Small RNA Targets: Advances in Prediction Tools and High-Throughput Profiling
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Identification of sRNA–Target Interactions
2.2. Computational Identification of sRNA–Target Interactions
2.2.1. Evolution of the Methods for Computational Identification of sRNA–Target Interaction
2.2.2. Description of Selected Computational Methods
sRNA–Target Interactions
miRNA–Target Interactions
tRF–Target Interactions
siRNA Off-Target Interactions
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, T.; Chou, M.Y.; Inouye, M. A unique mechanism regulating gene expression: Translational inhibition by a complementary RNA transcript (micRNA). Proc. Natl. Acad. Sci. USA 1984, 81, 1966–1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalaouna, D.; Simoneau-Roy, M.; Lafontaine, D.; Massé, E. Regulatory RNAs and target mRNA decay in prokaryotes. Biochim. et Biophys. Acta 2013, 1829, 742–747. [Google Scholar] [CrossRef]
- Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carthew, R.W.; Sontheimer, E.J. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009, 136, 642–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozata, D.M.; Gainetdinov, I.; Zoch, A.; O’Carroll, D.; Zamore, P.D. PIWI-interacting RNAs: Small RNAs with big functions. Nat. Rev. Genet. 2018, 20, 89–108. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Rana, T.M. Molecular Mechanisms of RNA-Triggered Gene Silencing Machineries. Accounts Chem. Res. 2012, 45, 1122–1131. [Google Scholar] [CrossRef]
- Huang, X.; Tóth, K.F.; Aravin, A.A. piRNA Biogenesis in Drosophila melanogaster. Trends Genet. 2017, 33, 882–894. [Google Scholar] [CrossRef] [Green Version]
- Shabalina, S.A.; Koonin, E.V. Origins and evolution of eukaryotic RNA interference. Trends Ecol. Evol. 2008, 23, 578–587. [Google Scholar] [CrossRef]
- Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets. Cell 2005, 120, 15–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartel, D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, A.L.; Burchard, J.; Schelter, J.; Chau, B.N.; Cleary, M.; Lim, L.; Linsley, P.S. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. Rna 2006, 12, 1179–1187. [Google Scholar] [CrossRef] [Green Version]
- Neumeier, J.; Meister, G. siRNA Specificity: RNAi Mechanisms and Strategies to Reduce Off-Target Effects. Front. Plant Sci. 2021, 11. Available online: https://www.frontiersin.org/articles/10.3389/fpls.2020.526455 (accessed on 9 August 2022). [CrossRef]
- Borges, F.; Martienssen, R.A. The expanding world of small RNAs in plants. Nat. Rev. Mol. Cell Biol. 2015, 16, 727–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaucheret, H. Plant argonautes. Trends Plant Sci. 2008, 13, 350–358. [Google Scholar] [CrossRef]
- Melnyk, C.W.; Molnar, A.; Baulcombe, D. Intercellular and systemic movement of RNA silencing signals. EMBO J. 2011, 30, 3553–3563. [Google Scholar] [CrossRef]
- Voinnet, O.; Vain, P.; Angell, S.; Baulcombe, D.C. Systemic Spread of Sequence-Specific Transgene RNA Degradation in Plants Is Initiated by Localized Introduction of Ectopic Promoterless DNA. Cell 1998, 95, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Buhtz, A.; Springer, F.; Chappell, L.; Baulcombe, D.; Kehr, J. Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J. 2007, 53, 739–749. [Google Scholar] [CrossRef]
- Dexheimer, P.J.; Cochella, L. MicroRNAs: From Mechanism to Organism. Front. Cell Dev. Biol. 2020, 8, 409. [Google Scholar] [CrossRef]
- Millar, A.; Waterhouse, P.M. Plant and animal microRNAs: Similarities and differences. Funct. Integr. Genom. 2005, 5, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Axtell, M.J.; Westholm, J.; Lai, E.C. Vive la différence: Biogenesis and evolution of microRNAs in plants and animals. Genome Biol. 2011, 12, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogel, J.; Luisi, B.F. Hfq and its constellation of RNA. Nat. Rev. Genet. 2011, 9, 578–589. [Google Scholar] [CrossRef] [Green Version]
- Melamed, S.; Adams, P.P.; Zhang, A.; Zhang, H.; Storz, G. RNA-RNA Interactomes of ProQ and Hfq Reveal Overlapping and Competing Roles. Mol. Cell 2019, 77, 411–425.e7. [Google Scholar] [CrossRef] [PubMed]
- Storz, G.; Vogel, J.; Wassarman, K.M. Regulation by Small RNAs in Bacteria: Expanding Frontiers. Mol. Cell 2011, 43, 880–891. [Google Scholar] [CrossRef] [Green Version]
- Papenfort, K.; Vanderpool, C.K. Target activation by regulatory RNAs in bacteria. FEMS Microbiol. Rev. 2015, 39, 362–378. [Google Scholar] [CrossRef] [Green Version]
- Wagner, E.G.H.; Romby, P. Small RNAs in Bacteria and Archaea: Who they are, what they do, and how they do it. Adv. Genet. 2015, 90, 133–208. [Google Scholar] [CrossRef]
- Hör, J.; Matera, G.; Vogel, J.; Gottesman, S.; Storz, G. Trans-Acting Small RNAs and Their Effects on Gene Expression in Escherichia coli and Salmonella enterica. EcoSal Plus 2020, 9. [Google Scholar] [CrossRef] [Green Version]
- Babski, J.; Maier, L.-K.; Heyer, R.; Jaschinski, K.; Prasse, D.; Jäger, D.; Randau, L.; Schmitz, R.a.; Marchfelder, A.; Soppa, J. Small regulatory RNAs in Archaea. RNA Biol. 2014, 11, 484–493. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, S.; Egan, M.; Jenkins, V.; Muche, S.; El-Fenej, J. The Tip of the Iceberg: On the Roles of Regulatory Small RNAs in the Virulence of Enterohemorrhagic and Enteropathogenic Escherichia coli. Front. Cell Infect. Microbiol. 2016, 6, 105. [Google Scholar] [CrossRef]
- Lease, R.A.; Belfort, M. A trans-acting RNA as a control switch in Escherichia coli: DsrA modulates function by form-ing alternative structures. Proc. Natl. Acad. Sci. USA 2000, 97, 9919–9924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.S.; Shibata, Y.; Malhotra, A.; Dutta, A. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev. 2009, 23, 2639–2649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haussecker, D.; Huang, Y.; Lau, A.; Parameswaran, P.; Fire, A.Z.; Kay, M.A. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 2010, 16, 673–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, A.R.; Fernandes, N.; Reverendo, M.; Araújo, H.R.; Oliveira, J.L.; Moura, G.M.R.; Santos, M.A.S. Conserved and highly expressed tRNA derived fragments in zebrafish. BMC Mol. Biol. 2015, 16, 22. [Google Scholar] [CrossRef] [Green Version]
- Schimmel, P. The emerging complexity of the tRNA world: Mammalian tRNAs beyond protein synthesis. Nat. Rev. Mol. Cell Biol. 2017, 19, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Anaya, J.; Mudunuri, S.B.; Dutta, A. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol. 2014, 12, 78. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, X.; Shi, J.; Yan, M.; Zhou, T. Origins and evolving functionalities of tRNA-derived small RNAs. Trends Biochem. Sci. 2021, 46, 790–804. [Google Scholar] [CrossRef]
- Kumar, P.; Kuscu, C.; Dutta, A. Biogenesis and Function of Transfer RNA-Related Fragments (tRFs). Trends Biochem. Sci. 2016, 41, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Kuscu, C.; Kumar, P.; Kiran, M.; Su, Z.; Malik, A.; Dutta, A. tRNA fragments (tRFs) guide Ago to regulate gene expression post-transcriptionally in a Dicer-independent manner. RNA 2018, 24, 1093–1105. [Google Scholar] [CrossRef] [Green Version]
