburn, H.; Pickersgill, L.; Panovska, J.; Byrne, H.; Jackson, K. Mathematical model for low density lipoprotein (LDL) endocytosis by hepatocytes. Bull. Math. Biol. 2008, 70, 2303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pool, F.; Currie, R.; Sweby, P.; Salazar, J.; Tindall, M. A mathematical model of the mevalonate cholesterol biosynthesis pathway. J. Theor. Biol. 2018, 443, 157–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, A.; Mc Auley, M. Cholesterol homeostasis: An in silico investigation into how aging disrupts its key hepatic regulatory mechanisms. Biology 2020, 9, 314. [Google Scholar] [CrossRef] [PubMed]
- Warren, T.; McAllister, R.; Morgan, A.; Rai, T.; McGilligan, V.; Ennis, M.; Page, C.; Kelly, C.; Peace, A.; Corfe, B.; et al. The Interdependency and Co-Regulation of the Vitamin D and Cholesterol Metabolism. Cells 2021, 10, 2007. [Google Scholar] [CrossRef]
- Mishra, S.; Somvanshi, P.R.; Venkatesh, K.V. Control of cholesterol homeostasis by entero-hepatic bile transport—The role of feedback mechanisms. RSC Adv. 2014, 4, 58964–58975. [Google Scholar] [CrossRef]
- Gruenbacher, G.; Thurnher, M. Mevalonate Metabolism in Immuno-Oncology. Front. Immunol. 2017, 8, 1714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerqueira, N.M.F.S.A.; Oliveira, E.F.; Gesto, D.S.; Santos-Martins, D.; Moreira, C.; Moorthy, H.N.; Ramos, M.J.; Fernandes, P.A. Cholesterol Biosynthesis: A Mechanistic Overview. Biochemistry 2016, 55, 5483–5506. [Google Scholar] [CrossRef] [PubMed]
- Tricarico, P.M.; Crovella, S.; Celsi, F. Mevalonate Pathway Blockade, Mitochondrial Dysfunction and Autophagy: A Possible Link. Int. J. Mol. Sci. 2015, 16, 16067–16084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burga, J.; Espenshadea, P. Regulation of HMG-CoA reductase in mammals and yeast. Prog. Lipid Res. 2011, 50, 403–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeBose-Boyd, R. Feedback regulation of cholesterol synthesis: Sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res. 2008, 18, 609–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winston, J.A.; Theriot, C.M. Diversification of host bile acids by members of the gut microbiota. Gut Microbes 2020, 11, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Jamka, M.; Wasiewicz-Gajdzis, M.; Walkowiak, J. Effectiveness of different dietary strategies in the management of obesity and obesity-related comorbidities. J. Med Sci. 2021, 90, e253. [Google Scholar] [CrossRef]
- Kruit, J.; Groen, A.; van Berkel, T.; Kuipers, F. Emerging roles of the intestine in control of cholesterol metabolism. World J. Gastroenterol. 2006, 12, 6429–6439. [Google Scholar] [CrossRef] [PubMed]
- Altman, S.W.; Davis, H.R., Jr.; Zhu, L.; Yao, X.; Hoos, L.; Tetzloff, G.; Iyer, S.; Maguire, M.; Golovko, A.; Zeng, M.; et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 2004, 303, 1201–1204. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.; Scott, C.; Oishi, K.; Liapis, A.; Ioannou, Y. Inactivation of NPC1L1 causes multiple lipid transport defects and protects against diet-induced hypercholesterolemia. J. Biol. Chem. 2005, 280, 12710–12720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawson, P.; Lan, T.; Rao, A. Bile acids transporters. J. Lipid Res. 2009, 50, 2340–2357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ory, D. Nuclear receptor signaling in the control of cholesterol homeostasis: Have the orphans found a home? Circ. Res. 2004, 95, 660–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Greevenbroek, M.; de Bruin, T. Chylomicron synthesis by intestinal cells in vitro and in vivo. Atherosclerosis 1998, 141, 9–16. [Google Scholar] [CrossRef]
- Giammanco, A.; Cefalù, A.B.; Noto, D.; Averna, M.R. The pathophysiology of intestinal lipoprotein production. Front. Physiol. 2015, 6, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buhman, K.; Smith, S.; Stone, S.; Repa, J.; Wong, J.; Knapp, F.J.; Burri, B.; Hamilton, R.; Abumrad, N.; Farese, R.J. DGAT1 is not essential for intestinal triacylglycerol absorption or chylomicron synthesis. J. Biol. Chem. 2002, 277, 25474–25479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obunike, J.; Lutz, E.; Li, Z.; Paka, L.; Katopodis, T.; Strickland, D.; Kozarsky, K.; Pillarisetti, S.; Goldberg, I.J. Transcytosis of lipoprotein lipase across cultured endothelial cells requires both heparan sulfate proteoglycans and the very low density lipoprotein receptor. J. Biol. Chem. 2001, 276, 8934–8941. [Google Scholar] [CrossRef] [Green Version]
