Similar Slow Component of Oxygen Uptake and Ventilatory Efficiency between an Aerobic Dance Session on an Air Dissipation Platform and a Constant-Load Treadmill Test in Healthy Women
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Treadmill Test
2.4. Aerobic Dance Session
2.5. Cardiorespiratory Record
2.6. Metabolic Fatigue and Rating of Perceived Exertion
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lucía, A.; Hoyos, J.; Santalla, A.; Pérez, M.; Chicharro, J.L. Kinetics of VO(2) in professional cyclists. Med. Sci. Sports Exerc. 2002, 34, 320–325. [Google Scholar] [PubMed]
- Garnacho-Castaño, M.V.; Albesa-Albiol, L.; Serra-Payá, N.; Bataller, M.G.; Felíu-Ruano, R.; Cano, L.G.; Cobo, E.P.; Maté-Muñoz, J.L. The Slow Component of Oxygen Uptake and Efficiency in Resistance Exercises: A Comparison With Endurance Exercises. Front. Physiol. 2019, 10, 357. [Google Scholar] [CrossRef] [PubMed]
- Fawkner, S.G.; Armstrong, N.; Potter, C.R.; Welsman, J.R. Oxygen uptake kinetics in children and adults after the onset of moderate-intensity exercise. J. Sports Sci. 2002, 20, 319–326. [Google Scholar] [CrossRef] [PubMed]
- George, M.A.; McLay, K.M.; Doyle-Baker, P.K.; Reimer, R.A.; Murias, J.M. Fitness Level and Not Aging per se, Determines the Oxygen Uptake Kinetics Response. Front. Physiol. 2018, 29, 277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemps, H.M.; Schep, G.; Zonderland, M.L.; Thijssen, E.J.; de Vries, W.R.; Wessels, B.; Doevendans, P.A.; Wijn, P.F. Are oxygen uptake kinetics in chronic heart failure limited by oxygen delivery or oxygen utilization? Int. J. Cardiol. 2010, 142, 138–144. [Google Scholar] [CrossRef]
- Regensteiner, J.G.; Bauer, T.A.; Reusch, J.E.B.; Brandenburg, S.L.; Sippel, J.M.; Vogelsong, A.M.; Smith, S.; Wolfel, E.E.; Eckel, R.H.; Hiatt, W.R. Abnormal oxygen uptake kinetic responses in women with type II diabetes mellitus. J. Appl. Physiol. 1998, 85, 310–317. [Google Scholar] [CrossRef]
- Gaesser, G.A.; Poole, D.C. The slow component of oxygen uptake kinetics in humans. Exerc. Sport Sci. Rev. 1996, 24, 35–70. [Google Scholar] [CrossRef]
- Burnley, M.; Jones, A.M. Oxygen uptake kinetics as a determinant of sports performance. Eur. J. Sport Sci. 2007, 7, 63–79. [Google Scholar] [CrossRef]
- Garnacho-Castaño, M.V.; Palau-Salvà, G.; Cuenca, E.; Muñoz-González, A.; García-Fernández, P.; del Carmen Lozano-Estevan, M.D.C.; Veiga-Herreros, P.; Maté-Muñoz, J.L.; Domínguez, R. Effects of a single dose of beetroot juice on cycling time trial performance at ventilatory thresholds intensity in male triathletes. J. Int. Soc. Sports Nutr. 2018, 15, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Garnacho-Castaño, M.V.; Dominguez, R.; Maté-Muñoz, J.L. Understanding the Meaning of Lactate Threshold in Resistance Exercises. Endoscopy 2015, 36, 371–377. [Google Scholar] [CrossRef]