- Hafner, M.; Landthaler, M.; Burger, L.; Khorshid, M.; Hausser, J.; Berninger, P.; Rothballer, A.; Ascano, M., Jr.; Jungkamp, A.-C.; Munschauer, M.; et al. Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP. Cell 2010, 141, 129–141. [Google Scholar] [CrossRef]
- Burroughs, A.M.; Ando, Y.; De Hoon, M.J.L.; Tomaru, Y.; Suzuki, H.; Hayashizaki, Y.; Daub, C. Deep-sequencing of human Argonaute-associated small RNAs provides insight into miRNA sorting and reveals Argonaute association with RNA fragments of diverse origin. RNA Biol. 2011, 8, 158–177. [Google Scholar] [CrossRef] [PubMed]
- Majdalani, N.; Chen, S.; Murrow, J.; John, K.S.; Gottesman, S. Regulation of RpoS by a novel small RNA: The characterization of RprA. Mol. Microbiol. 2004, 39, 1382–1394. [Google Scholar] [CrossRef] [PubMed]
- Honda, S.; Loher, P.; Shigematsu, M.; Palazzo, J.P.; Suzuki, R.; Imoto, I.; Rigoutsos, I.; Kirino, Y. Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. Proc. Natl. Acad. Sci. USA 2015, 112, E3816–E3825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magee, R.G.; Telonis, A.G.; Loher, P.; Londin, E.; Rigoutsos, I. Profiles of miRNA Isoforms and tRNA Fragments in Prostate Cancer. Sci. Rep. 2018, 8, 5314. [Google Scholar] [CrossRef] [Green Version]
- Asha, S.; Soniya, E.V. The sRNAome mining revealed existence of unique signature small RNAs derived from 5.8SrRNA from Piper nigrum and other plant lineages. Sci. Rep. 2017, 7, srep41052. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, Y.; Yang, X.; Wu, Z.; Guo, K.; Niu, X.; Wang, Q.; Ruan, J.; Bu, W.; Gao, S. Two featured series of rRNA-derived RNA fragments (rRFs) constitute a novel class of small RNAs. PLoS ONE 2017, 12, e0176458. [Google Scholar] [CrossRef] [Green Version]
- Li, S. Human 28s rRNA 5′ terminal derived small RNA inhibits ribosomal protein mRNA levels. bioRxiv 2019. bioRxiv:618520. [Google Scholar] [CrossRef] [Green Version]
- Guan, L. Age-Related Argonaute Loading of Ribosomal RNA Fragments. MicroRNA 2020, 9, 142–152. [Google Scholar] [CrossRef]
- Guan, L.; Grigoriev, A. Computational meta-analysis of ribosomal RNA fragments: Potential targets and interaction mechanisms. Nucleic Acids Res. 2021, 49, 4085–4103. [Google Scholar] [CrossRef]
- Samuel, A.L. Some Studies in Machine Learning Using the Game of Checkers. IBM J. Res. Dev. 1959, 3, 210–229. [Google Scholar] [CrossRef]
- Bishop, C.M.; Nasrabadi, N.M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics); Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Pinzón, N.; Li, B.; Martinez, L.; Sergeeva, A.; Presumey, J.; Apparailly, F.; Seitz, H. microRNA target prediction programs predict many false positives. Genome Res. 2016, 27, 234–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helwak, A.; Kudla, G.; Dudnakova, T.; Tollervey, D. Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding. Cell 2013, 153, 654–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seok, H.; Ham, J.; Jang, E.-S.; Chi, S.W. MicroRNA Target Recognition: Insights from Transcriptome-Wide Non-Canonical Interactions. Mol. Cells 2016, 39, 375–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imig, J.; Brunschweiger, A.; Brümmer, A.; Guennewig, B.; Mittal, N.; Kishore, S.; Tsikrika, P.; Gerber, A.P.; Zavolan, M.; Hall, J. miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19–miR-106a interaction. Nat. Chem. Biol. 2015, 11, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Y. Current experimental strategies for intracellular target identification of microRNA. ExRNA 2019, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Riolo, G.; Cantara, S.; Marzocchi, C.; Ricci, C. miRNA Targets: From Prediction Tools to Experimental Validation. Methods Protoc. 2020, 4, 1. [Google Scholar] [CrossRef]
- Boutz, D.R.; Collins, P.J.; Suresh, U.; Lu, M.; Ramírez, C.M.; Fernández-Hernando, C.; Huang, Y.; Abreu, R.D.S.; Le, S.-Y.; Shapiro, B.A.; et al. Two-tiered Approach Identifies a Network of Cancer and Liver Disease-related Genes Regulated by miR-122. J. Biol. Chem. 2011, 286, 18066–18078. [Google Scholar] [CrossRef] [Green Version]
- Wolter, J.M.; Kotagama, K.; Pierre-Bez, A.C.; Firago, M.; Mangone, M. 3′LIFE: A functional assay to detect miRNA targets in high-throughput. Nucleic Acids Res. 2014, 42, e132. [Google Scholar] [CrossRef] [Green Version]
- Carter, M.; Shieh, J. Biochemical Assays and Intracellular Signaling. In Guide to Research Techniques in Neuroscience, 2nd ed.; Carter, M., Shieh, J., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 311–343. [Google Scholar] [CrossRef]
- Lim, L.P.; Lau, N.C.; Garrett-Engele, P.; Grimson, A.; Schelter, J.M.; Castle, J.; Bartel, D.P.; Linsley, P.S.; Johnson, J.M. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005, 433, 769–773. [Google Scholar] [CrossRef]
- Baek, D.; Villén, J.; Shin, C.; Camargo, F.D.; Gygi, S.P.; Bartel, D.P. The impact of microRNAs on protein output. Nature 2008, 455, 64–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Ingolia, N.T.; Weissman, J.S.; Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010, 466, 835–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karginov, F.V.; Conaco, C.; Xuan, Z.; Schmidt, B.H.; Parker, J.S.; Mandel, G.; Hannon, G.J. A biochemical approach to identifying microRNA targets. Proc. Natl. Acad. Sci. USA 2007, 104, 19291–19296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, S.W.; Zang, J.B.; Mele, A.; Darnell, R.B. Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 2009, 460, 479–486. [Google Scholar] [CrossRef] [Green Version]
- König, J.; Zarnack, K.; Rot, G.; Curk, T.; Kayikci, M.; Zupan, B.; Turner, D.J.; Luscombe, N.M.; Ule, J. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 2010, 17, 909–915. [Google Scholar] [CrossRef] [Green Version]
- Van Nostrand, E.L.; Pratt, G.A.; Shishkin, A.A.; Gelboin-Burkhart, C.; Fang, M.Y.; Sundararaman, B.; Blue, S.M.; Nguyen, T.B.; Surka, C.; Elkins, K.; et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 2016, 13, 508–514. [Google Scholar] [CrossRef]
- Manakov, S.A.; Shishkin, A.A.; Yee, B.A.; Shen, K.A.; Cox, D.C.; Park, S.S.; Foster, H.M.; Chapman, K.B.; Yeo, G.W.; Van Nostrand, E.L. Scalable and deep profiling of mRNA targets for individual microRNAs with chimeric eCLIP. BioRxiv 2022. BioRxiv:2022.02.13.480296. [Google Scholar] [CrossRef]
- Helwak, A.; Tollervey, D. Mapping the miRNA interactome by cross-linking ligation and sequencing of hybrids (CLASH). Nat. Protoc. 2014, 9, 711–728. [Google Scholar] [CrossRef] [Green Version]
- Hsu, R.-J.; Yang, H.-J.; Tsai, H.-J. Labeled microRNA pull-down assay system: An experimental approach for high-throughput identification of microRNA-target mRNAs. Nucleic Acids Res. 2009, 37, e77. [Google Scholar] [CrossRef]
- Baigude, H.; Ahsanullah; Li, Z.; Zhou, Y.; Rana, T.M. miR-TRAP: A Benchtop Chemical Biology Strategy to Identify microRNA Targets. Angew. Chem. Int. Ed. 2012, 51, 5880–5883. [Google Scholar] [CrossRef]
- Li, J.; Huang, L.; Xiao, X.; Chen, Y.; Wang, X.; Zhou, Z.; Zhang, C.; Zhang, Y. Photoclickable MicroRNA for the Intracellular Target Identification of MicroRNAs. J. Am. Chem. Soc. 2016, 138, 15943–15949. [Google Scholar] [CrossRef] [PubMed]