- Williams, K.J. Molecular processes that handle-and mishandle-dietary lipids. J. Clin. Investig. 2008, 118, 3247–3259. [Google Scholar] [CrossRef] [Green Version]
- Tomkin, G.; Owens, D. The chylomicron: Relationship to atherosclerosis. Int. J. Vasc. Med. 2012, 2012, 784536. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, H.; Yevstigneyev, N.; Madani, G.; McCormick, S. Approaches to Visualising Endocytosis of LDL-Related Lipoproteins. Biomolecules 2022, 12, 158. [Google Scholar] [CrossRef]
- Watt, M.; Holmes, A.; Pinnamaneni, S.; Garnham, A.; Steinberg, G.; Kemp, B.; Febbraio, M. Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. Am. J. Physiol. Endocrinol. Metab. 2006, 290, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, M.; Yao, Z. Recent progress in understanding protein and lipid factors affecting hepatic VLDL assembly and secretion. Nutr. Metab. 2010, 7, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaziri, N.; Navab, M.; Fogelman, A. HDL metabolism and activity in chronic kidney disease. Nat. Rev. Nephrol. 2010, 6, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Croyal, M.; Blanchard, V.; Ouguerram, K.; Chétiveaux, M.; Cabioch, L.; Moyon, T.; Billon-Crossouard, S.; Aguesse, A.; Bernardeau, K.; May, C.L.; et al. VLDL (Very-Low-Density Lipoprotein)-Apo E (Apolipoprotein E) May Influence Lp(a) (Lipoprotein [a]) Synthesis or Assembly. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Zheng, E.; Yu, B.; Zhang, Z.; Wang, Y.; Liu, Y.; He, Y. Recognition of lipoproteins by scavenger receptor class A members. J. Biol. Chem. 2021, 297, 100948. [Google Scholar] [CrossRef] [PubMed]
- Rohatgi, A.; Westerterp, M.; von Eckardstein, A.; Remaley, A.; Rye, K.A. HDL in the 21st Century: A Multifunctional Roadmap for Future HDL Research. Circulation 2021, 143, 2293–2309. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zanotti, I.; Reilly, M.; Glick, J.; Rothblat, G.; Rader, D. Overexpression of apolipoprotein A-I promotes reverse transport of cholesterol from macrophages to feces in vivo. Circulation 2003, 108, 661–663. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Tall, A. Regulation and mechanisms of ATP-binding cas-sette transporter A1-mediated cellular cholesterol efflux. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1178–1184. [Google Scholar] [CrossRef] [Green Version]
- Jonas, A. Lecithin cholesterol acyltransferase. Biochim. Biophys. Acta 2000, 1529, 245–256. [Google Scholar] [CrossRef]
- Dieplinger, H.; Zechner, R.; Kostner, G. The in vitro formation of HDL2 during the action of LCAT: The role of triglyceride-rich lipo-proteins. J. Lipid Res. 1985, 26, 273–282. [Google Scholar] [CrossRef]
- Rader, D.J. Molecular regulation of HDL metabolism and function: Implications for novel therapies. J. Clin. Investig. 2006, 116, 3090–3100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwan, B.; Kronenberg, F.; Beddhu, S.; Cheung, A. Lipoprotein metabolism and lipid management in chronic kidney disease. J. Am. Soc. Nephrol. 2007, 18, 1246–1261. [Google Scholar] [CrossRef] [PubMed]
- Krieger, M. Scavenger receptor class B type I is a multiligand HDL receptor that influences diverse physiologic systems. J. Clin. Investig. 2001, 108, 793–797. [Google Scholar] [CrossRef] [PubMed]
- Trigatti, B.; Covey, S.; Rizvi, A. Scavenger receptor class B type I in high-density lipoprotein metabolism, atherosclerosis and heart disease: Lessons from gene targeted mice. Biochem. Soc. Trans. 2004, 32, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Jauhiainen, M.; Ehnholm, C. Determination of human plasma phos-pholipid transfer protein mass and activity. Methods 2005, 36, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Settasatian, N.; Duong, M.; Curtiss, L.; Ehnholm, C.; Jauhiainen, M.; Huuskonen, J.; Rye, K. The mechanism of the remodeling of high density lipoproteins by phospholipids transfer protein. J. Biol. Chem. 2001, 276, 26898–26905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collet, X.; Tall, A.; Serajaddin, H.; Guendouzi, K.; Royer, L.; Oliveira, H.; Barbaras, R.; Jiang, X.; Francone, O. Remodeling of HDL by CETP in vivo and by CETP and hepatic lipase in vitro re-sults in enhanced uptake of HDL CE by cells expressing scavenger receptors. BI J. Lipid Res. 1999, 40, 1185–1193. [Google Scholar] [CrossRef]
