High-Frequency Local Field Potential Oscillations May Modulate Aggressive Behaviors in Mice
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Resident–Intruder Test
2.3. Surgery
2.4. Electrophysiological Recording and Data Processing
2.5. Histology
2.6. Statistical Analyses
3. Results
3.1. The Results of Aggressive Behaviors
3.2. Relative Power Spectra for Each EEG Band
4. Discussion
4.1. Social Isolation Promoted Aggressive Behaviors
4.2. High-Frequency EEG Oscillations May Modulate Aggressive Behaviors in Mice
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AP | anteroposterior |
CE | reference electrode |
CH | the cohousing mice |
DV | dorsoventral |
LFP | local field potential |
LMeA and RMeA | the left and right medial amygdala |
LmPFC and RmPFC | the left and right medial prefrontal cortex |
LSD | least significant difference |
LVMH and RVMH | the left and right ventromedial hypothalamus |
MeA | medial amygdala |
ML | mediolateral |
mPFC | medial prefrontal cortex |
NA | not applicable |
PBS | phosphate-buffered saline |
PC | piriform cortex |
PFA | paraformaldehyde |
PFC | prefrontal cortex |
SI | the socially isolated mice |
VMH | ventromedial hypothalamus |
VMHvl | ventrolateral subregion of VMH |
References
- Baron, R.A.; Bell, P.A. Sexual arousal and aggression by males: Effects of type of erotic stimuli and prior provocation. J. Personal. Soc. Psychol. 1977, 35, 79–87. [Google Scholar] [CrossRef]
- Fone, K.C.; Porkess, M.V. Behavioural and neurochemical effects of post-weaning social isolation in rodents—Relevance to developmental neuropsychiatric disorders. Neurosci. Biobehav. Rev. 2008, 32, 1087–1102. [Google Scholar] [CrossRef] [PubMed]
- Shams, S.; Amlani, S.; Buske, C.; Chatterjee, D.; Gerlai, R. Developmental social isolation affects adult behavior, social interaction, and dopamine metabolite levels in zebrafish. Dev. Psychobiol. 2018, 60, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Donovan, M.; Mackey, C.S.; Platt, G.N.; Rounds, J.; Brown, A.N.; Trickey, D.J.; Liu, Y.; Jones, K.M.; Wang, Z.X. Social isolation alters behavior, the gut-immune-brain axis, and neurochemical circuits in male and female prairie voles. Neurobiol. Stress 2020, 13, 100278. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, P.; Kao, D.; Chung, P.; Looger, L.L. The neuropeptide Drosulfakinin regulates social isolation-induced aggression in Drosophila. J. Exp. Biol. 2020, 223, jeb207407. [Google Scholar] [CrossRef]
- Morin, E.L.; Howell, B.R.; Meyer, J.S.; Sanchez, M.M. Effects of early maternal care on adolescent attention bias to threat in nonhuman primates. Dev. Cogn. Neurosci. 2019, 38, 100643. [Google Scholar] [CrossRef]
- Paus, T.; Keshavan, M.; Giedd, J.N. Why do many psychiatric disorders emerge during adolescence? Nat. Rev. Neurosci. 2008, 9, 947–957. [Google Scholar] [CrossRef] [Green Version]
- Cacioppo, J.T.; Hawkley, L.C. Perceived social isolation and cognition. Trends Cogn. Sci. 2009, 13, 447–454. [Google Scholar] [CrossRef] [Green Version]
- Siegel, A.; Bhatt, S.; Bhatt, R.; Zalcman, S.S. The neurobiological bases for development of pharmacological treatments of aggressive disorders. Curr. Neuropharmacol. 2007, 5, 135–147. [Google Scholar] [CrossRef]