- Sun, X.-G.; Hansen, J.E.; Garatachea, N.; Storer, T.W.; Wasserman, K. Ventilatory Efficiency during Exercise in Healthy Subjects. Am. J. Respir. Crit. Care Med. 2002, 166, 1443–1448. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.J.; Raman, A.; Schlader, Z.; Stannard, S.R. Ventilatory efficiency in juvenile elite cyclists. J. Sci. Med. Sport 2013, 16, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Arena, R.; Myers, J.; Guazzi, M. The clinical and research applications of aerobic capacity and ventilatory efficiency in heart failure: An evidence-based review. Heart Fail. Rev. 2007, 13, 245–269. [Google Scholar] [CrossRef] [PubMed]
- Reindl, I.; Kleber, R.X. Exertional hyperpnea in patients with chronic heart failure is a reversible cause of exercise intolerance. Basic Res. Cardiol. 1996, 91, 37–43. [Google Scholar] [CrossRef]
- Brown, S.J.; Brown, J.A. Heart Rate Variability and Ventilatory Efficiency. Endoscopy 2009, 30, 496–502. [Google Scholar] [CrossRef]
- Baba, R.; Nagashima, M.; Goto, M.; Nagano, Y.; Yokota, M.; Tauchi, N.; Nishibata, K. Oxygen uptake efficiency slope: A new index of cardiorespiratory functional reserve derived from the relation between oxygen uptake and minute ventilation during incremental exercise. J. Am. Coll. Cardiol. 1996, 28, 1567–1572. [Google Scholar] [CrossRef]
- Albiol, L.A.; Paya, N.S.; Garnacho-Castaño, M.A.; Cano, L.G.; Cobo, E.P.; Maté-Muñoz, J.L.; Garnacho-Castaño, M.V. Ventilatory efficiency during constant-load test at lactate threshold intensity: Endurance versus resistance exercises. PLoS ONE 2019, 14, e0216824. [Google Scholar] [CrossRef] [Green Version]
- Serra-Payá, N.; Garnacho-Castaño, M.; Sánchez-Nuño, S.; Albesa-Albiol, L.; Girabent-Farrés, M.; Arcone, L.M.; Fernández, A.; García-Fresneda, A.; Castizo-Olier, J.; Viñals, X.; et al. The Relationship between Resistance Exercise Performance and Ventilatory Efficiency after Beetroot Juice Intake in Well-Trained Athletes. Nutrients 2021, 13, 1094. [Google Scholar] [CrossRef]
- Romer, L.M.; Polkey, M.I. Exercise-induced respiratory muscle fatigue: Implications for performance. J. Appl. Physiol. 2008, 104, 879–888. [Google Scholar] [CrossRef] [Green Version]
- Whipp, B.J. The The bionergetic and gas exchange basis of exercise testing. Clin. Chest Med. 1994, 15, 173–192. [Google Scholar] [CrossRef]
- Billat, V.L.; Richard, R.; Binsse, V.M.; Koralsztein, J.P.; Haouzi, P. The VO2 slow component for severe exercise depends on type of exercise and is not correlated with time to fatigue. J. Appl. Physiol. 1998, 85, 2118–2124. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.A.; Tyminski, T.A.; Soriano, A.C.; Dorado, S.; Costello, K.B.; Sorrentino, K.M.; Pham, P.H. Exercise test mode dependency for ventilatory efficiency in women but not men. Clin. Physiol. Funct. Imaging 2006, 26, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Edvardsen, E.; Ingjer, F.; Bø, K. Fit Women Are Not Able to Use the Whole Aerobic Capacity During Aerobic Dance. J. Strength Cond. Res. 2011, 25, 3479–3485. [Google Scholar] [CrossRef] [PubMed]