- Barter, P.; Brewer, H.J.; Chapman, M.; Hennekens, C.; Rader, D.; Tall, A. Cholesteryl ester transfer protein: A novel target for raising HDL and inhibiting atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 160–167. [Google Scholar] [CrossRef]
- Robbesyn, F.; Auge, N.; Vindis, C.; Cantero, A.; Barbaras, R.; Negre-Salvayre, A.; Salvayre, R. High-density lipoproteins prevent the oxidized low-density lipoprotein-induced endothelial growth factor receptor activation and subsequent matrix metalloproteinase-2 upregu-lation. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1206–1212. [Google Scholar] [CrossRef] [Green Version]
- Barter, P.; Nichollas, S.; Rye, K.; Anantharamaiah, G.; Navab, M.; Fogelman, A. Antiinflammatory properties of HDL. Circ. Res. 2004, 95, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Wadham, C.; Albanese, N.; Roberts, J.; Wang, L.; Bagley, C.; Gamble, J.; Rye, K.; Barter, P.; Vadas, M.; Xia, P. High-density lipo-proteins neutralize C-reactive protein proinflammatory activity. Circulation 2004, 109, 2116–2122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jomard, A.; Osto, E. High Density Lipoproteins: Metabolism, Function, and Therapeutic Potential. Front. Cardiovasc. Med. 2020, 7, 39. [Google Scholar] [CrossRef] [PubMed]
- Franczyk, B.; Rysz, J.; Ławiński, J.; Rysz-Górzyńska, M.; Gluba-Brzózka, A. Is a High HDL-Cholesterol Level Always Beneficial? Biomedicines 2021, 9, 1083. [Google Scholar] [CrossRef] [PubMed]
- Formanowicz, D.; Krawczyk, J.B.; Perek, B.; Formanowicz, P. A Control-Theoretic Model of Atherosclerosis. Int. J. Mol. Sci. 2019, 20, 785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozak, A.; Formanowicz, D.; Formanowicz, P. Structural analysis of a Petri net model of oxidative stress in atherosclerosis. IET Syst. Biol. 2018, 12, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Gutowska, K.; Formanowicz, D.; Formanowicz, P. Systems Approach Based on Petri Nets as a Method for Modeling and Analysis of Complex Biological Systems Presented on the Example of Atherosclerosis Development Process. In Advanced, Contemporary Control; Bartoszewicz, A., Kabziński, J., Kacprzyk, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 579–586. [Google Scholar]
- Rżosińska, K.; Formanowicz, D.; Formanowicz, P. The study of the influence of micro-environmental signals on macrophage differentiation using a quantitative Petri net based model. Arch. Control. Sci. 2017, 27, 331–349. [Google Scholar] [CrossRef]
- Formanowicz, D.; Kozak, A.; Głowacki, T.; Radom, M.; Formanowicz, P. Hemojuvelin-hepcidin axis modeled and analyzed using Petri nets. J. Biomed. Inform. 2013, 46, 1030–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, T. Petri nets: Properties, analysis and aplications. Proc. IEEE 1989, 90, 541–580. [Google Scholar] [CrossRef]
- Sackmann, A.; Heiner, M.; Koch, I. Application of Petri net based analysis techniques to signal transduction pathway. BMC Bioinform. 2006, 7, 482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sackmann, A.; Formanowicz, D.; Formanowicz, P.; Koch, I.; Błażewicz, J. An analysis of Petri net based model of the human body iron homeostasis process. Comput. Biol. Chem. 2007, 31, 1–10. [Google Scholar] [CrossRef]
- Grafahrend-Belau, E.; Schreiber, F.; Heiner, M.; Sackmann, A.; Junker, B.; Grunwald, S.; Speer, A.; Winder, K.; Koch, I. Modularization of biochemical networks based on classification of Petri net t-invariants. BMC Bioinform. 2008, 9, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radom, M.; Rybarczyk, A.; Szawulak, B.; Andrzejewski, H.; Chabelski, P.; Kozak, A.; Formanowicz, P. Holmes: A graphical tool for development, simulation and analysis of Petri net based models of complex biological systems. Bioinformatics 2017, 33, 3822–3823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grunwald, S.; Speer, A.; Ackermann, J.; Koch, I. Petri net modelling of gene regulation of the Duchenne muscular dystrophy. Biosystems 2008, 92, 189–205. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Hussain, M. Intestinal lipid absorption. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E1183–E1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelkreem, E.; Otsuka, H.; Sasai, H.; Aoyama, Y.; Hori, T.; Abd El Aal, M.; Mahmoud, S.; Fukao, T. Beta-Ketothiolase Deficiency: Resolving Challenges in Diagnosis. JIEMS 2016, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Memon, S.; Ganga, H.; Masrur, S.; Thompson, P. The Effect of HMG CoA Reductase Inhibitors on the Progression of Aortic Sclerosis: Review Article. Conn. Med. 2016, 80, 169–174. [Google Scholar]