- Spreng, R.N.; Dimas, E.; Mwilambwe-Tshilobo, L.; Dagher, A.; Koellinger, P.; Nave, G.; Ong, A.; Kernbach, J.M.; Wiecki, T.V.; Ge, T.; et al. The default network of the human brain is associated with perceived social isolation. Nat. Commun. 2020, 11, 6393. [Google Scholar] [CrossRef]
- Malick, J. The pharmacology of isolation-induced aggressive behavior in mice. Curr. Dev. Psychopharmacol. 1979, 5, 1–27. [Google Scholar] [PubMed]
- Golden, S.A.; Jin, M.; Heins, C.; Venniro, M.; Michaelides, M.; Shaham, Y. Nucleus accumbens Drd1-expressing neurons control aggression self-administration and aggression seeking in mice. J. Neurosci. 2019, 39, 2482–2496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukkes, J.L.; Mokin, M.V.; Scholl, J.L.; Forster, G.L. Adult rats exposed to early-life social isolation exhibit increased anxiety and conditioned fear behavior, and altered hormonal stress responses. Horm. Behav. 2009, 55, 248–256. [Google Scholar] [CrossRef]
- Hashikawa, K.; Hashikawa, Y.; Lischinsky, J.; Lin, D. The neural mechanisms of sexually dimorphic aggressive behaviors. Trends Genet. 2018, 34, 755–776. [Google Scholar] [CrossRef] [PubMed]
- Choi, G.B.; Dong, H.W.; Murphy, A.J.; Valenzuela, D.M.; Yancopoulos, G.D.; Swanson, L.W.; Anderson, D.J. Lhx6 delineates a pathway mediating innate reproductive behaviors from the amygdala to the hypothalamus. Neuron 2005, 46, 647–660. [Google Scholar] [CrossRef] [Green Version]
- Lehman, M.N.; Winans, S.S.; Powers, J.B. Medial nucleus of the amygdala mediates chemosensory control of male hamster sexual behavior. Science 1980, 210, 557–560. [Google Scholar] [CrossRef]
- Li, Y.; Mathis, A.; Grewe, B.F.; Osterhout, J.A.; Ahanonu, B.; Schnitzer, M.J.; Murthy, V.N.; Dulac, C. Neuronal representation of social information in the medial amygdala of awake behaving mice. Cell 2017, 171, 1176–1190. [Google Scholar] [CrossRef]
- De Boer, S.; Olivier, B.; Veening, J.; Koolhaas, J. The neurobiology of offensive aggression: Revealing a modular view. Physiol. Behav. 2015, 146, 111–127. [Google Scholar] [CrossRef]
- Yang, T.; Yang, C.F.; Chizari, M.D.; Maheswaranathan, N.; Burke, K.J., Jr.; Borius, M.; Inoue, S.; Chiang, M.C.; Bender, K.J.; Ganguli, S. Social control of hypothalamus-mediated male aggression. Neuron 2017, 95, 955–970. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, D.-W.; Remedios, R.; Anthony, T.E.; Chang, A.; Madisen, L.; Zeng, H.; Anderson, D.J. Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature 2014, 509, 627–632. [Google Scholar] [CrossRef]
- Lin, D.; Boyle, M.P.; Dollar, P.; Lee, H.; Lein, E.; Perona, P.; Anderson, D.J. Functional identification of an aggression locus in the mouse hypothalamus. Nature 2011, 470, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Falkner, A.L.; Dollar, P.; Perona, P.; Anderson, D.J.; Lin, D. Decoding ventromedial hypothalamic neural activity during male mouse aggression. J. Neurosci. 2014, 34, 5971–5984. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, A.; Nagayasu, K.; Nishitani, N.; Kaneko, S.; Koide, T. Control of intermale aggression by medial prefrontal cortex activation in the mouse. PLoS ONE 2014, 9, e94657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, A.; Miczek, K.A. Neurogenetics of aggressive behavior: Studies in rodents. Curr. Top. Behav. Neurosci. 2013, 17, 3–44. [Google Scholar]
