Comparative Study of Potentially Toxic Nickel and Their Potential Human Health Risks in Seafood (Fish and Mollusks) from Peninsular Malaysia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Preparation
2.3. Metal Analysis
2.4. Human Health Risk Assessments
- (a)
- Direct comparisons with seafood safety guidelines
- (b)
- Target hazard quotient
- (c)
- Comparisons between estimated weekly intake (EWI) and provisional tolerable weekly intake (PTWI)
3. Results and Discussion
3.1. Comparison with Food Safety Guidelines of Nickel and Reported Studies
3.2. Comparisons of Nickel Target Hazard Quotients among Fish, Snail, Cockle, and Mussel
3.3. Comparisons between Estimated Weekly Intake (EWI) and Provisional Tolerable Weekly Intake (PTWI)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prabakaran, K.; Li, J.; Anandkumar, A.; Leng, Z.; Zou, C.B.; Du, D. Managing Environmental Contamination through Phytoremediation by Invasive Plants: A Review. Ecol. Eng. 2019, 138, 28–37. [Google Scholar] [CrossRef]
- Muñoz, A.; Costa, M. Elucidating the Mechanisms of Nickel Compound Uptake: A Review of Particulate and Nano-Nickel Endocytosis and Toxicity. Toxicol. Appl. Pharmacol. 2012, 260, 1–16. [Google Scholar] [CrossRef] [Green Version]
- ATSDR. Toxicological Profile for Nickel (Update); Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services: Altanta, GA, USA, 1997.
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human Health and Environmental Toxicology. Int. J. Environ. Res. Public. Health 2020, 17, 679. [Google Scholar] [CrossRef] [Green Version]
- Boyle, W.R.; Robinson, H.A. Nickel in the Natural Environment. In Metal Ions in Biological Systems: Nickel and its Role in Biology; Sigel, H., Sigel, A., Eds.; Marcel Dekker, Inc.: New York, NY, USA; Basel, Switzerland, 1988; pp. 1–29. [Google Scholar]
- Hertel, R.F.; Maass, T. Nickel; Environmental health criteria; International Programme on Chemical Safety, Ed.; World Health Organization: Geneva, Switzerland, 1991; ISBN 978-92-4-157108-1. [Google Scholar]
- US PHS. Toxicological Profile for Nickel; U.S. Public Health Service, Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 1993; p. 158.
- Song, X.; Fiati Kenston, S.S.; Kong, L.; Zhao, J. Molecular Mechanisms of Nickel Induced Neurotoxicity and Chemoprevention. Toxicology 2017, 392, 47–54. [Google Scholar] [CrossRef]
- US EPA. Integrated Risk Information System (IRIS) on Nickel Carbonyl; National Center for Environmental Assessment, Office of Research and Development: Washington, DC, USA, 1999.
- Das, K.K.; Reddy, R.C.; Bagoji, I.B.; Das, S.; Bagali, S.; Mullur, L.; Khodnapur, J.P.; Biradar, M.S. Primary Concept of Nickel Toxicity-an Overview. J. Basic Clin. Physiol. Pharmacol. 2018, 30, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Buxton, S.; Garman, E.; Heim, K.E.; Lyons-Darden, T.; Schlekat, C.E.; Taylor, M.D.; Oller, A.R. Concise Review of Nickel Human Health Toxicology and Ecotoxicology. Inorganics 2019, 7, 89. [Google Scholar] [CrossRef] [Green Version]
- Fay, M.; Wilbur, S.; Abadin, H.; Ingerman, L.; Swart, S.G. Toxicological Profile for Nickel; U.S. Department of Health and Human Services, Public Health Service Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2005.