- Lim, R.K.V.; Lin, Q. Photoinducible Bioorthogonal Chemistry: A Spatiotemporally Controllable Tool to Visualize and Perturb Proteins in Live Cells. Accounts Chem. Res. 2011, 44, 828–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Peng, H.; Cui, Q.; Zhou, Y. tRFTar: Prediction of tRF-target gene interactions via systemic re-analysis of Argonaute CLIP-seq datasets. Methods 2020, 187, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Gao, P.; Huang, X.; Chen, X.; Chen, Q.; Lv, X.; Fu, Y.; Song, Y.; Wang, Z. tRFTars: Predicting the targets of tRNA-derived fragments. J. Transl. Med. 2021, 19, 88. [Google Scholar] [CrossRef] [PubMed]
- Naskulwar, K.; Peña-Castillo, L. sRNARFTarget: A fast machine-learning-based approach for transcriptome-wide sRNA target prediction. RNA Biol. 2021, 19, 44–54. [Google Scholar] [CrossRef]
- Lück, S.; Kreszies, T.; Strickert, M.; Schweizer, P.; Kuhlmann, M.; Douchkov, D. siRNA-Finder (si-Fi) Software for RNAi-Target Design and Off-Target Prediction. Front. Plant Sci. 2019, 10, 1023. [Google Scholar] [CrossRef] [Green Version]
- Alkan, F.; Wenzel, A.; Palasca, O.; Kerpedjiev, P.; Rudebeck, A.F.; Stadler, P.F.; Hofacker, I.L.; Gorodkin, J. RIsearch2: Suffix array-based large-scale prediction of RNA–RNA interactions and siRNA off-targets. Nucleic Acids Res. 2017, 45, e60. [Google Scholar] [CrossRef] [Green Version]
- Gumienny, R.; Zavolan, M. Accurate transcriptome-wide prediction of microRNA targets and small interfering RNA off-targets with MIRZA-G. Nucleic Acids Res. 2015, 43, 1380–1391. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, S.H.; Jacobsen, A.; Krogh, A. cWords—Systematic microRNA regulatory motif discovery from mRNA expression data. Silence 2013, 4, 2–9. [Google Scholar] [CrossRef]
- King, A.M.; Vanderpool, C.; Degnan, P.H. sRNA Target Prediction Organizing Tool (SPOT) Integrates Computational and Experimental Data To Facilitate Functional Characterization of Bacterial Small RNAs. mSphere 2019, 4, e00561-18. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Zhuang, Z.; Zhao, P.X. psRNATarget: A plant small RNA target analysis server (2017 release). Nucleic Acids Res. 2018, 46, W49–W54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, M.; Wright, P.R.; Backofen, R. IntaRNA 2.0: Enhanced and customizable prediction of RNA–RNA interactions. Nucleic Acids Res. 2017, 45, W435–W439. [Google Scholar] [CrossRef] [PubMed]
- Kery, M.B.; Feldman, M.; Livny, J.; Tjaden, B. TargetRNA2: Identifying targets of small regulatory RNAs in bacteria. Nucleic Acids Res. 2014, 42, W124–W129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, P.R.; Richter, A.S.; Papenfort, K.; Mann, M.; Vogel, J.; Hess, W.R.; Backofen, R.; Georg, J. Comparative genomics boosts target prediction for bacterial small RNAs. Proc. Natl. Acad. Sci. USA 2013, 110, E3487–E3496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, P.R.; Georg, J.; Mann, M.; Sorescu, D.A.; Richter, A.S.; Lott, S.; Kleinkauf, R.; Hess, W.R.; Backofen, R. CopraRNA and IntaRNA: Predicting small RNA targets, networks and interaction domains. Nucleic Acids Res. 2014, 42, W119–W123. [Google Scholar] [CrossRef] [Green Version]
- Eggenhofer, F.; Tafer, H.; Stadler, P.F.; Hofacker, I.L. RNApredator: Fast accessibility-based prediction of sRNA targets. Nucleic Acids Res. 2011, 39, W149–W154. [Google Scholar] [CrossRef]
- Ying, X.; Cao, Y.; Wu, J.; Liu, Q.; Cha, L.; Li, W. sTarPicker: A Method for Efficient Prediction of Bacterial sRNA Targets Based on a Two-Step Model for Hybridization. PLoS ONE 2011, 6, e22705. [Google Scholar] [CrossRef] [Green Version]
- Talukder, A.; Zhang, W.; Li, X.; Hu, H. A deep learning method for miRNA/isomiR target detection. bioRxiv 2022. bioRxiv:2022.04.04.487002. [Google Scholar] [CrossRef]
- Maxwell, E.K.; Campbell, J.D.; Spira, A.; Baxevanis, A.D. SubmiRine: Assessing variants in microRNA targets using clinical genomic data sets. Nucleic Acids Res. 2015, 43, 3886–3898. [Google Scholar] [CrossRef]
- Min, S.; Lee, B.; Yoon, S. TargetNet: Functional microRNA target prediction with deep neural networks. Bioinformatics 2021, 38, 671–677. [Google Scholar] [CrossRef]
- Shakyawar, S.; Southekal, S.; Guda, C. mintRULS: Prediction of miRNA–mRNA Target Site Interactions Using Regularized Least Square Method. Genes 2022, 13, 1528. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.; Zhao, X.; Barbazuk, W.B.; Lee, J.-H. miTAR: A hybrid deep learning-based approach for predicting miRNA targets. BMC Bioinform. 2021, 22, 96. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Luo, J.; Pan, C.; Liu, Y. SG-LSTM-FRAME: A computational frame using sequence and geometrical information via LSTM to predict miRNA–gene associations. Briefings Bioinform. 2020, 22, 2032–2042. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.-W.; Chang, K.-P.; Chen, C.-W.; Liang, Y.-T.; Soh, Z.T.; Hsieh, L. miRgo: Integrating various off-the-shelf tools for identification of microRNA–target interactions by heterogeneous features and a novel evaluation indicator. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kyrollos, D.G.; Reid, B.; Dick, K.; Green, J.R. RPmirDIP: Reciprocal Perspective improves miRNA targeting prediction. Sci. Rep. 2020, 10, 11770. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, L.; Li, X.; Zhang, Y.; Xu, S.; Huang, X. Prediction of miRNA targets by learning from interaction sequences. PLoS ONE 2020, 15, e0232578. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, J.; Li, M.; Lan, W.; Wu, F.-X.; Pan, Y. miRTRS: A Recommendation Algorithm for Predicting miRNA Targets. IEEE/ACM Trans. Comput. Biol. Bioinform. 2018, 17, 1032–1041. [Google Scholar] [CrossRef]
- Maji, R.K.; Khatua, S.; Ghosh, Z. A Supervised Ensemble Approach for Sensitive microRNA Target Prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 17, 37–46. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, M.; Chen, X.; Li, M.; Li, Y.; Wang, J. miRTMC: A miRNA Target Prediction Method Based on Matrix Completion Algorithm. IEEE J. Biomed. Health Inform. 2020, 24, 3630–3641. [Google Scholar] [CrossRef]
- Yan, J.; Li, Y.; Zhu, M. miTarDigger: A Fusion Deep-learning Approach for Predicting Human miRNA Targets. In Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Seoul, Korea, 16–19 December 2020; pp. 2891–2897. [Google Scholar] [CrossRef]
- Huang, T.; Huang, X.; Yao, M. Min3: Predict microRNA target gene using an improved binding-site representation method and support vector machine. J. Bioinform. Comput. Biol. 2019, 17, 1950032. [Google Scholar] [CrossRef]
- Kang, H.; Ahn, H.; Jo, K.; Oh, M.; Kim, S. mirTime: Identifying Condition-Specific Targets of MicroRNA in Time-series Transcript Data using Gaussian Process Model and Spherical Vector Clustering. Bioinformatics 2019, 37, 1544–1553. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Li, X.; Hu, H. CCmiR: A computational approach for competitive and cooperative microRNA binding prediction. Bioinformatics 2017, 34, 198–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, M.; Cong, P.; Zhang, Z.; Lu, H.; Li, T. DeepMirTar: A deep-learning approach for predicting human miRNA targets. Bioinformatics 2018, 34, 3781–3787. [Google Scholar] [CrossRef] [PubMed]