- Scherberger, H.; Jarvis, M.R.; Andersen, R.A. Cortical local field potential encodes movement intentions in the posterior parietal cortex. Neuron 2005, 46, 347–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris Bozer, A.L.; Uhelski, M.L.; Li, A.L. Extrapolating meaning from local field potential recordings. J. Integr. Neurosci. 2017, 16, 107–126. [Google Scholar] [CrossRef] [PubMed]
- Khalid, A.; Kim, B.S.; Am Seo, B.; Lee, S.-T.; Jung, K.-H.; Chu, K.; Lee, S.K.; Jeon, D. Gamma oscillation in functional brain networks is involved in the spontaneous remission of depressive behavior induced by chronic restraint stress in mice. BMC Neurosci. 2016, 17, 4. [Google Scholar] [CrossRef] [Green Version]
- Başar, E.; Başar-Eroglu, C.; Karakaş, S.; Schürmann, M. Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int. J. Psychophysiol. 2001, 39, 241–248. [Google Scholar] [CrossRef]
- Jones, M.W.; Wilson, M.A. Theta rhythms coordinate hippocampal–prefrontal interactions in a spatial memory task. PLoS Biol. 2005, 3, e402. [Google Scholar] [CrossRef] [Green Version]
- Engel, A.K.; Fries, P. Beta-band oscillations—Signalling the status quo? Curr. Opin. Neurobiol. 2010, 20, 156–165. [Google Scholar] [CrossRef]
- Kay, L.M. Circuit oscillations in odor perception and memory. Prog. Brain Res. 2014, 208, 223–251. [Google Scholar] [PubMed]
- Buzsáki, G.; Wang, X.J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 2012, 35, 203–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Wingerden, M.; Vinck, M.; Lankelma, J.V.; Pennartz, C.M. Learning-associated gamma-band phase-locking of action–outcome selective neurons in orbitofrontal cortex. J. Neurosci. 2010, 30, 10025–10038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhotra, S.; Cross, R.W.; Zhang, A.; van der Meer, M.A. Ventral striatal gamma oscillations are highly variable from trial to trial, and are dominated by behavioural state, and only weakly influenced by outcome value. Eur. J. Neurosci. 2015, 42, 2818–2832. [Google Scholar] [CrossRef]
- Bauer, M.; Stenner, M.P.; Friston, K.J.; Dolan, R.J. Attentional modulation of alpha/beta and gamma oscillations reflect functionally distinct processes. J. Neurosci. 2014, 34, 16117–16125. [Google Scholar] [CrossRef] [Green Version]
- Golden, S.A.; Covington, H.E., III; Berton, O.; Russo, S.J. A standardized protocol for repeated social defeat stress in mice. Nat. Protoc. 2011, 6, 1183–1191. [Google Scholar] [CrossRef]
- Albert, D.; Jonik, R.; Watson, N.; Moe, I.; Walsh, M. Aggression by a female rat cohabitating with a sterile male: Termination of pseudopregnancy does not abolish aggression. Physiol. Behav. 1991, 50, 519–523. [Google Scholar] [CrossRef]
- Pellis, S.M.; Pellis, V.C. Play-fighting differs from serious fighting in both target of attack and tactics of fighting in the laboratory rat Rattus norvegicus. Aggress. Behav. 1987, 13, 227–242. [Google Scholar] [CrossRef]
- Smith, L.K.; Fantella, S.L.N.; Pellis, S.M. Playful defensive responses in adult male rats depend on the status of the unfamiliar opponent. Aggress. Behav. 1999, 25, 141–152. [Google Scholar] [CrossRef]