- Zhao, J.; Shi, X.; Castranova, V.; Ding, M. Occupational Toxicology of Nickel and Nickel Compounds. J. Environ. Pathol. Toxicol. Oncol. Off. Organ Int. Soc. Environ. Toxicol. Cancer 2009, 28, 177–208. [Google Scholar] [CrossRef]
- Zambelli, B.; Ciurli, S. Nickel and Human Health. Met. Ions Life Sci. 2013, 13, 321–357. [Google Scholar] [CrossRef]
- Cempel, M.; Nikel, G. Nickel: A Review of Its Sources and Environmental Toxicology. Pol. J. Environ. Stud. 2006, 15, 375–382. [Google Scholar]
- Bubb, I.M.; Lester, J.N. Factors Controlling the Accumulation of Metals within Fluvial Systems. Environ. Monit. Assess. 1996, 41, 87–105. [Google Scholar] [CrossRef]
- US EPA. Health Assessment Document for Nickel; EPA/600/8-83/012F; National Center for Environmental Assessment, Office of Research and Development: Washington, DC, USA, 1986.
- McGregor, D.B.; Baan, R.A.; Partensky, C.; Rice, J.M.; Wilbourn, J.D. Evaluation of the Carcinogenic Risks to Humans Associated with Surgical Implants and Other Foreign Bodies-a Report of an IARC Monographs Programme Meeting. International Agency for Research on Cancer. Eur. J. Cancer Oxf. Engl. 2000, 36, 307–313. [Google Scholar] [CrossRef]
- Seilkop, S.K.; Oller, A.R. Respiratory Cancer Risks Associated with Low-Level Nickel Exposure: An Integrated Assessment Based on Animal, Epidemiological, and Mechanistic Data. Regul. Toxicol. Pharmacol. 2003, 37, 173–190. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Arsenic, Metals, Fibres and Dusts. Lyon (FR): International Agency for Research on Cancer; 2012, (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 100C.) Nickel and Nickel Compounds. Available online: https://www.ncbi.nlm.nih.gov/books/NBK304378/ (accessed on 2 January 2022).
- Guy, S.; Beaven, S.; Gaw, S.; Pearson, A.J. Shellfish Consumption and Recreational Gathering Practices in Northland, New Zealand. Reg. Stud. Mar. Sci. 2021, 47, 101967. [Google Scholar] [CrossRef]
- Venugopal, V.; Gopakumar, K. Shellfish: Nutritive Value, Health Benefits, and Consumer Safety: Shellfish Nutritive Value and Safety. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1219–1242. [Google Scholar] [CrossRef] [Green Version]
- US EPA. Guideline for Human Exposure Assessment; (EPA/100/B-19/001); Risk Assessment Forum, U.S. EPA: Washington, DC, USA, 2019.
- Bosch, A.C.; O’Neill, B.; Sigge, G.O.; Kerwath, S.E.; Hoffman, L.C. Heavy Metals in Marine Fish Meat and Consumer Health: A Review. J. Sci. Food Agric. 2016, 96, 32–48. [Google Scholar] [CrossRef] [PubMed]
- Jahangir Sarker, M.; Naher Rima, N.; Sultana, N. Human Health Risk Assessment with Reference to the Consumption of Shrimp and Marine Fish. Pak. J. Biol. Sci. PJBS 2020, 23, 1291–1302. [Google Scholar] [CrossRef]
- Takarina, N.D.; Purwiyanto, A.I.S.; Suteja, Y. Cadmium (Cd), Copper (Cu), and Zinc (Zn) Levels in Commercial and Non-Commercial Fishes in the Blanakan River Estuary, Indonesia: A Preliminary Study. Mar. Pollut. Bull. 2021, 170, 112607. [Google Scholar] [CrossRef]
