Development of Artificial Synthetic Pathway of Endophenazines in Pseudomonas chlororaphis P3
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains, Plasmids, and Culture Conditions
2.2. DNA Manipulation
2.3. Analytical Procedures for Phenazine Derivatives
2.4. Purification and Structural Identification of Phenazine Derivatives
2.5. Statistical Analysis
3. Results
3.1. Construction of Biosynthetic Pathway for Endophenazine A in P. chlororaphis P3
3.2. Overexpression of ppzP Gene Enhanced the Production of Endophenazine A
3.3. Purification and Structural Identification of the Compound B
3.4. HMBPP Is the Precursor for the Synthesis of Endophenazine A1
3.5. Modification of Metabolic Pathways to Increase the Production of Endophenazine A
3.6. Modification of Metabolic Pathways to Increase the Production of Endophenazine A1
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mavrodi, D.V.; Peever, T.L.; Mavrodi, O.V.; Parejko, J.A.; Raaijmakers, J.M.; Lemanceau, P.; Mazurier, S.; Heide, L.; Blankenfeldt, W.; Weller, D.M. Diversity and evolution of the phenazine biosynthesis pathway. Appl. Environ. Microbiol. 2010, 76, 866–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierson, L.S.; Pierson, E.A. Metabolism and function of phenazines in bacteria: Impacts on the behavior of bacteria in the environment and biotechnological processes. Appl. Microbiol. Biotechnol. 2010, 86, 1659–1670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laursen, J.B.; Nielsen, J. Phenazine natural products: Biosynthesis, synthetic analogues, and biological activity. Chem. Rev. 2004, 104, 1663–1686. [Google Scholar] [CrossRef] [PubMed]
- Ligon, J.M.; Hill, D.S.; Hammer, P.E.; Torkewitz, N.R.; Hofmann, D.; Kempf, H.J.; Pée, K.H.v. Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag. Sci. 2000, 56, 688–695. [Google Scholar] [CrossRef]
- Makgatho, M.E.; Anderson, R.; O’Sullivan, J.F.; Egan, T.J.; Freese, J.A.; Cornelius, N.; van Rensburg, C.E. Tetramethylpiperidine-substituted phenazines as novel anti-plasmodial agents. Drug Dev. Res. 2000, 50, 195–202. [Google Scholar] [CrossRef]
- Cheluvappa, R. Standardized chemical synthesis of Pseudomonas aeruginosa pyocyanin. MethodsX 2014, 1, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Elhady, H.A.; El-Mekawy, R.E.; Fadda, A. Valuable Chemistry of Phenazine Derivatives: Synthesis, Reactions and, Applications. Polycycl. Aromat. Compd. 2020, 1–33. [Google Scholar] [CrossRef]
- Kondratyuk, T.P.; Park, E.-J.; Yu, R.; Van Breemen, R.B.; Asolkar, R.N.; Murphy, B.T.; Fenical, W.; Pezzuto, J.M. Novel marine phenazines as potential cancer chemopreventive and anti-inflammatory agents. Mar. Drugs 2012, 10, 451–464. [Google Scholar] [CrossRef] [Green Version]
- Cimmino, A.; Evidente, A.; Mathieu, V.; Andolfi, A.; Lefranc, F.; Kornienko, A.; Kiss, R. Phenazines and cancer. Nat. Prod. Rep. 2012, 29, 487–501. [Google Scholar] [CrossRef]
- Gebhardt, K.; Schimana, J.; Krastel, P.; Dettner, K.; Rheinheimer, J.; Zeeck, A.; Fiedler, H.-P. Endophenazines A–D, New Phenazine Antibiotics from the Arthropod Associated Endosymbiont Streptomyces anulatus I. Taxonomy, Fermentation, Isolation and Biological Activities. J. Antibiot. 2002, 55, 794–800. [Google Scholar] [CrossRef] [Green Version]