- Rockefeller, K.A.; Burke, E.J. Psycho-physiological analysis of an aerobic dance programme for women. Br. J. Sports Med. 1979, 13, 77–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Angelis, M.; Vinciguerra, G.; Gasbarri, A.; Pacitti, C. Oxygen uptake, heart rate and blood lactate concentration during a normal training session of an aerobic dance class. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 78, 121–127. [Google Scholar] [CrossRef]
- Moreira-Reis, A.; Maté-Muñoz, J.L.; Hernández-Lougedo, J.; García-Fernández, P.; Pleguezuelos-Cobo, E.; Carbonell, T.; Alva, N.; Garnacho-Castaño, M.V. Cardiorespiratory, Metabolic and Muscular Responses during a Video-Recorded Aerobic Dance Session on an Air Dissipation Platform. Int. J. Environ. Res. Public Health 2020, 17, 9511. [Google Scholar] [CrossRef]
- Behm, D.G.; Anderson, K.; Curnew, R.S. Muscle force and activation under stable and unstable conditions. J. Strength Cond Res. 2002, 16, 416–422. [Google Scholar]
- Brito, J.; Krustrup, P.; Rebelo, A. The influence of the playing surface on the exercise intensity of small-sided recreational soccer games. Hum. Mov. Sci. 2012, 31, 946–956. [Google Scholar] [CrossRef]
- Rixon, K.P.; Rehor, P.R.; Bemben, M.G. Analysis of the assessment of caloric expenditure in four modes of aerobic dance. J. Strength Cond. Res. 2006, 20, 593–596. [Google Scholar] [CrossRef]
- Lucía, A.; Hoyos, J.; Pérez, M.; Chicharro, J.L. Heart rate and performance parameters in elite cyclists: A longitudinal study. Med. Sci. Sports Exerc. 2000, 32, 1777–1782. [Google Scholar] [CrossRef] [Green Version]
- Keir, D.A.; Benson, A.P.; Love, L.K.; Robertson, T.C.; Rossiter, H.B.; Kowalchuk, J.M. Influence of muscle metabolic heterogeneity in determining the kinetic response to ramp-incremental exercise. J. Appl. Physiol. 2016, 120, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Murgatroyd, S.R.; Ferguson, C.; Ward, S.A.; Whipp, B.J.; Rossiter, H.B. Pulmonary O2 uptake kinetics as a determinant of high-intensity exercise tolerance in humans. J. Appl. Physiol. 2011, 110, 1598–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borg, G. Perceived exertion as an indicator of somatic stress. Scand. J. Rehabil. Med. 1970, 2, 92–98. [Google Scholar]
- Lai, N.; Tolentino-Silva, F.; Nasca, M.M.; Silva, M.A.; Gladden, L.B.; Cabrera, M.E. Exercise intensity and oxygen uptake kinetics in African-American and Caucasian women. Eur. J. Appl. Physiol. 2011, 112, 973–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keyser, R.E.; Rus, V.; Mikdashi, J.A.; Handwerger, B.S. Exploratory Study on Oxygen Consumption On-kinetics During Treadmill Walking in Women With Systemic Lupus Erythematosus. Arch. Phys. Med. Rehabilitation 2010, 91, 1402–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, A.; Wadley, G.; Snow, R.; Giacobino, J.P.; Muzzin, P.; Garnham, A.; Cameron-Smith, D. Slow component of VO2 kinetics: The effect of training status, fibre type, UCP3 MRNA and citrate synthase activity. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 157–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, V.M.; Guidetti, L.; Duarte, J.A.; Ascensão, A.; Silva, A.J.; E Sampaio, J.; Russell, A.P.; Baldari, C. Slow component of VO2 during level and uphill treadmill running: Relationship to aerobic fitness in endurance runners. J. Sports Med. Phys. Fit. 2007, 47, 135–140. [Google Scholar]