- Agah, H. Ecological Risk Assessment of Heavy Metals in Sediment, Fish, and Human Hair from Chabahar Bay, Makoran, Iran. Mar. Pollut. Bull. 2021, 169, 112345. [Google Scholar] [CrossRef]
- Han, J.-L.; Pan, X.-D.; Chen, Q.; Huang, B.-F. Health Risk Assessment of Heavy Metals in Marine Fish to the Population in Zhejiang, China. Sci. Rep. 2021, 11, 11079. [Google Scholar] [CrossRef]
- Younis, E.M.; Abdel-Warith, A.-W.A.; Al-Asgah, N.A.; Elthebite, S.A.; Mostafizur Rahman, M. Nutritional Value and Bioaccumulation of Heavy Metals in Muscle Tissues of Five Commercially Important Marine Fish Species from the Red Sea. Saudi J. Biol. Sci. 2021, 28, 1860–1866. [Google Scholar] [CrossRef] [PubMed]
- Pan, K.; Wang, W.-X. Trace Metal Contamination in Estuarine and Coastal Environments in China. Sci. Total Environ. 2012, 421–422, 3–16. [Google Scholar] [CrossRef]
- Strokes, P. Nickel in Aquatic System. In Metal Ions in Biological Systems: Nickel and its Role in Biology; Sigel, H., Sigel, A., Eds.; Routledge: New York, NY, USA; CRC Press: Basel, Switzerland, 1988; pp. 31–46. [Google Scholar]
- Millward, G.E.; Kadam, S.; Jha, A.N. Tissue-Specific Assimilation, Depuration and Toxicity of Nickel in Mytilus edulis. Environ. Pollut. Barking Essex 2012, 162, 406–412. [Google Scholar] [CrossRef]
- Yap, C.K.; Wong, C.H. Assessment Cu, Ni and Zn Pollution in the Surface Sediments in the Southern Peninsular Malaysia Using Cluster Analysis, Ratios of Geochemical Nonresistant to Resistant Fractions, and Geochemical Indices. Environ. Asia 2011, 4, 53–61. [Google Scholar] [CrossRef]
- Yap, C.K.; Ismail, A.; Cheng, W.H.; Edward, F.; Tan, S.G. Crystalline Style and Byssus of Pernaviridis as Indicators of Ni Bioavailabilities and Contamination in Coastal Waters of Peninsular Malaysia. Malays. Appl. Biol. 2006, 35, 7–13. [Google Scholar]
- Yap, C.K.; Cheng, W.H.; Karami, A.; Ismail, A. Health Risk Assessments of Heavy Metal Exposure via Consumption of Marine Mussels Collected from Anthropogenic Sites. Sci. Total Environ. 2016, 553, 285–296. [Google Scholar] [CrossRef]
- Yap, C.K.; Noorhaidah, A.; Tan, S.G. Digestive Cecum and Tissue Redistribution in Gills of Telescopium telescopium as Indicators of Ni Bioavailabilities and Contamination in Tropical Intertidal Areas. Water. Air. Soil Pollut. 2012, 223, 2891–2905. [Google Scholar] [CrossRef]
- Thanh-Nho, N.; Marchand, C.; Strady, E.; Vinh, T.-V.; Nhu-Trang, T.-T. Metals Geochemistry and Ecological Risk Assessment in a Tropical Mangrove (Can Gio, Vietnam). Chemosphere 2019, 219, 365–382. [Google Scholar] [CrossRef] [PubMed]
- Yap, C.K.; Edward Thomas, F.B. Heavy Metal Distribution in the Different Parts of Cerithidea obtusa by Using Multivariate Analysis. Malays. J. Sci. 2009, 28, 33–38. [Google Scholar] [CrossRef]
- Onn, M.; Ismail, B.; Mohamed, S.; Zulfikri, M.H.; Azmi, A.F.M.; Ahmaduzzakwan, D.; Fauzi, M.; Roslan, S.K.; Zakaria, N.F.; Razali, N.A.; et al. Concentration of Heavy Metal and Nutrients Fact of Pontian Johor Cerithidea obtusa. J. Appl. Environ. Biol. Sci. 2017, 7, 49–54. [Google Scholar]