- Pirillo, A.; Norata, G.; Catapano, A. High-Density Lipoprotein Subfractions—What the Clinicians Need to Know. Cardiology 2013, 124, 116–125. [Google Scholar] [CrossRef]
- Trajkovska, K.; Topuzovska, S. High-density lipoprotein metabolism and reverse cholesterol transport: Strategies for raising HDL cholesterol. Anatol. J. Cardiol. 2017, 18, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Hurley, R.; Barre, L.; Wood, S.; Anderson, K.; Kemp, B.; Means, A.; Witters, L. Regulation of AMP-activated Protein Kinase by Multisite Phosphorylation in Response to Agents That Elevate Cellular cAMP. J. Biol. Chem. 2007, 281, 36662–36672. [Google Scholar] [CrossRef] [Green Version]
- Bartuzi, P.; Billadeau, D.; Favier, R.; Rong, S.; Dekker, D.; Fedoseienko, A.; Fieten, H.; Wijers, M.; Levels, J.; Huijkman, N.; et al. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL. Nat. Commun. 2016, 7, 10961. [Google Scholar] [CrossRef]
- Ference, B.; Ginsberg, H.; Graham, I.; Ray, K.; Packard, C.; Bruckert, E.; Hegele, R.; Krauss, R.; Raal, F.; Schunkert, H.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2020, 24, 2313–2330. [Google Scholar]
- Zhou, W.; Tu, Y.; Simpson, P.; Kuhajda, F. Malonyl-CoA decarboxylase inhibition is selectively cytotoxic to human breast cancer cells. Oncogene 2009, 28, 2979–2987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Hupfeld, C.; Taylor, S.; Olefsky, J. Insulin disrupts beta-adrenergic signalling to protein kinase A in adipocytes. Nature 2005, 437, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.Y.; Li, C.J.; Hou, M.-F.; Chu, P.Y. New Insights into the Role of Inflammation in the Pathogenesis of Atherosclerosis. Int. J. Mol. Sci 2017, 81, 2034. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Rava, P.; Walsh, M.; Rana, M.; Iqbal, J. Multiple functions of microsomal triglyceride transfer protein. Nutr. Metab. 2012, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Zhao, B.; Bie, J.; Song, J. Role of cholesteryl ester hydrolase in atherosclerosis. Clin. Lipidol. 2009, 4, 573–585. [Google Scholar] [CrossRef]
- Vavlukis, M.; Vavlukis, A. Adding ezetimibe to statin therapy: Latest evidence and clinical implications. Drugs Context 2018, 7, 212534. [Google Scholar] [CrossRef] [Green Version]
- Lillis, A.; Muratoglu, S.; Au, D.; Migliorini, M.; Lee, M.J.; Fried, S.; Mikhailenko, I.; Strickland, D. LDL Receptor-Related Protein-1 (LRP1) Regulates Cholesterol Accumulation in Macrophages. PLoS ONE 2015, 10, e0128903. [Google Scholar] [CrossRef] [Green Version]
- Boadu, E.; Francis, G. The role of vesicular transport in ABCA1-dependent lipid efflux and its connection with NPC pathways. J. Mol. Med. 2006, 84, 266–275. [Google Scholar] [CrossRef]
- Chatterjee, C.; Sparks, D. Hepatic Lipase, High Density Lipoproteins, and Hypertriglyceridemia. Am. J. Pathol. 2011, 178, 1429–1433. [Google Scholar] [CrossRef]
- Huang, L.H.; Melton, E.; Li, H.; Sohn, P.; Rogers, M.; Mulligan-Kehoe, M.; Fiering, S.; Hickey, W.; Chang, C.; Chang, T.Y. Myeloid Acyl-CoA:Cholesterol Acyltransferase 1 Deficiency Reduces Lesion Macrophage Content and Suppresses Atherosclerosis Progression. J. Biol. Chem. 2016, 291, 6232–6244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, D.; Griendling, K.; Landmesser, U.; Hornig, B.; Drexler, H. Role of oxidative stress in atherosclerosis. Am. J. Cardiol. 2003, 91, 7A–11A. [Google Scholar] [CrossRef]
- Formanowicz, D.; Rybarczyk, A.; Radom, M.; Formanowicz, P. A Role of Inflammation and Immunity in Essential Hypertension—Modeled and Analyzed Using Petri Nets. Int. J. Mol. Sci. 2020, 21, 3348. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Qian, J.; Chen, S.; Zhang, W.; Liu, C. Ligustrazine improves atherosclerosis in rat via attenuation of oxidative stress. Pharm. Biol. 2011, 49, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Kavalipati, N.; Shah, J.; Ramakrishan, A.; Vasnawala, H. Pleiotropic effects of statins. Indian J. Endocr. Metab. 2015, 19, 554–562. [Google Scholar]
- Pinal-Fernandez, I.; Casal-Dominguez, M.; Mammen, A. Statins: Pros and cons. Med. Clin. 2018, 150, 398–402. [Google Scholar] [CrossRef]