- Varlinskaya, E.I.; Spear, L.P. Social interactions in adolescent and adult Sprague-Dawley rats: Impact of social deprivation and test context familiarity. Behav. Brain Res. 2008, 188, 398–405. [Google Scholar] [CrossRef] [Green Version]
- Ferdman, N.; Murmu, R.P.; Bock, J.; Braun, K.; Leshem, M. Weaning age, social isolation, and gender, interact to determine adult explorative and social behavior, and dendritic and spine morphology in prefrontal cortex of rats. Behav. Brain Res. 2007, 180, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Koike, H.; Ibi, D.; Mizoguchi, H.; Nagai, T.; Nitta, A.; Takuma, K.; Nabeshima, T.; Yoneda, Y.; Yamada, K. Behavioral abnormality and pharmacologic response in social isolation-reared mice. Behav. Brain Res. 2009, 202, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Li, N.; Han, X.; Shao, F.; Wang, W. Peri-adolescence isolation rearing alters social behavior and nociception in rats. Neurosci. Lett. 2010, 480, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Friard, O.; Gamba, M. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 2016, 7, 1325–1330. [Google Scholar] [CrossRef]
- Fraklin, K.B.J.; Paxinos, G. The Mouse Brain in Stereotaxic Coordinates, 3rd ed.; Academic Press: New York, NY, USA, 2003. [Google Scholar]
- Linden, H.; Tetzlaff, T.; Potjans, T.C.; Pettersen, K.H.; Grun, S.; Diesmann, M.; Einevoll, G.T. Modeling the Spatial Reach of the LFP. Neuron 2011, 72, 859–872. [Google Scholar] [CrossRef] [Green Version]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Cao, M.; Pu, T.; Wang, L.; Marshall, C.; He, H.; Hu, G.; Xiao, M. Early enriched physical environment reverses impairments of the hippocampus, but not medial prefrontal cortex, of socially-isolated mice. Brain Behav. Immun. 2017, 64, 232–243. [Google Scholar] [CrossRef]
- Zha, X.; Wang, L.; Jiao, Z.L.; Yang, R.R.; Xu, C.; Xu, X.H. VMHvl-projecting Vglut1+ neurons in the posterior amygdala gate territorial aggression. Cell Rep. 2020, 31, 107517. [Google Scholar] [CrossRef]
- Kercmar, J.; Büdefeld, T.; Grgurevic, N.; Tobet, S.A.; Majdic, G. Adolescent social isolation changes social recognition in adult mice. Behav. Brain Res. 2011, 216, 647–651. [Google Scholar] [CrossRef] [Green Version]
- Buzsaki, G.; Draguhn, A. Neuronal oscillations in cortical networks. Science 2004, 304, 1926–1929. [Google Scholar] [CrossRef] [Green Version]
- Miura, K.; Mainen, Z.F.; Uchida, N. Odor representations in olfactory cortex: Distributed rate coding and decorrelated population activity. Neuron 2012, 74, 1087–1098. [Google Scholar] [CrossRef] [PubMed]
- Bolding, K.A.; Franks, K.M. Recurrent cortical circuits implement concentration-invariant odor coding. Science 2018, 361, eaat6904. [Google Scholar] [CrossRef]
- Chen, P.; Hong, W. Neural circuit mechanisms of social behavior. Neuron 2018, 98, 16–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Royet, J.P.; Plailly, J. Lateralization of olfactory processes. Chem. Senses 2004, 29, 731–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mucignat-Caretta, C. The rodent accessory olfactory system. J. Comp. Physiol. A 2010, 196, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Raam, T.; Hong, W. Organization of neural circuits underlying social behavior: A consideration of the medial amygdala. Curr. Opin. Neurobiol. 2021, 68, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Litaudon, P.; Bouillot, C.; Zimmer, L.; Costes, N.; Ravel, N. Activity in the rat olfactory cortex is correlated with behavioral response to odor: A microPET study. Brain Struct. Funct. 2017, 222, 577–586. [Google Scholar] [CrossRef]