- Amin, B.; Nurrachmi, I.; Jamalus. Concentration, Distribution, and Correlation of Heavy Metals in Seawater, Sediment, and Cerithidea obtusa from Coastal Waters of Singkep Island, Riau Archipelago Province. Indones. J. Environ. Sci. Technol. 2015, 1–7. [Google Scholar]
- Patel, B.; Bangera, V.S.; Patel, S.; Balani, M.C. Heavy Metals in the Bombay Harbour Area. Mar. Pollut. Bull. 1985, 16, 22–28. [Google Scholar] [CrossRef]
- Phillips, D.J.H.; Muttarasin, K. Trace Metals in Bivalve Molluscs from Thailand. Mar. Environ. Res. 1985, 15, 215–234. [Google Scholar] [CrossRef]
- Yap, C.K.; Lo, W.S. Metal Concentrations in Anadara granosa Collected from Intertidal Mudflats on the West Coast of Peninsular Malaysia. J. Sustain. Sci. Manag. 2013, 8, 11–21. [Google Scholar]
- Mat, I. Arsenic and Trace Metals in Commercially Important Bivalves, Anadara granosa and Paphia undulata. Bull. Environ. Contam. Toxicol. 1994, 52, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Koh, S.M.; Koh, P.K.; Khay, T.S.; Lee, Y.H.; Surif, S. Proximate Analysis and Heavy Metal Concentrations of Tissues of Cockles (Anadara granosa) from Several Cockle Farms in Peninsular Malaysia. Sains Malays. 2011, 40, 139–146. [Google Scholar]
- Babji, A.S.; Embong, M.S.; Woon, W.W. Heavy Metal Contents in Coastal Water Fishes of West Malaysia. Bull. Environ. Contam. Toxicol. 1979, 23, 830–836. [Google Scholar] [CrossRef]
- Agusa, T.; Kunito, T.; Yasunaga, G.; Iwata, H.; Subramanian, A.; Ismail, A.; Tanabe, S. Concentrations of Trace Elements in Marine Fish and Its Risk Assessment in Malaysia. Mar. Pollut. Bull. 2005, 51, 896–911. [Google Scholar] [CrossRef]
- Agusa, T.; Kunito, T.; Sudaryanto, A.; Monirith, I.; Kan-Atireklap, S.; Iwata, H.; Ismail, A.; Sanguansin, J.; Muchtar, M.; Tana, T.S.; et al. Exposure Assessment for Trace Elements from Consumption of Marine Fish in Southeast Asia. Environ. Pollut. Barking Essex 2007, 145, 766–777. [Google Scholar] [CrossRef]
- Ong, M.C.; Kamaruzaman, M.I.; Norhidayah, S.A.; Joseph, B. Trace Metal in Highly Commercial Fishes Caught along Coastal Water of Setiu, Terengganu, Malaysia. Int. J. Appl. Chem. 2016, 12, 773–784. [Google Scholar]
- Ong, M.C.; Abd Aziz, N.; Shazili, N.A.M.; Yunus, K. Selected Heavy Metals Content in Commercial Fishes at Different Season Landed at Fisheries Development Authority of Malaysia Complex (LKIM) Complex, Kuala Terengganu, Malaysia. J. Sustain. Sci. Manag. 2018, 13, 29–38. [Google Scholar]
- Rosli, M.N.R.; Samat, S.B.; Yasir, M.S.; Yusof, M.F.M. Analysis of Heavy Metal Accumulation in Fish at Terengganu Coastal Area, Malaysia. Sains Malays. 2018, 47, 1277–1283. [Google Scholar] [CrossRef]
- Irwandi, J.; Farida, M. Mineral and Heavy Metal Contents of Marine Fin Fish in Langkawi Island, Malaysia. Int. Food Res. J. 2009, 16, 105–112. [Google Scholar]
- Azmi, W.N.F.W.; Ahmad, N.I.; Mahiyuddin, W.R.W. Heavy Metal Levels and Risk Assessment from Consumption of Marine Fish in Peninsular Malaysia. J. Environ. Prot. 2019, 10, 1450–1471. [Google Scholar] [CrossRef] [Green Version]