- O’Connell, J.; Weir, J.; MacIntosh, B. Blood lactate accumulation decreases during the slow component of oxygen uptake without a decrease in muscular efficiency. Eur. J. Appl. Physiol. 2017, 469, 1257–1265. [Google Scholar] [CrossRef]
- Svedahl, K.; MacIntosh, B.R. Anaerobic Threshold: The Concept and Methods of Measurement. Can. J. Appl. Physiol. 2003, 28, 299–323. [Google Scholar] [CrossRef] [Green Version]
- Tamaki, T.; Uchiyama, S.; Tamura, T.; Nakano, S. Changes in muscle oxygenation during weight-lifting exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1994, 68, 465–469. [Google Scholar] [CrossRef]
- Murias, J.M.; Lanatta, D.; Arcuri, C.R.; Laiño, F.A. Metabolic and functional responses playing tennis on different surfaces. J. Strength Cond. Res. 2007, 21, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Garnacho-Castaño, M.V.; Albesa-Albiol, L.; Serra-Payá, N.; Bataller, M.G.; Cobo, E.P.; Cano, L.G.; Guodemar-Pérez, J.; Carbonell, T.; Domínguez, R.; Maté-Muñoz, J.L. Oxygen Uptake Slow Component and the Efficiency of Resistance Exercises. J. Strength Cond. Res. 2021, 35, 1014–1022. [Google Scholar] [CrossRef] [PubMed]
- Stickland, M.K.; Lindinger, M.I.; Olfert, I.M.; Heigenhauser, G.J.F.; Hopkins, S.R. Pulmonary Gas Exchange and Acid-Base Balance During Exercise. Compr. Physiol. 2013, 3, 693–739. [Google Scholar] [CrossRef]
- Lindinger, M.I.; McKelvie, R.S.; Heigenhauser, G.J. K+ and Lac- distribution in humans during and after high-intensity exercise: Role in muscle fatigue attenuation? J. Appl. Physiol. 1995, 78, 765–777. [Google Scholar] [CrossRef]
- Gladden, L.B. Lactate metabolism: A new paradigm for the third millennium. J. Physiol. 2004, 558, 5–30. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, M.L.; Harris, J.E.; Hernández, A.; Gladden, L.B. Blood Lactate Measurements and Analysis during Exercise: A Guide for Clinicians. J. Diabetes Sci. Technol. 2007, 1, 558–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habedank, D.; Reindl, I.; Vietzke, G.; Bauer, U.; Sperfeld, A.; Wernecke, K.D.; Kleber, F.X. Ventilatory efficiency and exercise tolerance in 101 healthy volunteers. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 77, 421–426. [Google Scholar] [CrossRef]
- Saengsuwan, J.; Nef, T.; Laubacher, M.; Hunt, K.J. Submaximal cardiopulmonary thresholds on a robotics-assisted tilt table, a cycle and a treadmill: A comparative analysis. Biomed. Eng. Online 2015, 14, 104. [Google Scholar] [CrossRef]
Variable | N | Minimum | Maximum | Mean | SD |
---|---|---|---|---|---|
HR (beats∙min−1) | 17 | 173.0 | 198.0 | 187.2 | 7.4 |
Absolute peak (L∙min−1) | 17 | 1.7 | 3.6 | 2.4 | 0.5 |
Relative peak (mL∙kg−1∙min−1) | 17 | 30.1 | 54.8 | 41.4 | 7.5 |
Peak VCO2 (L∙min−1) | 17 | 2.0 | 3.9 | 2.9 | 0.5 |
