Changes in Muscular Activity in Different Stable and Unstable Conditions on Aquatic Platforms
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Participants
1.2. Data Collection
1.3. Exercise Trials
1.4. Data Analysis
2. Results
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stone, W.; Coulter, S. Strength/endurance effects from three resistance training protocols with women. J. Strength Cond. Res. 1994, 8, 231–234. [Google Scholar]
- Escamilla, R.F. Knee biomechanics of the dynamic squat exercise. Med. Sci. Sports. Exerc. 2001, 33, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Lorenzetti, S.; Ostermann, M.; Zeidler, F.; Zimmer, P.; Jentsch, L.; List, R.; Taylor, W.R.; Schellenberg, F. How to squat? Effects of various stance widths, foot placement angles and level of experience on knee, hip and trunk motion and loading. BMC Sports Sci. Med. Rehabil. 2018, 10, 14. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J. Squatting Kinematics and Kinetics and Their Application to Exercise Performance. J. Strength Cond. Res. 2010, 24, 3497–3506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoenfeld, B.; Contreras, B.; Tiryaki-Sonmez, G.; Willardson, J.; Fontana, F. An electromyographic comparison of a modified version of the plank with a long lever and posterior tilt versus the traditional plank exercise. Sports Biomech. 2014, 3, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Yavuz, H.U.; Erdag, D. Kinematic and Electromyographic Activity Changes during Back Squat with Submaximal and Maximal Loading. Appl. Bionics. Biomech. 2017, 2017, 9084725. [Google Scholar] [CrossRef] [PubMed]
- Daneshjoo, A.; Mokhtar, A.H.; Rahnama, N.; Yusof, A. The effects of injury preventive warm-up programs on knee strength ratio in young male professional soccer players. PLoS ONE 2012, 7, e50979. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, C.J.; Elliott, B.C.; Doyle, T.L.; Finch, C.F.; Dempsey, A.R.; Lloyd, D.G. Changes in knee joint biomechanics following balance and technique training and a season of Australian football. Br. J. Sports Med. 2012, 46, 917. [Google Scholar] [CrossRef] [Green Version]
- Naclerio, F.; Faigenbaum, A.D.; Larumbe, E.; Goss-Sampson, M.; Perez-Bilbao, T.; Jimenez, A.; Beedie, C. Effects of a low volume injury prevention program on the hamstring torque angle relationship. Res. Sports Med. 2013, 21, 253. [Google Scholar] [CrossRef]
- Slater, L.V.; Hart, J.M. Muscle Activation Patterns During Different Squat Techniques. J. Strength Cond. Res. 2017, 31, 667–676. [Google Scholar] [CrossRef]
- Monajati, A.; Larumbe-Zabala, E.; Goss-Sampson, M.; Naclerio, F. Surface Electromyography Analysis of Three Squat Exercises. J. Human Kinet. 2019, 67, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Myer, G.D.; Ford, K.R.; Brent, J.L.; Hewett, T.E. The effects of plyometric vs. dynamic stabilization and balance training on power, balance, and landing force in female athletes. J. Strength Cond. Res. 2006, 20, 345–353. [Google Scholar] [CrossRef] [PubMed]
- McCaw, S.; Melrose, D. Stance width and bar load effects on leg muscle activity during the parallel squat. Med. Sci. Sports Exerc. 1999, 31, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Snarr, R.; Esco, M. Electromyographical comparison of plank variations performed with and without instability devices. J. Strength Cond. Res. 2014, 28, 3298–3305. [Google Scholar] [CrossRef]