- Pla, A.; Zhong, X.; Rayner, S. miRAW: A deep learning-based approach to predict microRNA targets by analyzing whole microRNA transcripts. PLoS Comput. Biol. 2018, 14, e1006185. [Google Scholar] [CrossRef]
- Mohebbi, M.; Ding, L.; Malmberg, R.L.; Momany, C.; Rasheed, K.; Cai, L. Accurate prediction of human miRNA targets via graph modeling of the miRNA-target duplex. J. Bioinform. Comput. Biol. 2018, 16, 1850013. [Google Scholar] [CrossRef]
- Koo, J.; Zhang, J.; Chaterji, S. Tiresias: Context-sensitive Approach to Decipher the Presence and Strength of MicroRNA Regulatory Interactions. Theranostics 2018, 8, 277–291. [Google Scholar] [CrossRef] [Green Version]
- Oh, M.; Rhee, S.; Moon, J.H.; Chae, H.; Lee, S.; Kang, J.; Kim, S. Literature-based condition-specific miRNA-mRNA target prediction. PLoS ONE 2017, 12, e0174999. [Google Scholar] [CrossRef]
- Torkey, H.; Heath, L.S.; ElHefnawi, M. MicroTarget: MicroRNA target gene prediction approach with application to breast cancer. J. Bioinform. Comput. Biol. 2017, 15, 1750013. [Google Scholar] [CrossRef]
- Bottini, S.; Hamouda-Tekaya, N.; Tanasa, B.; Zaragosi, L.-E.; Grandjean, V.; Repetto, E.; Trabucchi, M. From benchmarking HITS-CLIP peak detection programs to a new method for identification of miRNA-binding sites from Ago2-CLIP data. Nucleic Acids Res. 2017, 45, e71. [Google Scholar] [CrossRef] [Green Version]
- Ahadi, A.; Sablok, G.; Hutvagner, G. miRTar2GO: A novel rule-based model learning method for cell line specific microRNA target prediction that integrates Ago2 CLIP-Seq and validated microRNA–target interaction data. Nucleic Acids Res. 2016, 45, e42. [Google Scholar] [CrossRef] [Green Version]
- L’Yi, S.; Jung, D.; Oh, M.; Kim, B.; Freishtat, R.J.; Giri, M.; Hoffman, E.; Seo, J. miRTarVis+: Web-based interactive visual analytics tool for microRNA target predictions. Methods 2017, 124, 78–88. [Google Scholar] [CrossRef]
- Van Peer, G.; De Paepe, A.; Stock, M.; Anckaert, J.; Volders, P.-J.; Vandesompele, J.; De Baets, B.; Waegeman, W. miSTAR: miRNA target prediction through modeling quantitative and qualitative miRNA binding site information in a stacked model structure. Nucleic Acids Res. 2016, 45, e51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Leslie, C.S. Learning to Predict miRNA-mRNA Interactions from AGO CLIP Sequencing and CLASH Data. PLoS Comput. Biol. 2016, 12, e1005026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, S.; Guo, M.; Wang, C.; Liu, X.; Liu, Y.; Wu, X. MiRTDL: A Deep Learning Approach for miRNA Target Prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2015, 13, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Ovando-Vázquez, C.; Lepe-Soltero, D.; Abreu-Goodger, C. Improving microRNA target prediction with gene expression profiles. BMC Genom. 2016, 17, 364. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.; Baek, J.; Park, S.; Yoon, S. Deeptarget: End-to-end Learning Framework for microRNA Target Prediction using Deep Recurrent Neural Networks. In Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, Northbrook, IL, USA, 7–10 August 2022; Available online: http://arxiv.org/abs/1603.09123 (accessed on 8 April 2022).
- Ding, J.; Li, X.; Hu, H. TarPmiR: A new approach for microRNA target site prediction. Bioinformatics 2016, 32, 2768–2775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghoshal, A.; Shankar, R.; Bagchi, S.; Grama, A.; Chaterji, S. MicroRNA target prediction using thermodynamic and sequence curves. BMC Genom. 2015, 16, 999. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Xu, W.; Liu, Y. Integrating full spectrum of sequence features into predicting functional microRNA–mRNA interactions. Bioinformatics 2015, 31, 3529–3536. [Google Scholar] [CrossRef]
- Jung, D.; Kim, B.; Freishtat, R.J.; Giri, M.; Hoffman, E.; Seo, J. miRTarVis: An interactive visual analysis tool for microRNA-mRNA expression profile data. BMC Proc. 2015, 9, S2. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, V.; Bell, G.W.; Nam, J.-W.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015, 4, e05005. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Ghosh, D.; Mitra, R.; Zhao, Z. MBSTAR: Multiple instance learning for predicting specific functional binding sites in microRNA targets. Sci. Rep. 2015, 5, 8004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rennie, W.; Liu, C.; Carmack, C.S.; Wolenc, A.; Kanoria, S.; Lu, J.; Long, D.; Ding, Y. STarMir: A web server for prediction of microRNA binding sites. Nucleic Acids Res. 2014, 42, W114–W118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menor, M.; Ching, T.; Zhu, X.; Garmire, D.; Garmire, L.X. mirMark: A site-level and UTR-level classifier for miRNA target prediction. Genome Biol. 2014, 15, 500. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liang, C.; Wong, K.-C.; Jin, K.; Zhang, Z. Inferring probabilistic miRNA–mRNA interaction signatures in cancers: A role-switch approach. Nucleic Acids Res. 2014, 42, e76. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Goldenberg, A.; Wong, K.-C.; Zhang, Z. A probabilistic approach to explore human miRNA targetome by integrating miRNA-overexpression data and sequence information. Bioinformatics 2013, 30, 621–628. [Google Scholar] [CrossRef] [Green Version]
- Le, T.D.; Liu, L.; Tsykin, A.; Goodall, G.; Liu, B.; Sun, B.-Y.; Li, J. Inferring microRNA–mRNA causal regulatory relationships from expression data. Bioinformatics 2013, 29, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Majoros, W.H.; Lekprasert, P.; Mukherjee, N.; Skalsky, R.L.; Corcoran, D.L.; Cullen, B.R.; Ohler, U. MicroRNA target site identification by integrating sequence and binding information. Nat. Chem. Biol. 2013, 10, 630–633. [Google Scholar] [CrossRef] [Green Version]
- Khorshid, M.; Hausser, J.; Zavolan, M.; van Nimwegen, E. A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets. Nat. Methods 2013, 10, 253–255. [Google Scholar] [CrossRef]
- Incarnato, D.; Neri, F.; Diamanti, D.; Oliviero, S. MREdictor: A two-step dynamic interaction model that accounts for mRNA accessibility and Pumilio binding accurately predicts microRNA targets. Nucleic Acids Res. 2013, 41, 8421–8433. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, M.R.; Da Fonseca, G.C.; Loss-Morais, G.; Alves, R.; Margis, R.; Bazzan, A.L.C. RFMirTarget: Predicting Human MicroRNA Target Genes with a Random Forest Classifier. PLoS ONE 2013, 8, e70153. [Google Scholar] [CrossRef]
- Ahmadi, H.; Ahmadi, A.; Azimzadeh-Jamalkandi, S.; Shoorehdeli, M.A.; Salehzadeh-Yazdi, A.; Bidkhori, G.; Masoudi-Nejad, A. HomoTarget: A new algorithm for prediction of microRNA targets in Homo sapiens. Genomics 2013, 101, 94–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Moshe, N.B.; Avraham, R.; Kedmi, M.; Zeisel, A.; Yitzhaky, A.; Yarden, Y.; Domany, E. Context-specific microRNA analysis: Identification of functional microRNAs and their mRNA targets. Nucleic Acids Res. 2012, 40, 10614–10627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reczko, M.; Maragkakis, M.; Alexiou, P.; Grosse, I.; Hatzigeorgiou, A.G. Functional microRNA targets in protein coding sequences. Bioinformatics 2012, 28, 771–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, D.; Guo, M.; Chen, Y.; Huang, Y.; Yue, D.; Guo, M.; Chen, Y.; Huang, Y. A Bayesian decision fusion approach for microRNA target prediction. BMC Genom. 2012, 13, S13. [Google Scholar] [CrossRef] [Green Version]
