Does the Floral Nectary in Dracocephalum moldavica L. Produce Nectar and Essential Oil? Structure and Histochemistry of the Nectary
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Plant Material
2.2. Stereoscopic Microscopy (SM)
2.3. Scanning Electron Microscopy (SEM)
2.4. Light Microscopy (LM)
2.5. Histochemistry and Fluorescence Assays
2.6. Transmission Electron Microscopy (TEM)
3. Results
3.1. Visual and Aromatic Floral Attractants
3.2. Micromorphology of Nectary
3.3. Anatomy of the Nectary
3.4. Histochemistry
3.5. Ultrastructure of the Nectary Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christenhusz, M.J.M.; Fay, M.F.; Chase, M.W. Plants of the World. In An Illustrated Encyclopedia of Vascular Plants; University of Chicago Press: Chicago, IL, USA, 2017; p. 792. [Google Scholar]
- Nikolova, M.; Traykova, B.; Yankova-Tsvetkova, E.; Stefanova, T.; Dzhurmanski, A.; Aneva, I.; Berkov, S. Herbicide Potential of Selected Essential Oils From Plants of Lamiaceae and Asteraceae Families. Acta Agrobot. 2021, 74, 7411. [Google Scholar] [CrossRef]
- Kakasy, A.Z.; Lemberkovics, E.; Kursinszki, L.; Janicsak, G.; Szِoke, E. Data to the phytochemical evaluation of Moldavian dragonhead (Dracocephalum moldavica L., Lamiaceae). Herba Pol. 2002, 48, 112–119. [Google Scholar]
- Dmitruk, M.; Sulborska, A.; Żuraw, B.; Stawiarz, E.; Weryszko-Chmielewska, E. Sites of secretion of bioactive compounds in leaves of Dracocephalum moldavica L.: Anatomical, histochemical, and essential oil study. Braz. J. Bot. 2019, 42, 701–715. [Google Scholar] [CrossRef] [Green Version]
- Wolski, T.; Kwiatkowski, S.; Gliński, Z. Pszczelnik mołdawski (Dracocephalum moldavica L.)—Roślina miododajna i lecznicza. Ann. UMCS Sec. DD 2004, 59, 57–66. [Google Scholar]
- Ehsani, A.; Mahjani, M.G.; Hosseini, M.; Safari, R.; Moshrefi, R.; Mohammad Shiri, H. Evaluation of Thymus vulgaris plant extract as an eco-friendly corrosion inhibitor for stainless steel 304 in acidic solution by means of electrochemical impedance spectroscopy, electrochemical noise analysis and density functional theory. J. Colloid Interface Sci. 2017, 490, 444–451. [Google Scholar] [CrossRef]
- Lipiński, M. Pożytki Pszczele. In Zapylanie I Miododajność Roślin; Powszechne Wydawnictwo Rolnicze i Leśne: Warszawa, Poland; Wydawnictwo Sądecki Bartnik: Stróże, Poland, 2010; p. 284. [Google Scholar]
- Dmitruk, M.; Weryszko-Chmielewska, E.; Sulborska, A. Flowering and Nectar Secretion in Two Forms of the Moldavian Dragonhead (Dracocephalum moldavica L.)—A Plant with Extraordinary Apicultural Potential. J. Apic. Sci. 2018, 62, 97–110. [Google Scholar] [CrossRef] [Green Version]
- Sulborska, A. Rośliny Pożytkowe; Wyd. Bee & Honey Sp. z o.o.: Klecza Dolna, Poland, 2019; p. 754. [Google Scholar]
- Naie, M.; Trotus, E.; Lupu, C.; Popa, D. Data and knowledge on the importance of Dracocephalum moldavica L. species (dragon’s head) to introduce and develop the cultivation technology. An. Stiintifice Ale Univ. Alexandru Ioan Cuza Din Iasi. Sect. II A Biol. Veg. 2016, 62, 124–125. [Google Scholar]
- Petanidou, T. Ecological and Evolutionary Aspects of Floral Nectars in Mediterranean Habitats. In Nectaries and Nectar; Nicolson, S.W., Nepi, M., Pacini., E., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 343–375. [Google Scholar]
- Nepi, M. Nectary Structure and Ultrastructure. In Nectaries and Nectar; Nicolson, S.W., Nepi, M., Pacini, E., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 129–166. [Google Scholar]