- Omura, S.; Eda, S.; Funayama, S.; Komiyama, K.; Takahashi, Y.; Woodruff, H.B. Studies on a novel antitumor antibiotic, phenazinomycin: Taxonomy, fermentation, isolation, and physicochemical and biological characteristics. J. Antibiot. 1989, 42, 1037. [Google Scholar] [CrossRef] [Green Version]
- Saleh, O.; Gust, B.; Boll, B.; Fiedler, H.-P.; Heide, L. Aromatic prenylation in phenazine biosynthesis: Dihydrophenazine-1-carboxylate dimethylallyltransferase from Streptomyces anulatus. J. Biol. Chem. 2009, 284, 14439–14447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krastel, P.; Zeeck, A.; Gebhardt, K.; Fiedler, H.-P.; Rheinheimer, J. Endophenazines A–D, new phenazine antibiotics from the athropod associated endosymbiont Streptomyces anulatus II. Structure elucidation. J. Antibiot. 2002, 55, 801–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleh, O.; Flinspach, K.; Westrich, L.; Kulik, A.; Gust, B.; Fiedler, H.-P.; Heide, L. Mutational analysis of a phenazine biosynthetic gene cluster in Streptomyces anulatus 9663. Beilstein J. Org. Chem. 2012, 8, 501–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giddens, S.R.; Feng, Y.; Mahanty, H.K. Characterization of a novel phenazine antibiotic gene cluster in Erwinia herbicola Eh1087. Mol. Microbiol. 2002, 45, 769–783. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.-M.; Brachmann, A.O.; Westphalen, M.A.; Neubacher, N.; Tobias, N.J.; Bode, H.B. Dual phenazine gene clusters enable diversification during biosynthesis. Nat. Chem. Biol. 2019, 15, 331–339. [Google Scholar] [CrossRef]
- Zhang, C.; Sheng, C.; Wang, W.; Hu, H.; Peng, H.; Zhang, X. Identification of the lomofungin biosynthesis gene cluster and associated flavin-dependent monooxygenase gene in Streptomyces lomondensis S015. PLoS ONE 2015, 10, e0136228. [Google Scholar] [CrossRef] [Green Version]
- Chin-A-Woeng, T.F.; Thomas-Oates, J.E.; Lugtenberg, B.J.; Bloemberg, G.V. Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Mol. Plant-Microbe Interact. 2001, 14, 1006–1015. [Google Scholar] [CrossRef] [Green Version]
- Delaney, S.M.; Mavrodi, D.V.; Bonsall, R.F.; Thomashow, L.S. phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84. J. Bacteriol. 2001, 183, 318–327. [Google Scholar] [CrossRef] [Green Version]
- Greenhagen, B.T.; Shi, K.; Robinson, H.; Gamage, S.; Bera, A.K.; Ladner, J.E.; Parsons, J.F. Crystal structure of the pyocyanin biosynthetic protein PhzS. Biochemistry 2008, 47, 5281–5289. [Google Scholar] [CrossRef]
- Parsons, J.F.; Greenhagen, B.T.; Shi, K.; Calabrese, K.; Robinson, H.; Ladner, J.E. Structural and functional analysis of the pyocyanin biosynthetic protein PhzM from Pseudomonas aeruginosa. Biochemistry 2007, 46, 1821–1828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavrodi, D.V.; Blankenfeldt, W.; Thomashow, L.S. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu. Rev. Phytopathol. 2006, 44, 417–445. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Zhang, P.; Bilal, M.; Wang, W.; Hu, H.; Zhang, X. Enhanced biosynthesis of phenazine-1-carboxamide by engineered Pseudomonas chlororaphis HT66. Microb. Cell Fact. 2018, 17, 117. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.-J.; Peng, H.-S.; Hu, H.-B.; Huang, X.-Q.; Wang, W.; Zhang, X.-H. iTRAQ-based quantitative proteomic analysis reveals potential factors associated with the enhancement of phenazine-1-carboxamide production in Pseudomonas chlororaphis P3. Sci. Rep. 2016, 6, 27393. [Google Scholar] [CrossRef] [Green Version]