- Salam, M.A.; Dayal, S.R.; Siddiqua, S.A.; Muhib, M.I.; Bhowmik, S.; Kabir, M.M.; Rak, A.A.E.; Srzednicki, G. Risk Assessment of Heavy Metals in Marine Fish and Seafood from Kedah and Selangor Coastal Regions of Malaysia: A High-Risk Health Concern for Consumers. Environ. Sci. Pollut. Res. Int. 2021, 28, 55166–55175. [Google Scholar] [CrossRef] [PubMed]
- Bashir, F.; Othman, M.; Mazlan, A.G.; Rahim, S.M.; Simon, K.D. Heavy Metal Concentration in Fishes from the Coastal Waters of Kapar and Mersing, Malaysia. Turk. J. Fish. Aquat. Sci. 2013, 13, 375–382. [Google Scholar] [CrossRef]
- Kamaruzzaman, Y.; Rina, Z.; John, B.A.; Jalal, K.C.A. Heavy Metal Accumulation in Commercially Important Fishes of South West Malaysian Coast. Res. J. Env. Sci. 2011, 5, 595–602. [Google Scholar] [CrossRef] [Green Version]
- Kamaruzzaman, B.Y.; Ong, M.C.; Jalal, K.C.A. Levels of Copper, Zinc and Lead in Fishes of Mengabang Telipot River, Terengganu, Malaysia. J. Biol. Sci. 2008, 8, 1181–1186. [Google Scholar] [CrossRef] [Green Version]
- Kamarulzaman, B.Y.; Ong, M.C.; Rina, S.Z. Concentration of Zn, Cu and Pb in Some Selected Marine Fishes of the Pahang Coastal Waters, Malaysia. Am. J. Appl. Sci. 2010, 7, 309–314. [Google Scholar] [CrossRef]
- Mohsin, A.K.M.; Ambak, M.A. Marine Fishes & Fisheries of Malaysia and Neighbouring Countries; Universiti Pertanian Malaysia Press: Serdang, Malaysia, 1996; ISBN 978-983-9319-04-0. [Google Scholar]
- Yap, C.K.; Jusoh, A.; Leong, W.J.; Karami, A.; Ong, G.H. Potential Human Health Risk Assessment of Heavy Metals via the Consumption of Tilapia Oreochromis mossambicus Collected from Contaminated and Uncontaminated Ponds. Environ. Monit. Assess. 2015, 187, 584. [Google Scholar] [CrossRef]
- US FDA/CFSAN, National Shellfish Sanitation Program. Guide for the Control of Molluscan Shellfish. Guidance Documents Chapter II. Growing Areas: 04. In Action Levels, Tolerances, and Guidance Levels for Poisonous or Deleterious Substances in Seafood; U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition: College Park, MD, USA, 2007. [Google Scholar]
- Nurul Izzah, A.; Wan Rozita, W.M.; Tengku Rozaina, T.M.; Cheong, Y.L.; Daud, S.F.; Nasriyah, C.H.; Nor Aini, A.; Rafiza, S.; Lokman, H.S. Fish Consumption Pattern among Adults of Different Ethnics in Peninsular Malaysia. Food Nutr. Res. 2016, 60, 32697. [Google Scholar] [CrossRef] [Green Version]
- Idriss, A.A.; Ahmad, A.K. Heavy Metal Concentrations in Fishes from Juru River, Estimation of the Health Risk. Bull. Environ. Contam. Toxicol. 2015, 94, 204–208. [Google Scholar] [CrossRef] [PubMed]
- US EPA Human Health Risk Assessment. Regional Screening Level (RSL)-Summary Table November 2021. Available online: https://semspub.epa.gov/work/HQ/401635.pdf (accessed on 26 December 2021).
- JECFA. Summary and Conclusions of the Seventy-Third Meeting of the JECFA; Joint FAO/WHO Expert Committee on Food Additives, Food and Agriculture Organization of the United Nations: Geneva, Switzerland, 2010. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality. Volume 1, Recommendations, 2nd ed.; World Health Organization: Geneva, Switzerland, 1993. [Google Scholar]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.R.; Leblanc, J.; et al. Update of the Risk Assessment of Nickel in Food and Drinking Water. EFSA J. 2020, 18, e06040. [Google Scholar] [CrossRef] [PubMed]