- Vejnar, C.; Zdobnov, E.M. miRmap: Comprehensive prediction of microRNA target repression strength. Nucleic Acids Res. 2012, 40, 11673–11683. [Google Scholar] [CrossRef]
- Reczko, M.; Maragkakis, M.; Alexiou, P.; Papadopoulos, G.L.; Hatzigeorgiou, A.G. Accurate microRNA Target Prediction Using Detailed Binding Site Accessibility and Machine Learning on Proteomics Data. Front. Genet. 2012, 2, 103. [Google Scholar] [CrossRef] [Green Version]
- Stempor, P.A.; Cauchi, M.; Wilson, P. MMpred: Functional miRNA—mRNA interaction analyses by miRNA expression prediction. BMC Genom. 2012, 13, 620. [Google Scholar] [CrossRef] [Green Version]
- Chandra, V.; Girijadevi, R.; Nair, A.S.; Pillai, S.S.; Pillai, R.M. MTar: A computational microRNA target prediction architecture for human transcriptome. BMC Bioinform. 2010, 11, S2. [Google Scholar] [CrossRef]
- Oulas, A.; Karathanasis, N.; Louloupi, A.; Iliopoulos, I.; Kalantidis, K.; Poirazi, P. A new microRNA target prediction tool identifies a novel interaction of a putative miRNA with CCND2. RNA Biol. 2012, 9, 1196–1207. [Google Scholar] [CrossRef] [Green Version]
- Marín, R.M.; Vaníček, J. Efficient use of accessibility in microRNA target prediction. Nucleic Acids Res. 2010, 39, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Herrera, P.H.; Ficarra, E.; Acquaviva, A.; Macii, E. miREE: miRNA recognition elements ensemble. BMC Bioinform. 2011, 12, 454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitra, R.; Bandyopadhyay, S. MultiMiTar: A Novel Multi Objective Optimization based miRNA-Target Prediction Method. PLoS ONE 2011, 6, e24583. [Google Scholar] [CrossRef]
- Oğul, H.; Umu, S.U.; Tuncel, Y.Y.; Akkaya, M.S. A probabilistic approach to microRNA-target binding. Biochem. Biophys. Res. Commun. 2011, 413, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Sturm, M.; Hackenberg, M.; Langenberger, D.; Frishman, D. TargetSpy: A supervised machine learning approach for microRNA target prediction. BMC Bioinform. 2010, 11, 292. [Google Scholar] [CrossRef] [Green Version]
- Lagos-Quintana, M.; Rauhut, R.; Lendeckel, W.; Tuschl, T. Identification of Novel Genes Coding for Small Expressed RNAs. Science 2001, 294, 853–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, N.C.; Lim, L.P.; Weinstein, E.G.; Bartel, D.P. An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans. Science 2001, 294, 858–862. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.C.; Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001, 294, 862–864. [Google Scholar] [CrossRef] [Green Version]
- Alexiou, P.; Maragkakis, M.; Papadopoulos, G.L.; Reczko, M.; Hatzigeorgiou, A.G. Lost in translation: An assessment and perspective for computational microRNA target identification. Bioinformatics 2009, 25, 3049–3055. [Google Scholar] [CrossRef]
- Maragkakis, M.; Reczko, M.; Simossis, V.A.; Alexiou, P.; Papadopoulos, G.L.; Dalamagas, T.; Giannopoulos, G.; Goumas, G.I.; Koukis, E.; Kourtis, K.; et al. DIANA-microT web server: Elucidating microRNA functions through target prediction. Nucleic Acids Res. 2009, 37, W273–W276. [Google Scholar] [CrossRef] [Green Version]
- Gaidatzis, D.; van Nimwegen, E.; Hausser, J.; Zavolan, M. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinform. 2007, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Enright, A.J.; John, B.; Gaul, U.; Tuschl, T.; Sander, C.; Marks, D.S. MicroRNA targets in Drosophila. Genome Biol. 2003, 5, R1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths-Jones, S.; Grocock, R.J.; Van Dongen, S.; Bateman, A.; Enright, A.J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006, 34, D140–D144. [Google Scholar] [CrossRef] [PubMed]
- Kozomara, A.; Griffiths-Jones, S. miRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2010, 39, D152–D157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krek, A.; Grün, D.; Poy, M.N.; Wolf, R.; Rosenberg, L.; Epstein, E.J.; MacMenamin, P.; Da Piedade, I.; Gunsalus, K.C.; Stoffel, M.; et al. Combinatorial microRNA target predictions. Nat. Genet. 2005, 37, 495–500. [Google Scholar] [CrossRef]
- Kertesz, M.; Iovino, N.; Unnerstall, U.; Gaul, U.; Segal, E. The role of site accessibility in microRNA target recognition. Nat. Genet. 2007, 39, 1278–1284. [Google Scholar] [CrossRef]
- Miranda, K.C.; Huynh, T.; Tay, Y.; Ang, Y.-S.; Tam, W.-L.; Thomson, A.M.; Lim, B.; Rigoutsos, I. A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes. Cell 2006, 126, 1203–1217. [Google Scholar] [CrossRef] [Green Version]
- Friedman, R.C.; Farh, K.K.-H.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Libbrecht, M.W.; Noble, W.S. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 2015, 16, 321–332. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Y.; Liao, X.; Shi, W.; Li, K.; Zou, Q.; Peng, S. Deep learning in omics: A survey and guideline. Briefings Funct. Genom. 2018, 18, 41–57. [Google Scholar] [CrossRef]
- Koumakis, L. Deep learning models in genomics; are we there yet? Comput. Struct. Biotechnol. J. 2020, 18, 1466–1473. [Google Scholar] [CrossRef]
- Quillet, A.; Anouar, Y.; Lecroq, T.; Dubessy, C. Prediction methods for microRNA targets in bilaterian animals: Toward a better understanding by biologists. Comput. Struct. Biotechnol. J. 2021, 19, 5811–5825. [Google Scholar] [CrossRef] [PubMed]
- Greener, J.G.; Kandathil, S.M.; Moffat, L.; Jones, D.T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 2021, 23, 40–55. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, S.; Saha, S.; Maulik, U.; Deb, K. A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA. IEEE Trans. Evol. Comput. 2008, 12, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Dick, K.; Green, J.R. Reciprocal Perspective for Improved Protein-Protein Interaction Prediction. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Tokar, T.; Pastrello, C.; Rossos, A.E.M.; Abovsky, M.; Hauschild, A.-C.; Tsay, M.; Lu, R.; Jurisica, I. mirDIP 4.1—Integrative database of human microRNA target predictions. Nucleic Acids Res. 2017, 46, D360–D370. [Google Scholar] [CrossRef] [Green Version]
- Busch, A.; Richter, A.S.; Backofen, R. IntaRNA: Efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 2008, 24, 2849–2856. [Google Scholar] [CrossRef] [Green Version]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Zou, J.; Huss, M.; Abid, A.; Mohammadi, P.; Torkamani, A.; Telenti, A. A primer on deep learning in genomics. Nat. Genet. 2018, 51, 12–18. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; McClelland, J.L. Learning Internal Representations by Error Propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations; MIT Press: Cambridge, MA, USA, 1987; pp. 318–362. Available online: https://ieeexplore.ieee.org/document/6302929 (accessed on 2 October 2022).