Peak RER | 17 | 1.1 | 1.4 | 1.2 | 0.1 |
Peak VE (L∙min−1) | 17 | 54.7 | 109.7 | 84.7 | 17.0 |
Peak VE·−1 | 17 | 29.0 | 47.0 | 36,5 | 5.1 |
Peak VE·VCO2−1 | 17 | 28.0 | 36.0 | 32.5 | 2.2 |
Peak Speed (km∙h−1) | 17 | 9.5 | 15.0 | 12.2 | 1.7 |
HR at VT1 (beats∙min−1) | 17 | 127.0 | 174.0 | 150.1 | 13.1 |
Absolute at VT1 (L∙min−1) | 17 | 0.6 | 2.5 | 1.5 | 0.5 |
Relative at VT1 (mL∙kg−1∙min−1) | 17 | 11.1 | 37.1 | 25.4 | 7.2 |
VCO2 at VT1 (L∙min−1) | 17 | 0.5 | 2.2 | 1.3 | 0.4 |
RER at VT1 | 17 | 0.7 | 1.0 | 0.9 | 0.1 |
VE at VT1 (L∙min−1) | 17 | 17.9 | 59.6 | 37.7 | 10.4 |
VE· −1 at VT1 | 16 | 21.0 | 34.0 | 25.4 | 3.6 |
VE·VCO2−1 at VT1 | 16 | 24.0 | 34.0 | 28.8 | 3.2 |
Speed at VT1 (km∙h−1) | 17 | 5.0 | 9.0 | 7.1 | 1.2 |
ADP (95% CI) | Treadmill (95% CI) | p1 | p2 | p3 | |||||
---|---|---|---|---|---|---|---|---|---|
Rest | 10 min | 20 min | Rest | 10 min | 20 min | ES/SP | ES/SP | ES/SP | |
Lactate (mmol·L−1) | 1.5 * | 5.9 Ψ | 6.5 # | 1.5 * | 3.8 δ | 2.9 | <0.001 | <0.001 | <0.001 |
(1.2–1.7) | (4.6–7.4) | (5.2–7.7) | (1.3–1.7) | (3.0–4.6) | (2.3–3.7) | (0.5–0.9) | (0.8–1.0) | (0.6–0.9) | |
RPE | 10.3 | 10.7 | 10.8 | 11.6 | 0.300 | 0.034 | 0.318 | ||
(9.8–10.8) | (10.0–11.4) | (9.6–12.0) | (9.9–13.3) | (0.1–0.2) | (0.3–0.6) | (0.1–0.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreira-Reis, A.; Maté-Muñoz, J.L.; Hernández-Lougedo, J.; García-Fernández, P.; Heredia-Elvar, J.R.; Pleguezuelos, E.; Carbonell, T.; Alva, N.; Garnacho-Castaño, M.V. Similar Slow Component of Oxygen Uptake and Ventilatory Efficiency between an Aerobic Dance Session on an Air Dissipation Platform and a Constant-Load Treadmill Test in Healthy Women. Biology 2022, 11, 1646. https://doi.org/10.3390/biology11111646
Moreira-Reis A, Maté-Muñoz JL, Hernández-Lougedo J, García-Fernández P, Heredia-Elvar JR, Pleguezuelos E, Carbonell T, Alva N, Garnacho-Castaño MV. Similar Slow Component of Oxygen Uptake and Ventilatory Efficiency between an Aerobic Dance Session on an Air Dissipation Platform and a Constant-Load Treadmill Test in Healthy Women. Biology. 2022; 11(11):1646. https://doi.org/10.3390/biology11111646
Chicago/Turabian StyleMoreira-Reis, Alessandra, José Luis Maté-Muñoz, Juan Hernández-Lougedo, Pablo García-Fernández, Juan Ramón Heredia-Elvar, Eulogio Pleguezuelos, Teresa Carbonell, Norma Alva, and Manuel Vicente Garnacho-Castaño. 2022. "Similar Slow Component of Oxygen Uptake and Ventilatory Efficiency between an Aerobic Dance Session on an Air Dissipation Platform and a Constant-Load Treadmill Test in Healthy Women" Biology 11, no. 11: 1646. https://doi.org/10.3390/biology11111646
APA StyleMoreira-Reis, A., Maté-Muñoz, J. L., Hernández-Lougedo, J., García-Fernández, P., Heredia-Elvar, J. R., Pleguezuelos, E., Carbonell, T., Alva, N., & Garnacho-Castaño, M. V. (2022). Similar Slow Component of Oxygen Uptake and Ventilatory Efficiency between an Aerobic Dance Session on an Air Dissipation Platform and a Constant-Load Treadmill Test in Healthy Women. Biology, 11(11), 1646. https://doi.org/10.3390/biology11111646