- Jović, M.; Stanković, S. Human Exposure to Trace Metals and Possible Public Health Risks via Consumption of Mussels Mytilus galloprovincialis from the Adriatic Coastal Area. Food Chem. Toxicol. 2014, 70, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, M.; Al-Najjar, T.; Alawi, D.M.; Disi, A.A. Levels of Trace Metals in Three Fish Species Decapterus macrellus, Decapterus macrosomos and Decapterus russelli of the Family Carangidae from the Gulf of Aqaba, Read Sea, Jordan. Nat. Sci. 2012, 4, 362–367. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, Q.; Bat, L.; Yousuf, F.; Mohammad Ali, Q.; Nazim, K. Accumulation of Heavy Metals (Fe, Mn, Cu, Zn, Ni, Pb, Cd and Cr) in Tissues of Narrow-Barred Spanish Mackerel (Family-Scombridae) Fish Marketed by Karachi Fish Harbor. Open Biol. Sci. J. 2015, 1, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Abadi, D.R.V.; Dobaradaran, S.; Nabipour, I.; Lamani, X.; Ravanipour, M.; Tahmasebi, R.; Nazmara, S. Comparative Investigation of Heavy Metal, Trace, and Macro Element Contents in Commercially Valuable Fish Species Harvested off from the Persian Gulf. Environ. Sci. Pollut. Res. Int. 2015, 22, 6670–6678. [Google Scholar] [CrossRef]
- Janadeleh, H.; Jahangiri, S. Risk Assessment and Heavy Metal Contamination in Fish (Otolithes ruber) and Sediments in Persian Gulf. J. Community Health Res. 2016, 5, 169–181. [Google Scholar]
- Niri, A.S.; Sharifian, S.; Ahmadi, R. Assessment of Metal Accumulation in Two Fish Species (Tenualosa ilisha and Otolithes ruber), Captured from the North of Persian Gulf. Bull. Environ. Contam. Toxicol. 2015, 94, 71–76. [Google Scholar] [CrossRef]
- Hosseini, M.; Nabavi, S.M.B.; Nabavi, S.N.; Pour, N.A. Heavy Metals (Cd, Co, Cu, Ni, Pb, Fe, and Hg) Content in Four Fish Commonly Consumed in Iran: Risk Assessment for the Consumers. Environ. Monit. Assess. 2015, 187, 237. [Google Scholar] [CrossRef]
- Gu, Y.-G.; Huang, H.-H.; Lin, Q. Concentrations and Human Health Implications of Heavy Metals in Wild Aquatic Organisms Captured from the Core Area of Daya Bay’s Fishery Resource Reserve, South China Sea. Environ. Toxicol. Pharmacol. 2016, 45, 90–94. [Google Scholar] [CrossRef]
- Soegianto, A.; Irawan, B. Hamami Bioaccumulation of Heavy Metals in Aquatic Animals Collected from Coastal Waters of Gresik Indonesia. Asian J. Water Environ. Pollut. 2009, 6, 95–100. [Google Scholar]
- Abdolahpur Monikh, F.; Safahieh, A.; Savari, A.; Ronagh, M.T.; Doraghi, A. The Relationship between Heavy Metal (Cd, Co, Cu, Ni and Pb) Levels and the Size of Benthic, Benthopelagic and Pelagic Fish Species, Persian Gulf. Bull. Environ. Contam. Toxicol. 2013, 90, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Ravanbakhsh, M.; Javid, A.; Hadi, M.; Fard, N. Heavy Metals Risk Assessment in Fish Species (Johnius belangerii (C) and Cynoglossus arel) in Musa Estuary, Persian Gulf. Environ. Res. 2020, 188, 109560. [Google Scholar] [CrossRef] [PubMed]