- Kern, F.; Backes, C.; Hirsch, P.; Fehlmann, T.; Hart, M.; Meese, E.; Keller, A. What’s the target: Understanding two decades of in silico microRNA-target prediction. Briefings Bioinform. 2019, 21, 1999–2010. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, J.; Liu, Q.; Zhao, Y.; Ying, X.; Cha, L.; Wang, L.; Li, W. sRNATarBase: A comprehensive database of bacterial sRNA targets verified by experiments. RNA 2010, 16, 2051–2057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Liu, T.; Zhao, B.; Lu, Q.; Wang, Z.; Cao, Y.; Li, W. sRNATarBase 3.0: An updated database for sRNA-target interactions in bacteria. Nucleic Acids Res. 2015, 44, D248–D253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenz, R.; Bernhart, S.H.; Honer Zu Siederdissen, C.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Tafer, H.; Hofacker, I.L. RNAplex: A fast tool for RNA–RNA interaction search. Bioinformatics 2008, 24, 2657–2663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Raden, M.; Ali, S.M.; Alkhnbashi, O.S.; Busch, A.; Costa, F.; Davis, J.A.; Eggenhofer, F.; Gelhausen, R.; Georg, J.; Heyne, S.; et al. Freiburg RNA tools: A central online resource for RNA-focused research and teaching. Nucleic Acids Res. 2018, 46, W25–W29. [Google Scholar] [CrossRef]
- Johnson, M.; Zaretskaya, I.; Raytselis, Y.; Merezhuk, Y.; McGinnis, S.; Madden, T.L. NCBI BLAST: A better web interface. Nucleic Acids Res. 2008, 36, W5–W9. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [Green Version]
- Bernhart, S.H.; Hofacker, I.L.; Stadler, P.F. Local RNA base pairing probabilities in large sequences. Bioinformatics 2005, 22, 614–615. [Google Scholar] [CrossRef] [Green Version]
- Axtell, M.J. Classification and Comparison of Small RNAs from Plants. Annu. Rev. Plant Biol. 2013, 64, 137–159. [Google Scholar] [CrossRef] [Green Version]
- Bobrovskyy, M.; Vanderpool, C.K. The small RNA SgrS: Roles in metabolism and pathogenesis of enteric bacteria. Front. Cell Infect. Microbiol. 2014, 4, 61. [Google Scholar] [CrossRef] [Green Version]
- Salvail, H.; Massé, E. Regulating iron storage and metabolism with RNA: An overview of posttranscriptional controls of intracellular iron homeostasis. Wiley Interdiscip. Rev. RNA 2011, 3, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Massé, E.; Vanderpool, C.K.; Gottesman, S. Effect of RyhB Small RNA on Global Iron Use in Escherichia Coli. J Bacteriol 2005, 187, 6962–6971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Lalaouna, D.; Carrier, M.-C.; Semsey, S.; Brouard, J.-S.; Wang, J.; Wade, J.T.; Massé, E. A 3′ External Transcribed Spacer in a tRNA Transcript Acts as a Sponge for Small RNAs to Prevent Transcriptional Noise. Mol. Cell 2015, 58, 393–405. [Google Scholar] [CrossRef] [Green Version]
- Han, K.; Tjaden, B.; Lory, S. GRIL-seq provides a method for identifying direct targets of bacterial small regulatory RNA by in vivo proximity ligation. Nat. Microbiol. 2016, 2, 16239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melamed, S.; Peer, A.; Faigenbaum-Romm, R.; Gatt, Y.E.; Reiss, N.; Bar, A.; Altuvia, Y.; Argaman, L.; Margalit, H. Global Mapping of Small RNA-Target Interactions in Bacteria. Mol. Cell 2016, 63, 884–897. [Google Scholar] [CrossRef]
- Waters, S.A.; McAteer, S.P.; Kudla, G.; Pang, I.; Deshpande, N.P.; Amos, T.G.; Leong, K.W.; Wilkins, M.R.; Strugnell, R.; Gally, D.L.; et al. SmallRNAinteractome of pathogenic E. coli revealed through crosslinking ofRNase E. EMBO J. 2016, 36, 374–387. [Google Scholar] [CrossRef]
- Grosswendt, S.; Filipchyk, A.; Manzano, M.; Klironomos, F.; Schilling, M.; Herzog, M.; Gottwein, E.; Rajewsky, N. Unambiguous Identification of miRNA:Target Site Interactions by Different Types of Ligation Reactions. Mol. Cell 2014, 54, 1042–1054. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.-H.; Chang, N.-W.; Shrestha, S.; Hsu, S.-D.; Lin, Y.-L.; Lee, W.-H.; Yang, C.-D.; Hong, H.-C.; Wei, T.-Y.; Tu, S.-J.; et al. miRTarBase 2016: Updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 2015, 44, D239–D247. [Google Scholar] [CrossRef]
- Huang, H.-Y.; Lin, Y.-C.; Cui, S.; Huang, Y.; Tang, Y.; Xu, J.; Bao, J.; Li, Y.; Wen, J.; Zuo, H.; et al. miRTarBase update 2022: An informative resource for experimentally validated miRNA–target interactions. Nucleic Acids Res. 2021, 50, D222–D230. [Google Scholar] [CrossRef] [PubMed]
- Karagkouni, D.; Paraskevopoulou, M.D.; Chatzopoulos, S.; Vlachos, I.S.; Tastsoglou, S.; Kanellos, I.; Papadimitriou, D.; Kavakiotis, I.; Maniou, S.; Skoufos, G.; et al. DIANA-TarBase v8: A decade-long collection of experimentally supported miRNA–gene interactions. Nucleic Acids Res. 2017, 46, D239–D245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, P.; LaRochelle, H.; Bengio, Y.; Manzagol, P.-A. Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th International Conference on Machine Learning, Montreal, QC, Canada, 11–15 April 2016; pp. 1096–1103. [Google Scholar]
- Thiam, P.; Kestler, H.; Schwenker, F. Multimodal Deep Denoising Convolutional Autoencoders for Pain Intensity Classification based on Physiological Signals. In Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods, Prague, Czech Republic, 19–21 February 2020; pp. 289–296. Available online: https://www.scitepress.org/Link.aspx?doi=10.5220/0008896102890296 (accessed on 8 August 2022). [CrossRef]
- John, B.; Enright, A.; Aravin, A.A.; Tuschl, T.; Sander, C.; Marks, D.S. Human MicroRNA Targets. PLoS Biol. 2004, 2, e363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maute, R.L.; Schneider, C.; Sumazin, P.; Holmes, A.; Califano, A.; Basso, K.; Dalla-Favera, R. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc. Natl. Acad. Sci. USA 2013, 110, 1404–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Li, F.; Wang, J.; He, W.; Li, Y.; Li, H.; Wei, Z.; Cao, Y. tRNA-derived fragment tRF-03357 promotes cell proliferation, migration and invasion in high-grade serous ovarian cancer. OncoTargets Ther. 2019, 12, 6371–6383. [Google Scholar] [CrossRef] [Green Version]
- Moore, M.J.; Scheel, T.K.H.; Luna, J.M.; Park, C.Y.; Fak, J.J.; Nishiuchi, E.; Rice, C.M.; Darnell, R.B. miRNA–target chimeras reveal miRNA 3′-end pairing as a major determinant of Argonaute target specificity. Nat. Commun. 2015, 6, 8864. [Google Scholar] [CrossRef] [Green Version]
- Haeussler, M.; Zweig, A.S.; Tyner, C.; Speir, M.L.; Rosenbloom, K.R.; Raney, B.J.; Lee, C.M.; Lee, B.T.; Hinrichs, A.; Gonzalez, J.N.; et al. The UCSC Genome Browser database: 2019 update. Nucleic Acids Res. 2018, 47, D853–D858. [Google Scholar] [CrossRef] [Green Version]
- Pliatsika, V.; Loher, P.; Magee, R.; Telonis, A.; Londin, E.; Shigematsu, M.; Kirino, Y.; Rigoutsos, I. MINTbase v2.0: A comprehensive database for tRNA-derived fragments that includes nuclear and mitochondrial fragments from all The Cancer Genome Atlas projects. Nucleic Acids Res. 2017, 46, D152–D159. [Google Scholar] [CrossRef] [Green Version]