- Mossa, J.; Ramji, D. Cytokines: Roles in atherosclerosis disease progression and potential therapeutic targets. Future Med. Chem. 2016, 8, 1317–1330. [Google Scholar] [CrossRef] [Green Version]
- Hewing, B.; Parathath, S.; Mai, C.; Fiel, M.; Guo, L.; Fisher, E. Rapid regression of atherosclerosis with MTP inhibitor treatment. Atherosclerosis 2013, 227, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Vuorio, A.; Tikkanen, M.; Kovanen, P. Inhibition of hepatic microsomal triglyceride transfer protein—A novel therapeutic option for treatment of homozygous familial hypercholesterolemia. Vasc. Health Risk Manag. 2014, 10, 263–270. [Google Scholar] [CrossRef] [Green Version]
Place | Biological Meaning | References | Place | Biological Meaning | References |
---|---|---|---|---|---|
ACAT in the intestine | [78] | thiolase | [79] | ||
HMGCoA reductase active | [80] | HDL2 | [81,82] | ||
CaMKK beta | [83] | LDL cholesterol as CE in endosome | [84,85] | ||
Free fatty acids (FFA) in intestinal lumen in micelles | [78] | Acetyl-CoA | [28,79,86] | ||
Nascent chylomicrons (CM) with APOB48 | [78] | cAMP PKA activated | [83] | ||
TAG in enterocytes | [78] | Phosphoprotein phosphatase inhibitor 1 PPI1 with an increase activity | [87] | ||
ACC activated | [83,86] | CE transfer protein CETP in blood | [82] | ||
LKB1 serine threonine kinase 1 | [83] | Lysosomal lipases | [84,88] | ||
Phosphoprotein phosphatase with a decrease activity | [83] | Acetoacetyl-CoA | [28,79] | ||
APOE | [88] | CoA | [28,79] | ||
APOC2 | [81,88] | Hormone sensitive lipase (HSL) | [87] | ||
Nascent CM in the blood | [78] | Hormone sensitive lipase HSL phosphorylated | [87] | ||
MTTP | [42,89] | Free cholesterol in endosome in intestinum | [78] | ||
MCD | [86] | HMG CoA | [80] | ||
AMP activated protein kinase OH AMPK inactive | [83] | HMG CoA synthase | [80] | ||
HMG-CoA reductase phosphatase with a decrease activity | [80] | Free fatty acids FFA in adipose tissues | [87] | ||
HDL3 cholesterol CE in blood | [81] | High unesterified cholesterol pool in the liver | [28,78] | ||
Mature CM with APOB48, APOC2, APOE | [88] | Hydrolase of cholesterol esters | [90] | ||
AMP activated protein kinase AMPK active | [83] | NPC1L1 | [42,91] | ||
LRP1 | [88,92] | Mevalonate | [28] | ||
Lipoprotein lipase (LPL) | [88] | Stored TAG | [88] | ||
Malonyl CoA increases | [86] | Isopentenyl PP | [28] | ||
Protein phosphatase 2C with an increase activity | [83] | Low cholesterol in diet | [78] | ||
Low free cholesterol pool in intestinum and in the peripheral tissues | [78,84] | Geranyl PP | [28] | ||
HMG-CoA reductase phosphorylated inactive | [80] | High free cholesterol pool in intestinum | [85,90,93] | ||
LIPC hepatic lipase | [84,94] | Apical sodium bile acid transporter ASBT | [78] | ||
Bile acids | [28] | Squalene | [28] | ||
Remnant CM with APOB48 APOE | [88] | Farnesyl PP | [28] | ||
MAG in intestinal lumen in micelles | [78] | LCAT | [81] | ||
FFA and MAG in enterocytes | [78] | ABCA1 cholesterol efflux regulatory protein CERP | [93] | ||
cAMP PKA low activated | [83] | 2,3-oxidosqualene | [28] | ||
Free fatty acids FFA | [87,94] | HDL cholesterol non-CE | [81] | ||
Cholesterol stored as cholesteryl esters in the liver | [95] | Lanosterol | [28] | ||
Low cAMP | [83] | Cholesterol from enterocytes and peripheral tissues transported to the blood | [78,93] | ||
HMG-CoA reductase phosphatase | [80] | Enzymes in ER membranes | [28] | ||
IDL | [82,85] | ACAT in the liver | [95] | ||
Remnant CM receptors in the liver | [85] | Biliary cholesterol | [28] | ||
LDL receptor related protein | [84,85] | TAG synthesized in the liver | [85] | ||
Increased FA in the liver | [85,86] | Nascent HDL | [81] | ||
cAMP | [83] | MTTP APOB-100 complex | [42,89] | ||
PPI 1 OH | [87] | APOB-100 | [42,89] | ||
Phosphoprotein phosphatase with an increase activity | [87] | Foamy cells | [88] | ||
LDL cholesterol in serum | [84] | Macrophages | [88] | ||
High expression of LDLR on cell membrane | [84] | SRB1 | [84] | ||
Nascent VLDL reach in TAG secreted from the liver into the blood | [85] | Small dense LDL | [84] | ||
LDLR–LDL complex | [84] |
Transition | Biological Meaning | References | Transition | Biological Meaning | References |
---|---|---|---|---|---|
ACAT activation in the intestine | [95] | Lysosomal lipases activation | [84] | ||