- Dafni, H.; Lensky, Y.; Fahn, A. Flower and nectar characteristics of nine species of Labiatae and their influence on honeybee visits. J. Apic. Res. 1988, 27, 103–114. [Google Scholar] [CrossRef]
- Petanidou, T.; Goethals, V.; Smets, E. Nectary structure of Labiatae in relation to their nectar secretion and characteristics in a Mediterranean shrub community—Does flowering time matter? Plant Syst. Evol. 2000, 225, 103–118. [Google Scholar] [CrossRef]
- Weryszko-Chmielewska, E. Ecological features of flowers including nectary structure of chosen species from Lamiaceae family. Pszczeln. Zesz. Nauk. 2000, 2, 223–232. [Google Scholar]
- Zhang, X.; Sawhney, V.K.; Davis, A.R. Annular floral nectary with oil-producing trichomes in Salvia farinacea (Lamiaceae): Anatomy, histochemistry, ultrastructure, and significance. Am. J. Bot. 2014, 101, 1849–1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chwil, M. Flowering biology and nectary structure of Melissa officinalis L. Acta Agrobot. 2009, 62, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Mačukanović-Jocić, M.P.; Rančić, D.V.; Dajić Stevanović, Z.P. Floral nectaries of basil (Ocimum basilicum): Morphology, anatomy and possible mode of secretion. S. Afr. J. Bot. 2007, 73, 636–641. [Google Scholar] [CrossRef] [Green Version]
- Zer, H.; Fahn, A. Floral Nectaries of Rosmarinus officinalis L. Structure, Ultrastructure and Nectar Secretion. Ann. Bot. 1992, 70, 391–397. [Google Scholar] [CrossRef]
- Chwil, M. Flowering pattern, the structure of nectary surfaceand nectar secretion in two varieties of Ocimum basilicum L. Acta Agrobot. 2007, 60, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Kartashova, N.N. Selected data on the morphology of the flowers of family Labiatae. Bot. J. CCCP Acad. Sci. 1960, 45, 109–114. [Google Scholar]
- Naghiloo, S.; Gohari, G.R.; Nikzat Siahkolaee, S.; Dadpour, M.R. Floral development in Scutellaria pinnatifida (Lamiaceae): The ontogenetic basis for sepal reduction. Plant Biol. 2015, 17, 238–244. [Google Scholar] [CrossRef]
- Naghiloo, S.; Khodaverdi, M.; Nikzat Siahkolaee, S.; Dadpour, M.R. Comparative floral development in Lamioideae (Lamiaceae): Marrubium, Phlomis, and Stachys. Plant Syst. Evol. 2014, 300, 1269–1283. [Google Scholar] [CrossRef]
- O’Brien, T.P.; McCully, M.E. The Study of Plant Structure: Principles and Selected Methods; Termarcarphi Pty Ltd.: Melbourne, Australia, 1981. [Google Scholar]
- Pearse, A.G.E. Histochemistry: Theorical and Applied; Churchill Livingstone: New York, NY, USA, 1985; Volume II, p. 1055. [Google Scholar]
- Brundrett, M.C.; Kendrick, B.; Peterson, C.A. Efficient lipid staining in plant material with Sudan Red 7B or Fluoral Yellow 088 in polyethylene glycol-glycerol. Biotech. Histochem. 1991, 66, 111–116. [Google Scholar] [CrossRef]
- Cain, A.J. The use of Nile blue in the examination of lipids. Q.J. Microsc. Sci. 1947, 88, 383–392. [Google Scholar]
- Jensen, W.A. Botanical Histochemistry Principles and Practice, 1st ed.; WH Freeman and Company: San Francisco, CA, USA, 1962. [Google Scholar]
- Johansen, D.A. Plant microtechnique, 1st ed.; London McGraw Hill: London, UK, 1940. [Google Scholar]
- Mabry, T.J.; Markham, K.R.; Thomas, M.B. The Systematic Identification of Flavonoids; Springer: Berlin, Germany, 1970. [Google Scholar]