- Rakib, M.R.J.; Jolly, Y.N.; Enyoh, C.E.; Khandaker, M.U.; Hossain, M.B.; Akther, S.; Alsubaie, A.; Almalki, A.S.A.; Bradley, D.A. Levels and Health Risk Assessment of Heavy Metals in Dried Fish Consumed in Bangladesh. Sci. Rep. 2021, 11, 14642. [Google Scholar] [CrossRef]
- Ahmed, Q.; Bat, L.; Mohammad, Q. Bioaccumulation of Nine Heavy Metals in Some Tissues of Anodontostoma chacunda (Hamilton, 1822) in the Arabian Sea Coasts of Pakistan. Nat. Eng. Sci. 2017, 2, 79–92. [Google Scholar] [CrossRef] [Green Version]
- Mziray, P.; Kimirei, I. Bioaccumulation of Heavy Metals in Marine Fishes (Siganus sutor, Lethrinus harak, and Rastrelliger kanagurta) from Dar Es Salaam Tanzania. Reg. Stud. Mar. Sci. 2016, 7, 72–80. [Google Scholar] [CrossRef]
- Rejomon, G.; Nair, M.; Joseph, T. Trace Metal Dynamics in Fishes from the Southwest Coast of India. Environ. Monit. Assess. 2010, 167, 243–255. [Google Scholar] [CrossRef]
- Gu, Y.-G.; Lin, Q.; Wang, X.-H.; Du, F.-Y.; Yu, Z.-L.; Huang, H.-H. Heavy Metal Concentrations in Wild Fishes Captured from the South China Sea and Associated Health Risks. Mar. Pollut. Bull. 2015, 96, 508–512. [Google Scholar] [CrossRef]
- Kalay, M.; Ay, O.; Canli, M. Heavy Metal Concentrations in Fish Tissues from the Northeast Mediterranean Sea. Bull. Environ. Contam. Toxicol. 1999, 63, 673–681. [Google Scholar] [CrossRef]
- Ihedioha, J.; Amu, I.A.; Ekere, N.; Okoye, C.O.B. Levels of Some Trace Metals (Pb, Cd and Ni) and Their Possible Health Risks from Consumption of Selected Fish and Shellfish from Nigerian Markets. Int. Food Res. J. 2016, 23, 2557–2563. [Google Scholar]
- Ishak, A.R.; Mohamad, S.; Soo, T.K.; Hamid, F.S. Leachate and Surface Water Characterization and Heavy Metal Health Risk on Cockles in Kuala Selangor. Procedia Soc. Behav. Sci. 2016, 222, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.H.; Yap, C.K. Potential Human Health Risks from Toxic Metals via Mangrove Snail Consumption and Their Ecological Risk Assessments in the Habitat Sediment from Peninsular Malaysia. Chemosphere 2015, 135, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Xu, X.; Zeng, J.; Shi, X.; Liao, Y.; Du, P.; Tang, Y.; Huang, W.; Chen, Q.; Shou, L. Heavy Metal Concentrations in Commercial Marine Organisms from Xiangshan Bay, China, and the Potential Health Risks. Mar. Pollut. Bull. 2019, 141, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.A.; Picot, C.; Tran, T.L.; Carpentier, F.G.; Roudot, A.C.; Parent-Massin, D. Evaluation of Shellfish Consumption in Nha Trang City, Southern Coastal Vietnam. Mal. J. Nutr. 2012, 18, 37–45. [Google Scholar]
Fish (N = 19) | DW | WW | EDI | High EDI | THQ | High THQ | EWI | High EWI | PTWI * | Intake * | High Intake ** | PTWI% * | High PTWI% ** |
Minimum | 0.48 | 0.11 | 0.18 | 0.35 | 0.01 | 0.02 | 1.24 | 2.48 | 6.27 | 0.08 | 0.15 | 1.36 | 2.73 |
Maximum | 3.84 | 0.90 | 1.45 | 2.90 | 0.07 | 0.15 | 10.2 | 20.3 | 51.3 | 0.63 | 1.26 | 11.2 | 22.3 |
Mean | 1.45 | 0.32 | 0.52 | 1.04 | 0.03 | 0.05 | 3.64 | 7.28 | 23.2 | 0.23 | 0.45 | 4.00 | 8.01 |
Median | 1.52 | 0.33 | 0.53 | 1.06 | 0.03 | 0.05 | 3.73 | 7.45 | 17.1 | 0.23 | 0.46 | 4.09 | 8.19 |