- Dantzer, R.; Tazi, A.; Bluthe, R.M. Cerebral lateralization of olfactory-mediated affective processes in rats. Behav. Brain Res. 1990, 40, 53–60. [Google Scholar] [CrossRef]
- Cohen, Y.; Putrino, D.; Wilson, D.A. Dynamic cortical lateralization during olfactory discrimination learning. J. Physiol.-Lond. 2015, 593, 1701–1714. [Google Scholar] [CrossRef] [Green Version]
- Cohen, Y.; Wilson, D.A. Task-correlated cortical asymmetry and intra- and inter-hemispheric separation. Sci. Rep. 2017, 7, 14602. [Google Scholar] [CrossRef] [Green Version]
- Im, S.; Jin, G.; Jeong, J.; Yeom, J.; Jekal, J.; Cho, J.A.; Lee, S.; Lee, Y.; Kim, D.-H.; Bae, M. Gender differences in aggression-related responses on EEG and ECG. Exp. Neurobiol. 2018, 27, 526–538. [Google Scholar] [CrossRef] [PubMed]
- Kesner, R.P.; Churchwell, J.C. An analysis of rat prefrontal cortex in mediating executive function. Neurobiol. Learn. Mem. 2011, 96, 417–431. [Google Scholar] [CrossRef] [PubMed]
- Euston, D.R.; Gruber, A.J.; McNaughton, B.L. The role of medial prefrontal cortex in memory and decision making. Neuron 2012, 76, 1057–1070. [Google Scholar] [CrossRef] [Green Version]
- Bender, F.; Korotkova, T.; Ponomarenko, A. Optogenetic entrainment of hippocampal theta oscillations in behaving mice. J. Vis. Exp. 2018, 136, 57349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitzenhofer, S.H.; Ahlbeck, J.; Wolff, A.; Wiegert, J.S.; Gee, C.E.; Oertner, T.G.; Hanganu-Opatz, I.L. Layer-specific optogenetic activation of pyramidal neurons causes beta-gamma entrainment of neonatal networks. Nat. Commun. 2017, 8, 14563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, X.; Wang, W.W.; Shao, F.; Li, N.X. Isolation rearing alters social behaviors and monoamine neurotransmission in the medial prefrontal cortex and nucleus accumbens of adult rats. Brain Res. 2011, 1385, 175–181. [Google Scholar] [CrossRef]
- Gilabert-Juan, J.; Molto, M.D.; Nacher, J. Post-weaning social isolation rearing influences the expression of molecules related to inhibitory neurotransmission and structural plasticity in the amygdala of adult rats. Brain Res. 2012, 1448, 129–136. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Sun, Y.N.; Zhao, X.Y.; Kim, J.Y.; Luo, L.; Wang, Q.; Meng, X.L.; Li, Y.H.; Sui, N.; Chen, Z.F.; et al. Enhancement of Aggression Induced by Isolation Rearing is Associated with a Lack of Central Serotonin. Neurosci. Bull. 2019, 35, 841–852. [Google Scholar] [CrossRef]
For the Relative Power Spectra (1, 20)(2, 40)(5, 100) a | ||||
---|---|---|---|---|
Group | Time Condition | Brain Area | Group × Time Condition × Brain Area | |
Delta | ||||
F | 1.283 | 0.083 | 9.091 | 1.105 |
P | 0.271 | 0.920 | 0.000 ** | 0.360 |
ε | NA | 0.818 | 0.727 | NA |
η2 | 0.060 | 0.004 | 0.312 | 0.052 |
LSD | NA | NA | LMeA, RMeA, LVMH, RVMH > LmPFC, RmPFC RVMH > LMeA, RMeA | NA |
Theta | ||||
F | 1.733 | 0.104 | 2.322 | 1.113 |