- Talamond, P.; Verdeil, J.L.; Conéjéro, G. Secondary metabolite localization by autofluorescence in living plant cells. Molecules 2015, 20, 5024–5037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charrière-Ladreix, Y. Répartition intracellulaire du secrétat flavonique de Populus nigra L. Planta 1976, 129, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, E.S. The use of lead citrate at high pH as an electronopaque stain in electron microscopy. J. Cell Biol. 1963, 17, 208–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reverté, S.; Retana, J.; Gómez, J.M.; Bosch, J. Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators. Ann Bot. 2016, 118, 249–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menzel, R.; Backhaus., W. Colour Vision in Insects. In Vision and Visual Dysfunction; Gouras, P., Ed.; The Perception of Colour; MacMillan Press: London, UK, 1991. [Google Scholar]
- Vorobyev, M.; Osorio, D.; Bennett, A.T.D.; Marshall, N.J.; Cuthill, I.C. Tetrachromacy, oil droplets and bird plumage colours. J. Comp. Physiol. A 1998, 183, 621–633. [Google Scholar] [CrossRef]
- Dyer, A.G.; Boyd-Gerny, S.; Shrestha, M.; Lunau, K.; Garcia, J.E.; Koethe, S.; Wong, B.B.M. Innate colour preferences of the Australian native stingless bee Tetragonula carbonaria Sm. J. Comp. Physiol. A 2016, 202, 603–613. [Google Scholar] [CrossRef]
- Papiorek, S.; Junker, R.R.; Alves-dos-Santos, I.; Melo, G.A.R.; Amaral-Neto, L.P.; Sazima, M.; Wolowski, M.; Freitas, L.; Lunau, K. Bees, birds and yellow flowers: Pollinator-dependent convergent evolution of UV patterns. Plant Biol. 2016, 18, 46–55. [Google Scholar] [CrossRef]
- de Ibarra, N.H.; Langridge, K.V.; Vorobyev, M. More than colour attraction: Behavioural functions of flower patterns. Curr. Opin. Insect Sci. 2015, 12, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Lunau, K.; Wester, P. Mimicry and deception in pollination. Adv. Bot. Res. 2017, 82, 259–279. [Google Scholar] [CrossRef]
- Schmidt, V.; Martin Schaefer, H.; Winkler, H. Conspicuousness, not colour as foraging cue in plant–animal signalling. Oikos 2004, 106, 551–557. [Google Scholar] [CrossRef]
- van der Kooi, C.J.; Dyer, A.G.; Kevan, P.G.; Lunau, K. Functional significance of the optical properties of flowers for visual signaling. Ann. Bot. 2018, 123, 263–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitney, H.M.; Bennett, K.M.; Dorling, M.; Sandbach, L.; Prince, D.; Chittka, L.; Glover, B.J. Why do so many petals have conical epidermal cells? Ann. Bot. 2011, 108, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Whitney, H.M.; Poetes, R.; Steiner, U.; Chittka, L.; Glover, B.J. Determining the contribution of epidermal cell shape to petal wettability using isogenic Antirrhinum lines. PLoS ONE 2011, 6, e17576. [Google Scholar] [CrossRef] [PubMed]
- Dmitruk, M.; Weryszko-Chmielewska, E. Morphological differentiation and distribution of non-glandular and glandular trichomes on Dracocephalum moldavicum L. shoots. Acta Agrobot. 2010, 63, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Kumari, D.S. Evolution of floral nectary in Lamiaceae. P. Indian AS-Plant Sci. 1986, 96, 281–288. [Google Scholar] [CrossRef]
- Davis, A.R.; Gunning, B.E.S. The modified stomata of the floral nectary of Vicia faba L. 1. Development, anatomy and ultra-structure. Protoplasma 1992, 166, 134–152. [Google Scholar] [CrossRef]