Nascent CM synthesis in enterocytes | [78] | Phosphorylation by PKA | [83,87,95] | ||
LKB1 activation | [83] | Conversion HDL into IDL | [82,85] | ||
Processes increasing intracellular calcium | [83] | Activation by LRP1 | [92] | ||
Diet and hypertension | [78,85] | Free cholesterol effluxes endosome | [84] | ||
AMP activated protein kinase AMPK phosphorylation | [83] | Acetyl-CoAs conversion | [28,79] | ||
Processes decreasing phosphoprotein phosphatase | [83] | HSL activation | [87] | ||
Exchanging HDL components in blood | [81] | FFA pool in adipose tissue increases | [87,94] | ||
Nascent CM exchange components with HDL | [81] | LRP1 synthesis | [92] | ||
Transport mainly TAG within nascent chylomicrons from the intestine to the blood | [78] | Hydrolase of cholesterol esters activation | [90] | ||
Carboxylation catalysed by acetyl-CoA carboxylase ACC | [28,86] | Cholesterol transport from the lumen to the intestine | [78] | ||
Decarboxylation | [86] | NPC1L1 activation | [42,91] | ||
Processes increasing AMP activated protein kinase 0H AMPK inactive | [83] | Mevalonate synthesis | [28] | ||
Processes decreasing HMGCoA reductase phosphatase activity | [28,80] | Reaction phosphorylation catalysed by ATP | [28] | ||
HDL synthesis in the liver | [81] | TAG storage in adipocytes | [87] | ||
LPL activation | [88] | Hydrolysis of stored TAG | [87,88] | ||
Malonyl CoA decarboxylase MCD activation | [86] | Reaction condensation | [28] | ||
Dephosphorylation by protein phosphatase 2C | [83] | Conversion from CE found in HDL into free cholesterol pool | [81,90] | ||
HMG-CoA reductase inactivation by phosphorylation | [28,80,83] | Processes lowering cholesterol | [78] | ||
APOC2 returned to HDL cholesterol | [81,88] | Reaction forming farnesyl PP | [28] | ||
TAG distribution from CM | [78,88] | LCAT activation in serum | [81] | ||
FFA absorption in enterocyte | [78] | Processes catalyzed by ACAT | [95] | ||
Dephosphorylation of ACC and its activation | [83] | Reabsorption in the intestine and return to the liver | [78] | ||
Protein phosphatase activation | [83] | ASBT activation | [78] | ||
Dephosphorylation | [78,83,84] | Reaction catalyzed by squalene synthase | [28] | ||
LIPC activation | [84,94] | Efflux of cholesterol to APOA1 and APOE catalyzed by ABCA1 | [88] | ||
FA synthesis in the liver | [85,86] | Steroid synthesis | [85,90,93] | ||
Decreased PKA activation | [83] | Remaining cholesterol removed by fecal sterols | [85,90,93] | ||
HMG-CoA reductase activation | [28,80] | Reaction catalysed by squalene monooxygenase | [28] | ||
Reaction catalyzed by HMG-CoA reductase phosphatase | [28,80] | Reaction catalyzed by squalene epoxidase | [28] | ||
Conversion into LDL | [84] | Conversion cholesterol into CE | [78,81,93] | ||
LDLR synthesis | [84] | HDL secreted by enterocytes and by the liver | [78] | ||
Binding with glycerol albumin | [78,85] | Reaction 19 leading to cholesterol synthesis in liver | [28] | ||
Processes decreasing cAMP | [83] | Transport by ABCA1 | [93] | ||
PPI 1 OH activation | [87] | Enzymes activation | [28] | ||
HMGCoA reductase phosphatase activation | [28,80] | ABCA1 synthesis | [93] | ||
Conversion VLDL into IDL TAG hydrolysis | [85] | Re-esterification of cholesterol by ACAT in the liver | [95] | ||
CM endocytosis in the liver | [84] | ACAT activation in the liver | [95] | ||
Hormonal processes increasing cAMP | [83] | Cholesterol pool increases in the intestinum because of biliary cholesterol | [28] | ||
Reaction catalyzed by phosphoprotein phosphatase | [87] | Formation of the biliary cholesterol | [28] | ||
Pancreatic synthesis | [88] | Bile acids synthesis | [28] | ||
Binding LDL and LDLR | [84] | Reaction increasing cholesterol pool in the liver via RME | [84] | ||
LDLR expression on cell membrane | [85] | Expression remnant CE receptors in the liver when intestinal pool is high | [85] | ||
Increasing activity by SREBP2 | [78,80,84] | Reaction forming nascent VLDL reach in TAG in the liver | [85] | ||
Beta oxidation | [28,79,85,86] | TAG synthesis in the liver | [85,86] | ||
Increased PKA activation | [83] | Efflux of free cholesterol from peripheral tissues | [93] | ||
Phosphoprotein phosphatase activation | [87] | Conversion nascent HDL into HDL3 | [81] | ||
CE transfer from LDL | [84] | Forming complex | [42,89] | ||
Endocytosis via RME | [84] | Atherosclerosis | [88] | ||