P | 0.203 | 0.850 | 0.079 | 0.354 |
ε | NA | 0.762 | 0.642 | NA |
η2 LSD | 0.080 NA | 0.005 NA | 0.104 NA | 0.053 NA |
Alpha | ||||
F | 1.334 | 1.073 | 0.703 | 0.428 |
P | 0.262 | 0.352 | 0.531 | 0.932 |
ε | NA | 0.822 | 0.502 | NA |
η2 LSD | 0.063 NA | 0.051 NA | 0.034 NA | 0.021 NA |
Beta | ||||
F | 9.582 | 1.674 | 5.640 | 0.812 |
P | 0.006 * | 0.200 | 0.001 * | 0.617 |
ε | NA | 0.795 | 0.659 | NA |
η2 | 0.324 | 0.077 | 0.220 | 0.039 |
LSD | CH > SI | NA | LVMH > LmPFC, RmPFC LMeA > LmPFC | NA |
Gamma | ||||
F | 15.553 | 0.450 | 31.273 | 2.734 |
P | 0.001 * | 0.641 | 0.000 ** | 0.004 * |
ε | NA | 0.975 | 0.696 | NA |
η2 | 0.437 | 0.022 | 0.610 | 0.120 |
LSD | SI > CH | NA | LmPFC, RmPFC > LMeA, RMeA, LVMH, RVMH RMeA > LVMH, RVMH | See Table 2 |
F(1,20)(2,19)(5,16)a | p | Partial η2 | LSD | |
---|---|---|---|---|
Time|(RVMH, SI) | 7.191 | 0.005 * | 0.431 | During > Pre |
Brain area|(Pre, SI) | 20.905 | 0.000 ** | 0.867 | LmPFC, RmPFC > RMeA > LMeA, LVMH, RVMH LMeA > RVMH |
Brain area|(Pre, CH) | 18.507 | 0.000 ** | 0.853 | LmPFC, RmPFC > LMeA, RMeA, LVMH, RVMH |
Brain area|(During, SI) | 10.857 | 0.000 ** | 0.772 | RmPFC> LmPFC, LMeA, RMeA, LVMH, RVMH LmPFC > LMeA RMeA > LMeA, LVMH |
Brain area|(During, CH) | 17.330 | 0.000 ** | 0.844 | RmPFC > LmPFC > LMeA, RMeA > LVMH, RVMH |
Brain area|(Post, SI) | 11.097 | 0.000 ** | 0.776 | LmPFC, RmPFC > LMeA, RMeA, LVMH, RVMH RMeA > RVMH |
Brain area|(Post, CH) | 10.737 | 0.000 ** | 0.770 | LmPFC, RmPFC > LMeA, RMeA, LVMH, RVMH RMeA > LVMH |
Group|(LP, Pre) | 7.090 | 0.015 * | 0.262 | SI > CH |
Group|(LP, Post) | 14.047 | 0.001 * | 0.413 | SI > CH |
Group|(RP, Pre) | 8.996 | 0.007 * | 0.310 | SI > CH |
Group|(RP, During) | 7.693 | 0.012 * | 0.278 | SI > CH |
Group|(RP, Post) | 13.643 | 0.001 * | 0.406 | SI > CH |
Group|(LM, During) | 5.169 | 0.034 * | 0.205 | SI > CH |
Group|(LM, Post) | 5.798 | 0.026 * | 0.225 | SI > CH |
Group|(RM, Pre) | 6.704 | 0.023 * | 0.233 | SI > CH |
Group|(RM, During) | 8.437 | 0.009 * | 0.297 | SI > CH |
Group|(RM, Post) | 11.679 | 0.003 * | 0.369 | SI > CH |
Group|(LH, During) | 7.143 | 0.015 * | 0.263 | SI > CH |
Group|(LH, Post) | 8.501 | 0.009 * | 0.298 | SI > CH |
Group|(RH, During) | 19.780 | 0.000 ** | 0.497 | SI > CH |
Group|(RH, Post) | 4.839 | 0.040 * | 0.195 | SI > CH |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Liu, Y.; Fan, Y.; Shen, D.; Shen, J.; Fang, G. High-Frequency Local Field Potential Oscillations May Modulate Aggressive Behaviors in Mice. Biology 2022, 11, 1682. https://doi.org/10.3390/biology11111682
Yang J, Liu Y, Fan Y, Shen D, Shen J, Fang G. High-Frequency Local Field Potential Oscillations May Modulate Aggressive Behaviors in Mice. Biology. 2022; 11(11):1682. https://doi.org/10.3390/biology11111682
Chicago/Turabian StyleYang, Jing, Yansu Liu, Yanzhu Fan, Di Shen, Jiangyan Shen, and Guangzhan Fang. 2022. "High-Frequency Local Field Potential Oscillations May Modulate Aggressive Behaviors in Mice" Biology 11, no. 11: 1682. https://doi.org/10.3390/biology11111682
APA StyleYang, J., Liu, Y., Fan, Y., Shen, D., Shen, J., & Fang, G. (2022). High-Frequency Local Field Potential Oscillations May Modulate Aggressive Behaviors in Mice. Biology, 11(11), 1682. https://doi.org/10.3390/biology11111682