- Gaffal, K.P.; Friedrichs, G.J.; El-Gammal, S. Ultrastructural evidence for a dual function of the phloem and programmed cell death in the floral nectary of Digitalis purpurea. Ann. Bot. 2007, 99, 593–607. [Google Scholar] [CrossRef] [Green Version]
- Kartashova, N.N. Stroeniei Funktsiya Nektarnikov Tsvetka Dvodol’nykh Rastenii; Isdatel’stvo Tomskogo Universiteta: Tomsk, Russia, 1965. [Google Scholar]
- Frei, E. Die Innervierung der floralen Nektarien dikotyler Pflanzenfamilien. Ber. Schweiz. Bot. Ges. 1955, 65, 60–114. [Google Scholar]
- Rudall, P. Flower anatomy of subtribe Hyptidinae (Labiatae). Bot. J. Linn. Soc. 1981, 83, 251–262. [Google Scholar] [CrossRef]
- Yanbin, D.; Hong, W.; Yong, L. Developmental and anatomical studies on the floral nectaries in Origanum vulgare Linn. Acta Bot. Boreal. Occid. Sin. 1997, 17, 32–36. [Google Scholar]
- Shen-Zonggen, S.; Wenzhe, L.; Zhenghai, H. Developmental and anatomic studies on the floral nectaries of Mentha haplocalyx. Acta Bot. Boreal. Occid. Sin. 1994, 14, 29–32. [Google Scholar]
- Xin, H.; Chu, Q.G.; Hu, Z.H. Anatomical studies on the development of the floral nectary in Thymus quinquecostatus Celak. J. Plant Resour. Environ. 2000, 9, 43–46. [Google Scholar]
- Teng, H.M.; Hu, Z.H. Developmental and anatomical studies on the floral nectaries in Perilla frutescens. Xibei Zhiwu Xuebao 2003, 23, 1288–1291. [Google Scholar]
- Tölke, E.D.; Capelli, N.D.V.; Pastori, T.; Alencar, A.C.; Cole, T.C.; Demarco, D. Diversity of Floral Glands and Their Secretions in Pollinator Attraction. In Co-Evolution of Secondary Metabolites; Mérillon, J.-M., Ramawat, K.G., Eds.; Reference Series in Phytochemistry; Springer International Publishing: Cham, Switzerland, 2020; pp. 709–754. [Google Scholar]
- Konarska, A. Microstructure of floral nectaries in Robinia viscosa var. hartwigii (Papilionoideae, Fabaceae)—A valuable but little-known melliferous plant. Protoplasma 2020, 257, 421–437. [Google Scholar] [CrossRef]
- Konarska, A. Morphological, anatomical, ultrastructural, and histochemical study of flowers and nectaries of Iris sibirica L. Micron 2022, 158, 103288. [Google Scholar] [CrossRef]
- Chitchak, N.; Stewart, A.B.; Traiperm, P. Functional Ecology of External Secretory Structures in Rivea ornata (Roxb.) Choisy (Convolvulaceae). Plants 2022, 11, 2068. [Google Scholar] [CrossRef]
- Gardoni, L.C.D.P.; Santana, R.M.; Brito, J.C.M.; Ramos, L.X.; Araújo, L.A.; Bastos, E.M.A.F.; Calaça, P. Content of phenolic compounds in monofloral aroeira honey and in floral nectary tissue. Pesqui. Agropecu. Bras. 2022, 57, e02802. [Google Scholar] [CrossRef]
- Stevenson, P.C.; Nicolson, S.W.; Wright, G.A. Plant secondary metabolites in nectar: Impacts on pollinators and ecological functions. Funct. Ecol. 2017, 31, 65–75. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Ziaee, M.; Palla, F. Essential oils extracted from different species of the Lamiaceae plant family as prospective bioagents against several detrimental pests. Molecules 2020, 25, 1556. [Google Scholar] [CrossRef] [Green Version]
- War, A.R.; Buhroo, A.A.; Hussain, B.; Ahmad, T.; Nair, R.M.; Sharma, H.C. Plant Defense and Insect Adaptation with Reference to Secondary Metabolites. In Co-Evolution of Secondary Metabolites; Mérillon, J.-M., Ramawat, K.G., Eds.; Springer: Cham, Switzerland, 2020; pp. 795–822. [Google Scholar]