- Mavrodi, D.V.; Ksenzenko, V.N.; Bonsall, R.F.; Cook, R.J.; Boronin, A.M.; Thomashow, L.S. A seven-gene locus for synthesis of phenazine1-carboxylic acid by Pseudomonas fluorescens 2-79. J. Bacteriol. 1998, 180, 2541–2548. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Arranz, S.; Perez-Gil, J.; Marshall-Sabey, D.; Rodriguez-Concepcion, M. Engineering Pseudomonas putida for isoprenoid production by manipulating endogenous and shunt pathways supplying precursors. Microb. Cell Fact. 2019, 18, 152. [Google Scholar] [CrossRef] [Green Version]
- Sharkey, T.D.; Wiberley, A.E.; Donohue, A.R. Isoprene emission from plants: Why and how. Ann. Bot. 2008, 101, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Chang, W.-C.; Xiao, Y.; Liu, H.-W.; Liu, P. Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu. Rev. Biochem. 2013, 82, 497–530. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.; Sharkey, T. Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Nat. Prod. Rep. 2014, 31, 1043–1055. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, M.; Misawa, N.; Sandmann, G. Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids β-carotene and zeaxanthin. Biotechnol. Lett. 1999, 21, 791–795. [Google Scholar] [CrossRef]
- Li, Q.; Fan, F.; Gao, X.; Yang, C.; Bi, C.; Tang, J.; Liu, T.; Zhang, X. Balanced activation of IspG and IspH to eliminate MEP intermediate accumulation and improve isoprenoids production in Escherichia coli. Metab. Eng. 2017, 44, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.X.; Zhang, Z.; Li, H.L.; Wang, W.; Hu, H.B.; Zhang, X.H. Identification of a Novel Bioactive Phenazine Derivative and Regulation of phoP on Its Production in Streptomyces lomondensis S015. J. Agric. Food Chem. 2021, 69, 974–981. [Google Scholar] [CrossRef] [PubMed]
- Heine, D.; Martin, K.; Hertweck, C. Genomics-guided discovery of endophenazines from Kitasatospora sp. HKI 714. J. Nat. Prod. 2014, 77, 1083–1087. [Google Scholar] [CrossRef] [PubMed]
- McAteer, S.; Coulson, A.; McLennan, N.; Masters, M. The lytB gene of Escherichia coli is essential and specifies a product needed for isoprenoid biosynthesis. J. Bacteriol. 2001, 183, 7403–7407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seeger, K.; Flinspach, K.; Haug-Schifferdecker, E.; Kulik, A.; Gust, B.; Fiedler, H.P.; Heide, L. The biosynthetic genes for prenylated phenazines are located at two different chromosomal loci of Streptomyces cinnamonensis DSM 1042. Microb. Biotechnol. 2011, 4, 252–262. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Fu, C.; Bilal, M.; Hu, H.; Wang, W.; Zhang, X. Enhanced biosynthesis of arbutin by engineering shikimate pathway in Pseudomonas chlororaphis P3. Microb. Cell Fact. 2018, 17, 174. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Van Wezel, G.P.; Choi, Y.H. Identification of novel endophenaside antibiotics produced by Kitasatospora sp. MBT66. J. Antibiot. 2015, 68, 445–452. [Google Scholar] [CrossRef]
- Wu, C.; Medema, M.H.; Läkamp, R.M.; Zhang, L.; Dorrestein, P.C.; Choi, Y.H.; Van Wezel, G.P. Leucanicidin and endophenasides result from methyl-rhamnosylation by the same tailoring enzymes in Kitasatospora sp. MBT66. ACS Chem. Biol. 2016, 11, 478–490. [Google Scholar] [CrossRef]