- Pruitt, K.D.; Tatusova, T.; Brown, G.R.; Maglott, D.R. NCBI Reference Sequences (RefSeq): Current status, new features and genome annotation policy. Nucleic Acids Res. 2011, 40, D130–D135. [Google Scholar] [CrossRef] [Green Version]
- Schultz, N.; Marenstein, D.R.; De Angelis, D.A.; Wang, W.-Q.; Nelander, S.; Jacobsen, A.; Marks, D.S.; Massagué, J.; Sander, C. Off-target effects dominate a large-scale RNAi screen for modulators of the TGF-β pathway and reveal microRNA regulation of TGFBR. Silence 2011, 2, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Wenzel, A.; Akbaşli, E.; Gorodkin, J. RIsearch: Fast RNA–RNA interaction search using a simplified nearest-neighbor energy model. Bioinformatics 2012, 28, 2738–2746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betel, D.; Koppal, A.; Agius, P.; Sander, C.; Leslie, C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010, 11, R90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paraskevopoulou, M.D.; Georgakilas, G.; Kostoulas, N.; Vlachos, I.S.; Vergoulis, T.; Reczko, M.; Filippidis, C.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-microT web server v5.0: Service integration into miRNA functional analysis workflows. Nucleic Acids Res. 2013, 41, W169–W173. [Google Scholar] [CrossRef] [Green Version]
- Wong, N.; Wang, X. miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 2014, 43, D146–D152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šulc, M.; Marín, R.M.; Robins, H.S.; Vaníček, J. PACCMIT/PACCMIT-CDS: Identifying microRNA targets in 3′ UTRs and coding sequences. Nucleic Acids Res. 2015, 43, W474–W479. [Google Scholar] [CrossRef]
- Davis, J.A.; Saunders, S.; Mann, M.; Backofen, R. Combinatorial ensemble miRNA target prediction of co-regulation networks with non-prediction data. Nucleic Acids Res. 2017, 45, 8745–8757. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Yang, M.; Li, M.; Li, Y.; Wu, F.-X.; Wang, J. Predicting Human lncRNA-Disease Associations Based on Geometric Matrix Completion. IEEE J. Biomed. Health Inform. 2019, 24, 2420–2429. [Google Scholar] [CrossRef]
- Mørk, S.; Pletscher-Frankild, S.; Caro, A.P.; Gorodkin, J.; Jensen, L.J. Protein-driven inference of miRNA-disease associations. Bioinformatics 2013, 30, 392–397. [Google Scholar] [CrossRef]
Feature | Plants | Animals |
---|---|---|
Size (number of nucleotides) | 18–25 nt | 18–25 nt |
Mechanism of target recognition | Ribonucleotide complementarity | Ribonucleotide complementarity |
Location of miRNA binding sites within target mRNAs | Predominantly in the open reading frame | Predominantly 3’ untranslated region (3’UTR) |
Number of miRNA binding sites within target mRNAs | Generally single | Generally multiple |
miRNA–mRNA complementarity | Generally a perfect complementarity | Imperfect; seed sequences and variable flanking complementarity |
Method | Year | Repository/Web App | ||
---|---|---|---|---|
tRFs target prediction | ||||
1 | tRFTar [75] | 2021 | http://www.rnanut.net/tRFTar/ (accessed on 7 December 2022) | w |
2 | tRFTars [76] | 2021 | http://trftars.cmuzhenninglab.org:3838/tar/ (accessed on 7 December 2022) | o |
siRNAs off-target prediction | ||||
3 | si-Fi [77] | 2019 | https://github.com/snowformatics/siFi21- (accessed on 7 December 2022) | o |
4 | RIsearch2 [78] | 2017 | https://rth.dk/resources/risearch/ (accessed on 7 December 2022) | s |
5 | MIRZA-G [79] | 2015 | http://www.clipz.unibas.ch/index.php?r=tools/sub/mirza_g (accessed on 7 December 2022) | - |
6 | CWords [80] | 2013 | https://servers.binf.ku.dk/cwords/ (accessed on 7 December 2022), https://github.com/simras/cWords (accessed on 7 December 2022) | o, w |
sRNAs target prediction | ||||
7 | sRNARFTarget [81] | 2021 | https://github.com/BioinformaticsLabAtMUN/sRNARFTarget (accessed on 7 December 2022) | o |
8 | SPOT [82] | 2019 | https://github.com/phdegnan/SPOT (accessed on 7 December 2022) | o |
9 | psRNATarget [83] | 2018 | https://www.zhaolab.org/psRNATarget/ (accessed on 7 December 2022) | w |
10 | IntaRNA 2.0 [84] | 2017 | http://www.bioinf.uni-freiburg.de/Software/ (accessed on 7 December 2022), http://rna.informatik.uni-freiburg.de/ (accessed on 7 December 2022) | w |
11 | TargetRNA2 [85] | 2014 | http://cs.wellesley.edu/~btjaden/TargetRNA2/ (accessed on 7 December 2022) | w |
12 | CopraRNA [86,87] | 2013 | http://rna.informatik.uni-freiburg.de/CopraRNA/ (accessed on 7 December 2022) | w |
13 | RNApredator [88] | 2011 | http://rna.tbi.univie.ac.at/cgi-bin/RNApredator/target_search.cgi (accessed on 7 December 2022) | w |
14 | sTarPicker [89] | 2011 | http://ccb.bmi.ac.cn/starpicker/ (accessed on 7 December 2022, ) | - |
miRNAs/isomiRs target prediction | ||||
15 | DMISO [90] | 2022 | http://hulab.ucf.edu/research/projects/DMISO/ (accessed on 7 December 2022) | s |
16 | SubmiRine [91] | 2015 | https://research.nhgri.nih.gov/software/SubmiRine/index.shtml (accessed on 7 December 2022) | o |
miRNAs target prediction | ||||
17 | TargetNet [92] | 2022 | https://github.com/mswzeus/TargetNet (accessed on 7 December 2022) | o |
18 | mintRULS [93] | 2022 | https://zenodo.org/record/6360587#.Yy2IV9VByV4 (accessed on 7 December 2022) | o |
19 | miTAR [94] | 2021 | https://github.com/tjgu/miTAR (accessed on 7 December 2022) | o |
20 | SG-LSTM-FRAME [95] | 2021 | https://github.com/Xshelton/SG_LSTM (accessed on 7 December 2022) | o |
21 | miRgo [96] | 2020 | http://predictor.nchu.edu.tw/miRgo/index.php (accessed on 7 December 2022,) | - |
22 | RPmirDIP [97] | 2020 | https://www.cu-bic.ca/RPmirDIP (accessed on 7 December 2022,) https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP2/LD8JKJ (accessed on 7 December 2022) | - w |
23 | cnnMirTarget [98] | 2020 | https://github.com/zhengxueming/cnnMirTarget (accessed on 7 December 2022) | o |
24 | miRTRS [99] | 2020 | - | |
25 | miRTPred [100] | 2020 | http://bicresources.jcbose.ac.in/zhumur/mirtpred/ (accessed on 7 December 2022) | s |
26 | miRTMC [101] | 2020 | https://github.com/hjiangcsu/miRTMC (accessed on 7 December 2022) | o, s |
27 | miTarDigger [102] | 2020 | - | |
28 | Min3 [103] | 2019 | https://sourceforge.net/projects/mirt3/ (accessed on 7 December 2022) | o |
29 | mirTime [104] | 2019 | https://github.com/mirTime/mirtime (accessed on 7 December 2022) | o |
30 | CCmiR [105] | 2018 | http://hulab.ucf.edu/research/projects/miRNA/CCmiR/ (accessed on 7 December 2022) | s |
31 | DeepMirTar [106] | 2018 | https://github.com/Bjoux2/DeepMirTar_SdA (accessed on 7 December 2022) | o |
32 | miRAW [107] | 2018 | https://bitbucket.org/account/user/bipous/projects/MIRAW (accessed on 7 December 2022) | o, s |