- Palmer-Young, E.C.; Farrell, I.W.; Adler, L.S.; Milano, N.J.; Egan, P.A.; Junker, R.R.; Irwin, R.E.; Stevenson, P.C. Chemistry of floral rewards: Intra- and interspecific variability of nectar and pollen secondary metabolites across taxa. Ecol. Monogr. 2019, 89, e01335. [Google Scholar] [CrossRef] [Green Version]
- Nicolson, S.W. Sweet solutions: Nectar chemistry and quality. Philos. T. R. Soc. B 2022, 377, 20210163. [Google Scholar] [CrossRef] [PubMed]
- Kowalkowska, A.K.; Pawłowicz, M.; Guzanek, P.; Krawczyńska, A.T. Floral nectary and osmophore of Epipactis helleborine (L.) Crantz (Orchidaceae). Protoplasma 2018, 255, 1811–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Abedin, M.; Singh, A.K.; Das, S. Role of Phenolic Compounds in Plant-Defensive Mechanisms. In Plant Phenolics in Sustainable Agriculture Singapore; Lone, R., Shuab, R., Kamili, A.N., Eds.; Springer: Singapore, 2020; Volume 1, pp. 517–532. [Google Scholar] [CrossRef]
- dos Santos Silva, M.; Santana, A.N.; dos Santos-Serejo, J.A.; Ferreira, C.F.; Amorim, E.P. Morphoanatomy and Histochemistry of Septal Nectaries Related to Female Fertility in Banana Plants of the ‘Cavendish’ Subgroup. Plants 2022, 11, 1177. [Google Scholar] [CrossRef]
- Liao, L.H.; Wu, W.-Y.; Berenbaum, M.R. Behavioral responses of honey bees (Apis mellifera) to natural and synthetic xenobiotics in food. Sci. Rep. 2017, 7, 15924. [Google Scholar] [CrossRef] [Green Version]
- Kram, B.W.; Bainbridge, E.A.; Perera, M.A.D.N.; Carter, C. Identification, cloning and characterization of a GDSL lipase secreted into the nectar of Jacaranda mimosifolia. Plant Mol. Biol. 2008, 68, 173–183. [Google Scholar] [CrossRef]
- Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 2010, 85, 1629–1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.Y.; Chen, Y.W.; Hou, C.Y. Antioxidant and antibacterial activity of seven predominant terpenoids. Int. J. Food Prop. 2019, 22, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, T. Antibacterial effect of the combination of terpenoids. Arch. Microbiol. 2022, 204, 520. [Google Scholar] [CrossRef]
- Raguso, R.A. Why are some floral nectars scented? Ecology 2004, 85, 1486–1494. [Google Scholar] [CrossRef]
- Raguso, R.A. Functions of Essential Oils and Natural Volatiles in Plant-Insect Interactions. In Handbook of Essential Oils: Science, Technology, and Applications; Baser, K.H.C., Buchbauer, G., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 481–496. [Google Scholar]
- Dodoš, T.; Janković, S.; Marin, P.D.; Rajčević, N. Essential Oil Composition and Micromorphological Traits of Satureja montana L., S. subspicata Bartel ex Vis., and S. kitaibelii Wierzb. Ex Heuff. Plant Organs. Plants 2021, 10, 511. [Google Scholar] [CrossRef]
- Biller, O.M.; Adler, L.S.; Irwin, R.E.; McAllister, C.; Palmer-Young, E.C. Possible synergistic effects of thymol and nicotine against Crithidia bombi parasitism in bumble bees. PLoS ONE 2015, 10, e0144668. [Google Scholar] [CrossRef]
- Richardson, L.L.; Adler, L.S.; Leonard, A.S.; Andicoechea, J.; Regan, K.H.; Anthony, W.E.; Manson, J.S.; Irwin, R.E. Secondary metabolites in floral nectar reduce parasite infections in bumblebees. Proc. R. Soc. Lond. B Biol. Sci. 2015, 28, 20142471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gherman, B.I.; Denner, A.; Bobis, O.; Dezmirean, D.S.; Marghitas, L.A.; Schluns, H.; Moritz, R.F.A.; Erler, S. Pathogen-associated self-medication behavior in the honeybee Apis mellifera. Behav. Ecol. Sociobiol. 2014, 68, 1777–1784. [Google Scholar] [CrossRef] [Green Version]