- Anderson, G.S.; Gaetz, M.; Holzmann, M.; Twist, P. Comparison of EMG activity during stable and unstable push-up protocols. Eur. J. Sport Sci. 2013, 13, 42–48. [Google Scholar] [CrossRef]
- Byrne, J.M.; Bishop, N.S.; Caines, A.M.; Crane, K.A.; Kalynn, A.; Feaver, A.M.; Pearcey, G. Effect of using a suspension training system on muscle activation during the performance of a front plank exercise. J. Strength Cond. Res. 2014, 28, 3049–3055. [Google Scholar] [CrossRef]
- Ni, M.; Mooney, K.; Harriell, K.; Balachandran, A.; Signorile, J. Core muscle function during specific yoga poses. Complement. Ther. Med. 2014, 22, 235–243. [Google Scholar] [CrossRef]
- Do, Y.; Yoo, W. Comparison of the thicknesses of the transversus abdominis and internal abdominal obliques during plank exercises on different support surfaces. J. Phys. Ther. Sci. 2015, 27, 169–170. [Google Scholar] [CrossRef] [Green Version]
- Peterson, D. Proposed performance standards for the plank for inclusion consideration into the Navy’s physical readiness test. Strength Cond. J. 2013, 35, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Zemková, E.; Jeleň, M.; Cepková, A.; Uvaček, M. There Is No Cross Effect of Unstable Resistance Training on Power Produced during Stable Conditions. Appl. Sci. 2021, 11, 3401. [Google Scholar] [CrossRef]
- Jeffrey, M.; Cormie, P.; Deane, R. Isometric squat force output and muscle activity in stable and unstable conditions. J. Strength Cond. Res. 2006, 20, 915–918. [Google Scholar]
- Nuzzo, J.L.; McCaulley, G.O.; Cormie, P.; Cavill, M.J.; McBride, J.M. Trunk Muscle Activity During Stability Ball and Free Weight Exercises. J. Strength Cond. Res. 2008, 22, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Hurd, W.; Chmielewski, T.; Snyder-mackler, L. Perturbation-enhanced neuromuscular training alters muscle activity in female athletes. Knee Surg. Sports Traumatol. Arthrosc. 2006, 14, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Mok, N.W.; Yeung, E.W.; Cho, J.C.; Hui, S.C.; Liu, K.C.; Pang, C.H. Core muscle activity during suspension exercises. J. Sci. Med. Sport. 2015, 18, 189–194. [Google Scholar] [CrossRef]
- Pieniążek, M.; Mańko, G.; Spieszny, M.; Bilski, J.; Kurzydło, W.; Ambroży, T.; Jaszczur-Nowicki, J. Body Balance and Physiotherapy in the Aquatic Environment and at a Gym. Biomed. Res. Int. 2021, 5, 9925802. [Google Scholar] [CrossRef]
- Stirn, I.; Jarm, T.; Kapus, V.; Strojnik, V. Evaluation of muscle fatigue during 100-m front crawl. Eur. J. Appl. Physiol. 2011, 111, 101–113. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Basmajian, J.; De Luca, C. Muscles Alive: Their Functions Revealed by Electromyography; Williams & Wilkins: Baltimore, MD, USA, 1985. [Google Scholar]
- Hohmann, A.; Kirsten, R.; Kruger, T. EMG-Model of the backstroke start technique. In: X International Symposium of Biomechanics and Medicine in Swimming. Port. J. Sport Sci. 2006, 6, 38–39. [Google Scholar]
- Beach, T.A.; Howarth, S.J.; Callaghan, J.P. Muscular contribution to low-back loading and stiffness during standard and suspended push-ups. Hum. Mov. Sci. 2008, 27, 457–472. [Google Scholar] [CrossRef]
- Snarr, R.; Esco, M.; Witte, E.; Jenkins, C.; Brannan, R. Electromyographic activity of rectus abdominis during a suspension push-up compared to traditional exercises. J. Exerc. Physiol. Online 2013, 16, 1–8. [Google Scholar]