- Gräwert, T.; Kaiser, J.; Zepeck, F.; Laupitz, R.; Hecht, S.; Amslinger, S.; Schramek, N.; Schleicher, E.; Weber, S.; Haslbeck, M. IspH protein of Escherichia coli: Studies on Iron− Sulfur cluster implementation and catalysis. J. Am. Chem. Soc. 2004, 126, 12847–12855. [Google Scholar] [CrossRef]
- Zocher, G.; Saleh, O.; Heim, J.B.; Herbst, D.A.; Heide, L.; Stehle, T. Structure-based engineering increased the catalytic turnover rate of a novel phenazine prenyltransferase. PLoS ONE 2012, 7, e48427. [Google Scholar] [CrossRef] [Green Version]
- Hibbert, E.G.; Senussi, T.; Smith, M.E.; Costelloe, S.J.; Ward, J.M.; Hailes, H.C.; Dalby, P.A. Directed evolution of transketolase substrate specificity towards an aliphatic aldehyde. J. Biotechnol. 2008, 134, 240–245. [Google Scholar] [CrossRef] [PubMed]
Strains/Plasmids | Characteristics | Reference |
Strains | ||
DH5α | The host for plasmid transformation | Lab stock |
S17-1(λpir) | Donor strain for conjugation | Lab stock |
P3 | A mutant from P. chlororaphis HT66 with a high PCN | Lab stock |
P3-A0 P3-A1 | Deletion of phzH in P3 Introduction of ppzP in the chromosome of P3 | This study This study |
P3-A2 P3-A3 P3-A4 | Overexpression of ppzP in P3-A1 Integration of pBBR1MCS plasmid in P3-A1 Co-overexpression of ppzP and ispG in P3-A1 | This study This study This study |
P3-A5 | Co-overexpression of ppzP and ispH in P3-A1 | This study |
P3-A6 | Co-overexpression of ppzP and idi in P3-A1 | This study |
P3-A7 P3-A8 P3-A9 | Co-overexpression of ppzP,idi and ispH in P3-A1 Deletion of idi in P3-A2 Overexpression of ispG in P3-A8 | This study This study This study |
Plasmids | ||
pK18mobsacB | Broad-host-range plasmid for gene deletion, sacB, Kanr | Lab stock |
pK18-phzH pK18-idi | pK18mobsacB plasmid for phzH deletion pK18mobsacB plasmid for idi deletion | This study This study |
pBBR1MCS | Overexpression vector with lac promoter, Kanr | Lab stock |
pBBR-ppzP | pBBR1MCS for overexpression ppzP | This study |
pBBR-ppzP-idi | pBBR1MCS for co-overexpression ppzP and idi | This study |
pBBR-ppzP-ispG pBBR- ppzP-ispH pBBR-ppzP-idi-ispH | pBBR1MCS for co-overexpression ppzP and ispG pBBR1MCS for co-overexpression ppzP and ispH pBBR1MCS for co-overexpression ppzP, idi and ispH | This study This study This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yue, S.; Bilal, M.; Jan, M.; Wang, W.; Hu, H.; Zhang, X. Development of Artificial Synthetic Pathway of Endophenazines in Pseudomonas chlororaphis P3. Biology 2022, 11, 363. https://doi.org/10.3390/biology11030363
Liu Y, Yue S, Bilal M, Jan M, Wang W, Hu H, Zhang X. Development of Artificial Synthetic Pathway of Endophenazines in Pseudomonas chlororaphis P3. Biology. 2022; 11(3):363. https://doi.org/10.3390/biology11030363
Chicago/Turabian StyleLiu, Ying, Shengjie Yue, Muhammad Bilal, Malik Jan, Wei Wang, Hongbo Hu, and Xuehong Zhang. 2022. "Development of Artificial Synthetic Pathway of Endophenazines in Pseudomonas chlororaphis P3" Biology 11, no. 3: 363. https://doi.org/10.3390/biology11030363
APA StyleLiu, Y., Yue, S., Bilal, M., Jan, M., Wang, W., Hu, H., & Zhang, X. (2022). Development of Artificial Synthetic Pathway of Endophenazines in Pseudomonas chlororaphis P3. Biology, 11(3), 363. https://doi.org/10.3390/biology11030363