- Roy, R.; Schmitt, A.J.; Thomas, J.B.; Carter, C.J. Nectar biology: From molecules to ecosystems. Plant Sci. 2017, 262, 148–164. [Google Scholar] [CrossRef] [PubMed]
- Köhler, A.; Pirk, C.W.W.; Nicolson, S.W. Honeybees and nectar nicotine: Deterrence and reduced survival versus potential health benefits. J. Insect. Physiol. 2012, 58, 286–292. [Google Scholar] [CrossRef]
- Machado, S.R.; Souza, C.V.; Guimarães, E. A reduced, yet functional, nectary disk integrates a complex system of floral nectar secretion in the genus Zeyheria (Bignoniaceae). Acta Bot. Bras. 2017, 31, 344–357. [Google Scholar] [CrossRef] [Green Version]
- Tölke, E.D.; Bachelier, J.B.; Lima, E.A.; Galetto, L.; Demarco, D.; Carmello-Guerreiro, S.M. Diversity of floral nectary secretions and structure, and implications for their evolution in Anacardiaceae. Bot. J. Linn. Soc. 2018, 187, 209–231. [Google Scholar] [CrossRef]
- Mercandante-Simões, M.O.; Paiva, E.A.S. Anatomy and ultrastructure of the floral nectary of Tontelea micrantha (Celastraceae: Salacioideae): Floral nectary of Tontelea micrantha. Plant Spec. Biol. 2016, 31, 117–124. [Google Scholar] [CrossRef]
- Paiva, E.; Machado, S.R. The floral nectary of Hymenaea stigonocarpa (Fabaceae, Caesalpinioideae): Structural aspects during floral development. Ann. Bot. 2008, 101, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Weryszko-Chmielewska, E.; Sulborska-Różycka, A.; Sawidis, T. Structure of the nectary in Chaenomeles japonica (Thunb.) Lindl. Ex Spach. in different stages of flowering with focus on nectar secretion. Protoplasma 2022, 6, 1467–1476. [Google Scholar] [CrossRef]
Feature | Flower Stage | |||||
---|---|---|---|---|---|---|
Bud | Anthesis | |||||
Range | Average | SD | Range | Average | SD | |
Height of the longer nectary lobe (µm) | 950.4–1077.1 | 995.8 | ±56.1 | 1198.6–1262.3 | 1220.5 | ±36.2 |
Longer diameter of the nectary (µm) | 920.5–1086.8 | 978.7 | ±93.7 | 1173.3–1187.9 | 1181.9 | ±7.7 |
Shorter diameter of the nectary (µm) | 865.4–871.6 | 868.9 | ±3.2 | 906.0–960.2 | 939.6 | ±29.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konarska, A.; Weryszko-Chmielewska, E.; Dmitruk, M.; Sulborska-Różycka, A.; Piotrowska-Weryszko, K. Does the Floral Nectary in Dracocephalum moldavica L. Produce Nectar and Essential Oil? Structure and Histochemistry of the Nectary. Biology 2022, 11, 1650. https://doi.org/10.3390/biology11111650
Konarska A, Weryszko-Chmielewska E, Dmitruk M, Sulborska-Różycka A, Piotrowska-Weryszko K. Does the Floral Nectary in Dracocephalum moldavica L. Produce Nectar and Essential Oil? Structure and Histochemistry of the Nectary. Biology. 2022; 11(11):1650. https://doi.org/10.3390/biology11111650
Chicago/Turabian StyleKonarska, Agata, Elżbieta Weryszko-Chmielewska, Marta Dmitruk, Aneta Sulborska-Różycka, and Krystyna Piotrowska-Weryszko. 2022. "Does the Floral Nectary in Dracocephalum moldavica L. Produce Nectar and Essential Oil? Structure and Histochemistry of the Nectary" Biology 11, no. 11: 1650. https://doi.org/10.3390/biology11111650
APA StyleKonarska, A., Weryszko-Chmielewska, E., Dmitruk, M., Sulborska-Różycka, A., & Piotrowska-Weryszko, K. (2022). Does the Floral Nectary in Dracocephalum moldavica L. Produce Nectar and Essential Oil? Structure and Histochemistry of the Nectary. Biology, 11(11), 1650. https://doi.org/10.3390/biology11111650