- Song, S.; Lee, S.; Lee, D.; Hong, S.; Lee, G. Electromyographic analysis of lower extremity muscle activities during modified squat exercise: Preliminary study. J. Hum. Sport Exerc. 2019, 15, 727–734. [Google Scholar] [CrossRef]
- Sousa, C.; Ferreira, J.; Medeiros, A.; Carvalho, A.; Pereira, R.; Guedes, D.; Alencar, J. Electromyographic activity in squatting at 40°, 60° and 90° knee flexion positions. Rev. Bras. Med. Esporte. 2007, 13, 280–286. [Google Scholar]
- Calatayud, J.; Casaña, J.; Martín, F.; Jakobsen, M.D.; Colado, J.C.; Gargallo, P.; Juesas, Á.; Muñoz, V.; Andersen, L.L. Trunk muscle activity during different variations of the supine plank exercise. Musculoskelet. Sci. Pract. 2017, 28, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Marshall, P.; Murphy, B. Changes in Muscle Activity and Perceived Exertion during Exercises Performed on a Swiss Ball. Appl. Physiol. Nutr. Metab. 2006, 31, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Saeterbakken, A.; Finland, M. Muscle force output and electromyographic activity in squats with various unstable surfaces. J. Strength Cond. Res. 2013, 27, 130–136. [Google Scholar] [CrossRef]
- Lehman, G.; Hoda, W.; Oliver, S. Trunk muscle activity during bridging exercises on and off a swissball. Chiropr. Man. Ther. 2005, 13, 14. [Google Scholar] [CrossRef]
Exercise | Environment | Duration | Recovery | Abbreviations |
---|---|---|---|---|
Dynamic Squat | Land | 10″ | 40″ | LE |
Isometric Squat | Land | 10″ | 40″ | LE |
Elbow Plank | Land | 10″ | 40′ | LE |
Hand Plank | Land | 10″ | 40″ | LE |
Dynamic Squat | Aquatic without turbulence | 10″ | 40″ | AE_WT |
Isometric Squat | Aquatic without turbulence | 10″ | 40″ | AE_WT |
Elbow Plank | Aquatic without turbulence | 10″ | 40″ | AE_WT |
Hand Plank | Aquatic without turbulence | 10″ | 40″ | AE_WT |
Dynamic Squat | Aquatic with turbulence from right side | 10″ | 40″ | AE_T1 |
Isometric Squat | Aquatic with turbulence from right side | 10″ | 40″ | AE_T1 |
Elbow Plank | Aquatic with turbulence from right side | 10″ | 40″ | AE_T1 |
Hand Plank | Aquatic with turbulence from right side | 10″ | 40″ | AE_T1 |
Dynamic Squat | Aquatic with turbulence from both sides | 10″ | 40″ | AE_T2 |
Isometric Squat | Aquatic with turbulence from both sides | 10″ | 40″ | AE_T2 |
Elbow Plank | Aquatic with turbulence from both sides | 10″ | 40″ | AE_T2 |
Hand Plank | Aquatic with turbulence from both sides | 10″ | 40″ | AE_T2 |
Muscle | Exercise | Context | F | p-Value | η²p | Post-Hoc | Magnitude of Difference Cohen’s d [95% CI] | |||
---|---|---|---|---|---|---|---|---|---|---|
LE | AE_WT | AE_T1 | AE_T2 | |||||||
Erector Spinae | Dynamic Squat | 32.3 ± 6.7 | 33.7 ± 4.5 | 31.5 ± 6.1 | 33.9 ± 5.3 | 1.03 | 0.392 | 0.086 | - | - |
Isometric Squat | 30.1 ± 6.4 | 32.6 ± 6.2 | 32.6 ± 3.6 | 33 ± 4.2 | 0.92 | 0.441 | 0.077 | - | - | |
Elbow Plank | 4.9 ± 2.1 | 6.2 ± 2.6 | 7.2 ± 3.9 | 7.0 ± 2.4 | 4.02 | 0.015 | 0.268 | b, c | b: 0.60 [1.21, −0.03] c: 1.14 [1.86, 0.39] | |
Hand Plank | 4.3 ± 1.7 | 4.9 ± 1.7 | 5.5 ± 3.2 | 6.8 ± 3.1 | 4.49 | 0.009 | 0.290 | c | c: 0.80 [1.44, 0.13] |
Muscle | Exercise | Context | F | p-Value | η²p | Post-Hoc | Magnitude of Difference Cohen’s d [95% CI] | |||
---|---|---|---|---|---|---|---|---|---|---|
LE | AE_WT | AE_T1 | AE_T2 | |||||||