SD | 0.82 | 0.18 | 0.30 | 0.59 | 0.02 | 0.03 | 2.08 | 4.16 | 12.9 | 0.13 | 0.26 | 2.29 | 4.57 |
Snails (N = 17) | DW | WW | EDI | High EDI | THQ | High THQ | EWI | High EWI | PTWI * | Intake * | High Intake ** | PTWI% * | High PTWI% ** |
Minimum | 1.67 | 0.40 | 0.26 | 0.52 | 0.01 | 0.03 | 1.81 | 3.61 | 0.92 | 0.11 | 0.22 | 1.99 | 3.97 |
Maximum | 25.6 | 6.14 | 3.96 | 7.92 | 0.20 | 0.40 | 27.7 | 55.46 | 14.11 | 1.72 | 3.44 | 30.5 | 60.9 |
Mean | 10.9 | 2.64 | 1.70 | 3.40 | 0.08 | 0.17 | 11.9 | 23.82 | 3.63 | 0.74 | 1.48 | 13.1 | 26.2 |
Median | 10.7 | 2.58 | 1.66 | 3.33 | 0.08 | 0.17 | 11.6 | 23.30 | 2.19 | 0.72 | 1.44 | 12.8 | 25.6 |
SD | 7.00 | 1.68 | 1.08 | 2.17 | 0.06 | 0.11 | 7.59 | 15.18 | 3.34 | 0.47 | 0.94 | 8.34 | 16.7 |
Cockles (N = 12) | DW | WW | EDI | High EDI | THQ | High THQ | EWI | High EWI | PTWI * | Intake * | High Intake ** | PTWI%* | High PTWI%** |
Minimum | 0.74 | 0.15 | 0.10 | 0.19 | 0.00 | 0.01 | 0.68 | 1.35 | 1.75 | 0.04 | 0.08 | 0.74 | 1.49 |
Maximum | 16.2 | 3.23 | 2.08 | 4.17 | 0.10 | 0.21 | 14.6 | 29.2 | 37.6 | 0.90 | 1.81 | 16.0 | 32.1 |
Mean | 3.88 | 0.78 | 0.50 | 1.00 | 0.02 | 0.05 | 3.51 | 7.01 | 19.3 | 0.22 | 0.44 | 3.85 | 7.71 |
Median | 1.58 | 0.32 | 0.20 | 0.41 | 0.01 | 0.02 | 1.43 | 2.85 | 18.3 | 0.09 | 0.18 | 1.57 | 3.13 |
SD | 4.62 | 0.92 | 0.59 | 1.19 | 0.03 | 0.06 | 4.17 | 8.34 | 14.5 | 0.26 | 0.52 | 4.58 | 9.16 |
Mussels (N = 40) | DW | WW | EDI | High EDI | THQ | High THQ | EWI | High EWI | PTWI * | Intake * | High Intake ** | PTWI% * | High PTWI% ** |
Minimum | 1.94 | 0.33 | 0.21 | 0.43 | 0.01 | 0.02 | 1.49 | 2.98 | 0.29 | 0.09 | 0.18 | 1.64 | 3.28 |
Maximum | 114 | 19.3 | 12.5 | 24.9 | 0.62 | 1.25 | 87.2 | 174 | 17.1 | 5.40 | 10.81 | 95.8 | 191 |
Mean | 18.9 | 3.2 | 2.07 | 4.13 | 0.10 | 0.21 | 14.5 | 28.9 | 5.42 | 0.90 | 1.79 | 15.9 | 31.8 |
Median | 6.91 | 1.18 | 0.76 | 1.52 | 0.04 | 0.07 | 5.30 | 10.6 | 4.80 | 0.33 | 0.66 | 5.84 | 11.7 |
SD | 31.5 | 5.33 | 3.44 | 6.87 | 0.17 | 0.34 | 24.1 | 48.1 | 3.72 | 1.49 | 2.98 | 26.4 | 52.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yap, C.K.; Al-Mutairi, K.A. Comparative Study of Potentially Toxic Nickel and Their Potential Human Health Risks in Seafood (Fish and Mollusks) from Peninsular Malaysia. Biology 2022, 11, 376. https://doi.org/10.3390/biology11030376
Yap CK, Al-Mutairi KA. Comparative Study of Potentially Toxic Nickel and Their Potential Human Health Risks in Seafood (Fish and Mollusks) from Peninsular Malaysia. Biology. 2022; 11(3):376. https://doi.org/10.3390/biology11030376
Chicago/Turabian StyleYap, Chee Kong, and Khalid Awadh Al-Mutairi. 2022. "Comparative Study of Potentially Toxic Nickel and Their Potential Human Health Risks in Seafood (Fish and Mollusks) from Peninsular Malaysia" Biology 11, no. 3: 376. https://doi.org/10.3390/biology11030376
APA StyleYap, C. K., & Al-Mutairi, K. A. (2022). Comparative Study of Potentially Toxic Nickel and Their Potential Human Health Risks in Seafood (Fish and Mollusks) from Peninsular Malaysia. Biology, 11(3), 376. https://doi.org/10.3390/biology11030376