Receptor being returned stimulated by lower pH | [84] | Transport into peripheral tissue | [81,88] | ||
Processes lowering free cholesterol pool in intestine and in the peripheral tissues | [78,84] | Conversion HDL3 into nascent LDL | [81] | ||
acetyl-CoA synthesis from glucose in the liver | [28,79] | Conversion HDL3 into HDL2 | [81] | ||
Thiolase activation | [79] | SRB1 expression | [84] | ||
Internalized from blood by the liver | [78,85,86] | MTTP synthesis | [42,89] | ||
CE transfer from HDL2 | [81,82] | APOB100 synthesis in the liver and secreted into circulation | [42,89] | ||
Reaction catalyzed by thiolase | [79] | Influx of macrophages | [88] | ||
HMGCoA synthase activation in cytoplasm | [28,80] | Conversion HDL2 into HDL3 | [81] | ||
High PPI OH phosphorylation | [87] | Cholesterol CE transport to the liver | [84] | ||
Processes increasing PPI1 activity | [87] | Binding with SRA-2 on macrophages | [84,88] | ||
CETP secretion from the liver | [82] | Oxidation | [96] | ||
CE hydrolysis | [84] | Degradation | [84] |
MCT-Set | Contained Transitions | Biological Interpretation |
---|---|---|
, , , , , , , , , , , , , | Endogenous synthesis of cholesterol mainly in the liver | |
, , , , , , , | Transport of TAG within CM | |
, , , , | Transport of TAG within VLDL | |
, , , , | Lipolysis | |
, , , | Increase in fatty acids synthesis | |
, , | Regulation of AMPK activity | |
, , | Cholesterol influx into cells through uptake and CE hydrolysis found in LDL | |
, , | Intracellular transport of cholesterol | |
, | Entry of LDL into the cells | |
, | Regulation of HMG-CoA activity | |
, | Increase in the free cholesterol pool via the CE coming from HDL | |
, | Increase in CE in HDL cholesterol in the serum | |
, | The bile acids biosynthesis from cholesterol | |
, | Regulation of ACAT activity | |
, | ACC activation by malonyl-CoA decarboxylation | |
, | Reverse transport of bile acids to the liver | |
, | PPA activity regulation | |
, | HMG-CoA reductase phosphatase activity |
Knocked-out MCT Set | Biological Function | Affected Transitions |
---|---|---|
Hormonal processes increasing cAMP | 33.6% | |
Increased PKA activation | 29.5% | |
Diet and hypertension | 29.5% | |
Transport of TAG within VLDL | 27.9% (23.8%) | |
Acetyl-CoA synthesis from glucose in the liver | 18.3% | |
Conversion VLDL into IDL TAG hydrolysis | 17.2% | |
Processes lowering free cholesterol pool in intestine and in the peripheral tissues | 13.9% | |
Lipolysis | 13.1% (9.0%) | |
Endogenous synthesis of cholesterol mainly in the liver | 11.5% (0.0%) | |
LDLR expression on cell membrane | 11.5% | |
LIPC activation | 9.8% | |
Bile acids synthesis | 9.0% | |
Expression remnant CE receptors in the liver when intestinal pool is high | 8.2% | |
ACAT activation in the intestine | 8.2% | |
Conversion into LDL | 7.4% | |
Transport of TAG within CM | 6.6% (0.0%) | |
Processes decreasing phosphoprotein phosphatase | 6.6% | |
Increase in the pool of free cholesterol pool via the CE coming from HDL | 5.7% | |
Carboxylation catalyzed by acetyl-CoA carboxylase (ACC) | 5.7% | |
Processes increasing AMP activated protein kinase 0H AMPK inactive | 5.7% | |
Protein phosphatase activation | 5.7% | |
Binding with SRA-2 on macrophages | 5.7% | |
Regulation of AMPK activity | 4.9% (3.3%) | |
The bile acids biosynthesis from cholesterol | 4.9% (3.3%) | |
LCAT activation in serum | 4.9% | |
ABCA1 synthesis | 4.9% | |
Increase in fatty acids synthesis | 3.3% (0.0%) | |
Increase in CE in HDL cholesterol in the serum | 3.3% (1.6%) | |
Reverse transport of bile acids to the liver | 3.3% (1.6%) | |
Exchanging HDL components in blood | 3.3% | |
CETP secretion from the liver | 3.3% | |
Conversion HDL3 into HDL2 | 3.3% | |
Cholesterol influx into cells through uptake and CE hydrolysis found in LDL | 2.46% (0%) | |
Intracellular transport of cholesterol | 2.46% (0%) | |
LRP1 synthesis | 2.46% | |
SRB1 expression | 2.46% |
Molecule | Associated Places |
---|---|
LDL | (LDL receptor related protein), (LDL cholesterol in serum), (LDLR–LDL complex), (LDL cholesterol as CE in endosome), (small dense LDL) |
VLDL | (nascent VLDL reach in TAG secreted from the liver into the blood) |
IDL | (IDL) |
HDL | (HDL3 cholesterol CE in blood), (HDL2), (HDL cholesterol non-CE), (nascent HDL) |
CM | (nascent chylomicrons (CM) with APOB48), (nascent CM in the blood), (remnant CM receptors in the liver) |