33 | MiTarget [108] | 2018 | http://rna-informatics.uga.edu/12_software.php (accessed on 7 December 2022) | o |
34 | Tiresias [109] | 2018 | https://bitbucket.org/cellsandmachines/tiresias-context-specific-mirna-interactome-mapping/src/master/ (accessed on 7 December 2022) | o |
35 | Context-MMIA [110] | 2017 | http://epigenomics.snu.ac.kr/contextMMIA/ (accessed on 7 December 2022) | w |
36 | MicroTarget [111] | 2017 | https://bioinformatics.cs.vt.edu/~htorkey/microTarget (accessed on 7 December 2022) | o |
37 | miRBShunter [112] | 2017 | https://github.com/TrabucchiLab/miRBShunter (accessed on 7 December 2022) | o |
38 | miRTar2GO [113] | 2017 | http://www.mirtar2go.org/ (accessed on 7 December 2022) | w |
39 | miRTarVis+ [114] | 2017 | http://hcil.snu.ac.kr/research/mirtarvisplus (accessed on 7 December 2022) | w |
40 | miSTAR [115] | 2017 | http://mi-star.org/ (accessed on 7 December 2022) | w |
41 | chimiRic [116] | 2016 | https://bitbucket.org/leslielab/chimiric/src/master/ (accessed on 7 December 2022) | o |
42 | MiRTDL [117] | 2016 | http://nclab.hit.edu.cn/ccrm (accessed on 7 December 2022 ) | - |
43 | TargetExpress [118] | 2016 | http://targetexpress.ceiabreulab.org/ (accessed on 7 December 2022) | - |
44 | deepTarget [119] | 2016 | http://data.snu.ac.kr/pub/deepTarget/ (accessed on 7 December 2022) | - |
45 | TarPmir [120] | 2016 | http://hulab.ucf.edu/research/projects/miRNA/TarPmiR/ (accessed on 7 December 2022) | s |
46 | Avishkar [121] | 2015 | https://bitbucket.org/cellsandmachines/avishkar/src/master/ (accessed on 7 December 2022) | o |
47 | MiRNALasso [122] | 2015 | https://nba.uth.tmc.edu/homepage/liu/miRNALasso/ (accessed on 7 December 2022) | s |
48 | miRTarVis [123] | 2015 | http://hcil.snu.ac.kr/~rati/miRTarVis/index.html (accessed on 7 December 2022) | s |
49 | TargetScan v7.0 [124] | 2015 | https://www.targetscan.org/ (accessed on 7 December 2022) | w |
50 | MBSTAR [125] | 2015 | https://www.isical.ac.in/~bioinfo_miu/MBStar30.htm (accessed on 7 December 2022) | - |
51 | miRTarVis+ | 2017 | http://hcil.snu.ac.kr/research/mirtarvisplus (accessed on 7 December 2022) | w |
52 | StarMir [126] | 2014 | https://sfold.wadsworth.org/cgi-bin/starmirtest2.pl (accessed on 7 December 2022) | w |
53 | mirMark [127] | 2014 | https://github.com/lanagarmire/MirMark (accessed on 7 December 2022) | o |
54 | ProMISe [128] | 2014 | https://bioc.ism.ac.jp/packages/3.11/bioc/html/Roleswitch.html (accessed on 7 December 2022) | o |
55 | TargetScore [129] | 2014 | http://www.bioconductor.org/packages/devel/bioc/html/TargetScore.html (accessed on 7 December 2022) | o |
56 | IDA approach [130] | 2013 | https://academic.oup.com/bioinformatics/article/29/6/765/184183#supplementary-data (accessed on 7 December 2022) | o |
57 | MicroMUMMIE [131] | 2013 | https://ohlerlab.mdc-berlin.de/files/duke/MUMMIE/download.html (accessed on 7 December 2022) | o |
58 | MIRZA [132] | 2013 | http://www.clipz.unibas.ch/downloads/mirza/ (accessed on 7 December 2022) | - |
59 | MREdictor [133] | 2013 | http://mredictor.hugef-research.org/ (accessed on 7 December 2022) | - |
60 | RFMirTarget [134] | 2013 | - | |
61 | HomoTarget [135] | 2013 | http://lbb.ut.ac.ir/Download/LBBsoft/homoTarget/ (accessed on 7 December 2022) | - |
62 | CoSMic [136] | 2012 | https://www.weizmann.ac.il/complex/compphys/software/cosmic/ (accessed on 7 December 2022) | s |
63 | DIANA-microT-CDS [137] | 2012 | https://dianalab.e-ce.uth.gr/html/dianauniverse/index.php?r=microT_CDS (accessed on 7 December 2022) | w |
64 | BcmicrO [138] | 2012 | http://compgenomics.utsa.edu/gene/gene_1.php (accessed on 7 December 2022) | w |
65 | mirMap [139] | 2012 | https://mirmap.ezlab.org/ (accessed on 7 December 2022) | w |
66 | DIANA-microT-ANN [140] | 2012 | http://microrna.gr/microT-ANN (accessed on 7 December 2022) | - |
67 | mmPRED [141] | 2012 | https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-13-620#MOESM11 (accessed on 7 December 2022) | o |
68 | MTar [142] | 2012 | - | |
69 | Targetprofiler [143] | 2012 | http://mirna.imbb.forth.gr/Targetprofiler.html (accessed on 7 December 2022) | w |
70 | PACMIT [144] | 2011 | https://paccmit.epfl.ch/ (accessed on 7 December 2022) | w |
71 | miREE [145] | 2011 | - | |
72 | MultiMiTar [146] | 2011 | https://www.isical.ac.in/~bioinfo_miu/multimitar.htm (accessed on 7 December 2022) | - |
73 | ProbmiR [147] | 2011 | http://www.baskent.edu.tr/~hogul/probmir/ (accessed on 7 December 2022) | o |
74 | TargetSpy [148] | 2010 | http://webclu.bio.wzw.tum.de/targetspy/index.php (accessed on 7 December 2022) | s, w |
Program | Targetnet [92] | miTAR [94] | RPmirDIP [97] | miRTMC [101] | mirTarDigger [102] | cnnMirTarget [98] | miRAW [107] |
---|---|---|---|---|---|---|---|
PITA [159] | 0.22 | 0.74 | |||||
miRanda [155] | 0.36 | 0.69 | 0.66 | ||||
mirSVR [210] | 0.41 | ||||||
microT-CDS [211] | 0.73 | ||||||
miRDB [212] | 0.21 | 0.23 | 0.21 | ||||
mirza-G [79] | 0.52 | ||||||
Paccmit [213] | 0.41 | ||||||
Targetscan [124] | 0.47 | 0.67 | 0.62 | 0.31 | 0.56 | ||
deepTarget [119] | 0.49 | 0.69 | |||||
TarPmiR [120] | 0.78 | ||||||
metaMIR [214] | 0.78 | ||||||
DeepMirTar [106] | 0.94 | ||||||
miRAW [107] | 0.73 | 0.95 | 0.93 | ||||
mirDIP [169] | 0.88 | ||||||
miRTRS [99] | 0.70 | ||||||
GMCLDA [215] | 0.61 | ||||||
cnnMirTarget [98] | 0.79 | ||||||
mirTarDigger [102] | 0.96 | ||||||
miRTMC [101] | 0.72 | ||||||
RPmirDIP [97] | 0.93 | ||||||
miTAR2 [94] | 0.97 | ||||||
TargetNet [92] | 0.77 | ||||||
F1-score on balanced miRNA:mRNA target pairs (dataset from miRAW) | F1-score on miRAW dataset | Bootstrap testing PR AUC | AUC on different independent datasets. Showing dataset 1 (based on miRTarBase), as results are similar. | F1-score on target interactions vs. artificial miRNAs. | The experimentally validated positive dataset contains 7815 interactions; the negative dataset contains 281 pseudo-interactions. | F1-score using full testing dataset, constructed from various external sources |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grešová, K.; Alexiou, P.; Giassa, I.-C. Small RNA Targets: Advances in Prediction Tools and High-Throughput Profiling. Biology 2022, 11, 1798. https://doi.org/10.3390/biology11121798
Grešová K, Alexiou P, Giassa I-C. Small RNA Targets: Advances in Prediction Tools and High-Throughput Profiling. Biology. 2022; 11(12):1798. https://doi.org/10.3390/biology11121798
Chicago/Turabian StyleGrešová, Katarína, Panagiotis Alexiou, and Ilektra-Chara Giassa. 2022. "Small RNA Targets: Advances in Prediction Tools and High-Throughput Profiling" Biology 11, no. 12: 1798. https://doi.org/10.3390/biology11121798
APA StyleGrešová, K., Alexiou, P., & Giassa, I. -C. (2022). Small RNA Targets: Advances in Prediction Tools and High-Throughput Profiling. Biology, 11(12), 1798. https://doi.org/10.3390/biology11121798