Rectus Femoris | Dynamic Squat | 6.4 ± 4 | 7.8 ± 3.6 | 7.7 ± 2.9 | 8.3 ± 3.8 | 2.06 | 0.125 | 0.158 | - | - |
Isometric Squat | 4.5 ± 2.5 | 5.5 ± 3.1 | 6.3 ± 3.3 | 8.3 ± 6.4 | 3.24 | 0.034 | 0.227 | c | c: 0.625 [1.23, −0.01] | |
Elbow Plank | 46.9 ± 12.4 | 42.7 ± 6.7 | 41.7 ± 6.3 | 41.1 ± 7.2 | 1.36 | 0.271 | 0.110 | - | - | |
Hand Plank | 33.3 ± 6.5 | 34.7 ± 6 | 33.7 ± 5.6 | 37.4 ± 6.9 | 1.32 | 0.285 | 0.107 | - | - |
Muscle | Exercise | Context | F | p-Value | η²p | Post-Hoc | Magnitude of Difference Cohen’s d [95% CI] | |||
---|---|---|---|---|---|---|---|---|---|---|
LE | AE_WT | AE_T1 | AE_T2 | |||||||
Biceps Femoris | Dynamic Squat | 5.2 ± 2.9 | 6.9 ± 3.7 | 7.8 ± 4.8 | 8.1 ± 5.2 | 4.21 | 0.013 | 0.277 | b, c | b: 0.772 [1.41, 0.11] c: 0.728 [1.36, 0.07] |
Isometric Squat | 4.3 ± 1.9 | 4.2 ± 1.9 | 4.2 ± 2.2 | 5.3 ± 3.6 | 1.17 | 0.335 | 0.096 | - | - | |
Elbow Plank | 46 ± 13.7 | 41.7 ± 13.7 | 40.3 ± 11.7 | 39.1 ± 10.8 | 1.76 | 0.174 | 0.138 | - | - | |
Hand Plank | 34.3 ± 13.3 | 38.9 ± 11.4 | 38 ± 12.2 | 38.1 ± 8.7 | 1.1 | 0.363 | 0.091 | - | - |
Muscle | Exercise | Context | F | p-Value | η²p | Post-Hoc | Magnitude of Difference Cohen’s d [95% CI] | |||
---|---|---|---|---|---|---|---|---|---|---|
LE | AE_WT | AE_T1 | AE_T2 | |||||||
Rectus Abdominis | Dynamic Squat | 31.1 ± 7.4 | 27.6 ± 9.3 | 28.4 ± 6.3 | 27.8 ± 7.1 | 1.36 | 0.273 | 0.110 | ||
Isometric Squat | 32.9 ± 7.9 | 31.7 ± 7.3 | 32.8 ± 8.4 | 32.4 ± 6.5 | 0.15 | 0.928 | 0.014 | |||
Elbow Plank | 17.6 ± 7.6 | 15.4 ± 7.8 | 16.5 ± 8.6 | 16.3 ± 5.8 | 0.39 | 0.759 | 0.034 | |||
Hand Plank | 15 ± 6.4 | 15.1 ± 7.8 | 17.2 ± 5.1 | 17.4 ± 9.1 | 1.97 | 0.137 | 0.152 |
Muscle | Exercise | Context | F | p-Value | η²p | Post-Hoc | Magnitude of Difference Cohen’s d [95% CI] | |||
---|---|---|---|---|---|---|---|---|---|---|
LE | AE_WT | AE_T1 | AE_T2 | |||||||
Rectus Oblique | Dynamic Squat | 24.6 ± 10.2 | 29.2 ± 7.2 | 29.6 ± 6.3 | 32.5 ± 7.1 | 5.56 | 0.003 | 0.336 | c | c: 0.822 [1.7, 0.15] |
Isometric Squat | 17.5 ± 7.9 | 19.7 ± 7.2 | 19.8 ± 9.9 | 21.1 ± 8.4 | 1.84 | 0.159 | 0.143 | - | - | |
Elbow Plank | 7.8 ± 3.1 | 7.8 ± 3.5 | 7.5 ± 3.4 | 8.3 ± 3.2 | 0.68 | 0.572 | 0.058 | - | - | |
Hand Plank | 6.6 ± 2.8 | 7 ± 2.4 | 7.4 ± 2.4 | 8.7 ± 3.9 | 4.63 | 0.008 | 0.296 | c, e | c: 0.831 [1.48, 0.16] e: 0.620 [1.23,–0.01] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conceição, A.; Fernandes, O.; Baia, M.; Parraca, J.A.; Gonçalves, B.; Batalha, N. Changes in Muscular Activity in Different Stable and Unstable Conditions on Aquatic Platforms. Biology 2022, 11, 1643. https://doi.org/10.3390/biology11111643
Conceição A, Fernandes O, Baia M, Parraca JA, Gonçalves B, Batalha N. Changes in Muscular Activity in Different Stable and Unstable Conditions on Aquatic Platforms. Biology. 2022; 11(11):1643. https://doi.org/10.3390/biology11111643
Chicago/Turabian StyleConceição, Ana, Orlando Fernandes, Miguel Baia, Jose A. Parraca, Bruno Gonçalves, and Nuno Batalha. 2022. "Changes in Muscular Activity in Different Stable and Unstable Conditions on Aquatic Platforms" Biology 11, no. 11: 1643. https://doi.org/10.3390/biology11111643
APA StyleConceição, A., Fernandes, O., Baia, M., Parraca, J. A., Gonçalves, B., & Batalha, N. (2022). Changes in Muscular Activity in Different Stable and Unstable Conditions on Aquatic Platforms. Biology, 11(11), 1643. https://doi.org/10.3390/biology11111643