Molecule | Knocked-Out Transitions | Disabled Transitions and MCT Sets | Number of Remaining t-Invariants (Percentage of Remaining t-Invariants) | Number of Remaining t-Invariants Which Contain Transition (Atherosclerosis) in Their Supports (Percentage of Remaining t-Invariants Which Contain Transition (Atherosclerosis) in Their Supports |
---|---|---|---|---|
LDL | , , , , | , , , , , , , , , , , , | 78 (out of 3871) () | 0 (out of 434) () |
VLDL | , , | , , , , , , | 185 (out of 3871) () | 22 (out of 434) () |
IDL | , | , , , , , , , , , , , , , , , , , | 78 (out of 3871) () | 22 (out of 434) () |
HDL | , , , , , , , , , , | , , , , , , , , , | 80 (out of 3871) () | 19 (out of 434) () |
CM | , , | , | 1136 (out of 3871) () | 33 (out of 434) () |
Molecule | Knocked-Out Transitions | Disabled Transitions and MCT Sets | Number of Remaining t-Invariants (Percentage of Remaining t-Invariants) | Number of Remaining t-Invariants Which Contain Transition (Atherosclerosis) in Their Supports (Percentage of Remaining t-Invariants Which Contain Transition (Atherosclerosis) in Their Supports) |
---|---|---|---|---|
Inhibition of HMG-CoA reductase | , , | , , , , | 559 () | 6 (out of 434) () |
Inhibition of HMG-CoA reductase and the Niemann–Pick C1-Like 1 (NPC1L1) protein | , , , | , , , , | 366 (out of 3871) () | 2 (out of 434) () |
Attenuation of oxidative stress | - | 1524 (out of 3871) () | 378 (out of 434) () | |
Attenuation of oxidative stress and HMG-CoA reductase | , , , | , , , , , , , , , , , | 74 (out of 3871) () | 0 (out of 434) () |
Attenuation of inflammation | - | 2358 (out of 3871) () | 275 (out of 434) () | |
Attenuation of inflammation and HMG-CoA reductase | , , , | , , , , , | 332 (out of 3871) () | 5 (out of 434) () |
Attenuation of inflammation, oxidative stress and HMG-CoA reductase | , , , , | , , , , , , , , , , , , , | 66 (out of 3871) () | 0 (out of 434) () |
Inhibition of microsomal triglyceride transfer protein (MTTP) | , , | 483 (out of 3871) () | 22 (out of 434) () | |
Inhibition MTTP and oxidative stress | , | , , , , , , , , , , , , | 94 (out of 3871) () | 0 (out of 434) () |
Inhibition of Acyl-CoA: cholesterol acyltransferase (ACAT) in the liver | - | 2785 (out of 3871) () | 308 (out of 434) () | |
Inhibition of ACAT in the intestine | , | 1103 (out of 3871) () | 25 (out of 434) () | |
Inhibition of ACAT both in the liver and intestine | , | , | 731 (out of 3871) () | 17 (out of 434) () |
Inhibition of ACAT in the intestine and oxidative stress | , | , , , , , , , , , | 141 (out of 3871) () | 0 (out of 434) () |
Other discovered factors influencing atherosclerosis progression | ||||
Inhibition of AMP activated protein kinase OH AMPK | , | 3092 (out of 3871) () | 384 (out of 434) () | |
Inhibition of mevalonate synthesis | 1894 (out of 3871) () | 200 (out of 434) () | ||
Inhibition of SRB1 synthesis | , | 2333 (out of 3871) () | 293 (out of 434) () | |
Inhibition of mevalonate and SRB1 | , | , , | 682 (out of 3871) () | 79 (out of 434) () |
Inhibition of HMG-CoA reductase, mevalonate, SRB1 | , , , , | , , , , , , , | 474 (out of 3871) () | 42 (out of 434) () |
Inhibition of acetyl-CoA synthesis from glucose in the liver | , , , | 1699 (out of 3871) () | 196 (out of 434) () |
Disabled Transitions/MCT Sets | Average Chance of Firing |
---|---|
Nothing Is Knocked Out in Net | (reference value) |
, , , | () |
, , , , | () |
() | |
() | |
, , , | () |
() | |
() | |
, | () |
, , , , | () |
() | |
() | |
() | |
, | () |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Formanowicz, D.; Radom, M.; Rybarczyk, A.; Tanaś, K.; Formanowicz, P. Control of Cholesterol Metabolism Using a Systems Approach. Biology 2022, 11, 430. https://doi.org/10.3390/biology11030430
Formanowicz D, Radom M, Rybarczyk A, Tanaś K, Formanowicz P. Control of Cholesterol Metabolism Using a Systems Approach. Biology. 2022; 11(3):430. https://doi.org/10.3390/biology11030430
Chicago/Turabian StyleFormanowicz, Dorota, Marcin Radom, Agnieszka Rybarczyk, Krzysztof Tanaś, and Piotr Formanowicz. 2022. "Control of Cholesterol Metabolism Using a Systems Approach" Biology 11, no. 3: 430. https://doi.org/10.3390/biology11030430
APA StyleFormanowicz, D., Radom, M., Rybarczyk, A., Tanaś, K., & Formanowicz, P. (2022). Control of Cholesterol Metabolism Using a Systems Approach. Biology, 11(3), 430. https://doi.org/10.3390/biology11030430