Chronic Unpredictable Mild Stress Model of Depression: Possible Sources of Poor Reproducibility and Latent Variables
Abstract
:Simple Summary
Abstract
1. Introduction
2. Chronic Sleep Deprivation
3. Pain and Depressive-like Behavior
4. Social Stress
5. Animal Strain
6. Handling
7. Habituation/Desensitization
8. Age
9. Sex
10. Type of Stressful Factors (Physical and Emotional Stressors)
11. The Odor of a Stressed Conspecific and Vocalizations
12. Rarely Considered Factors (Unknown Variables)
13. Conclusions
- (1)
- In order to determine the sucrose preference more accurately, it is recommended to measure consumption during the dark phase of the diurnal cycle (the active period in rodents), which usually lasts 12 h. It should be taken into account that the main consumption of sucrose solution by animals occurs in the dark phase.
- (2)
- Remember that stress exposure during the inactive phase for the animal leads to chronic sleep deprivation, which itself is an additional stressful factor
- (3)
- If injections of drugs (e.g., antidepressants) are supposed in the experimental protocol, an intact group of animals should be included in the experiment (group without any injection). If possible, avoid using stressors that can cause physical pain.
- (4)
- Pay attention to the number of animals in the cage, their hierarchical status, the type of social stress, and its duration because social stress has a significant influence on the animals.
- (5)
- Pay great attention to the housing and handling conditions. It affects the degree of familiarity of the animals with the experimenter.
- (6)
- If possible, avoid using the same stressor several times during the CUMS. Strive for the “true unpredictability” of the model.
- (7)
- Pay attention to the age of the animals and indicate it as the number of postnatal days. Animals of different ages have different susceptibilities to stress.
- (8)
- It is necessary to increase the representation of females in a CUMS model of depression.
- (9)
- The use of psychogenic stressors is preferable, while the use of metabolic stressors should be avoided.
- (10)
- Control animals and animals of the stress group should be kept in separate isolated rooms to exclude the stressful effects of olfactory, visual, and auditory stimuli on animals.
- (11)
- Try to control as many factors as possible and indicate this in the “materials and methods” section.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Loo, H.M.; de Jonge, P.; Romeijn, J.-W.; Kessler, R.C.; Schoevers, R.A. Data-Driven Subtypes of Major Depressive Disorder: A Systematic Review. BMC Med. 2012, 10, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, R.J. Animal Model of Depression: Pharmacological Sensitivity of a Hedonic Deficit. Pharmacol. Biochem. Behav. 1982, 16, 965–968. [Google Scholar] [CrossRef] [Green Version]
- Willner, P.; Towell, A.; Sampson, D.; Sophokleous, S.; Muscat, R. Reduction of Sucrose Preference by Chronic Unpredictable Mild Stress, and Its Restoration by a Tricyclic Antidepressant. Psychopharmacology 1987, 93, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Broekkamp, C. Predictive Validity and the Robustness Criterion for Animal Models. Psychopharmacology 1997, 134, 341–343. [Google Scholar] [CrossRef]
- Willner, P. The Chronic Mild Stress Procedure as an Animal Model of Depression: Valid, Reasonably Reliable, and Useful. Psychopharmacology 1997, 134, 371–377. [Google Scholar] [CrossRef]
- Antoniuk, S.; Bijata, M.; Ponimaskin, E.; Wlodarczyk, J. Chronic Unpredictable Mild Stress for Modeling Depression in Rodents: Meta-Analysis of Model Reliability. Neurosci. Biobehav. Rev. 2019, 99, 101–116. [Google Scholar] [CrossRef]
- Willner, P. Reliability of the Chronic Mild Stress Model of Depression: A User Survey. Neurobiol. Stress 2017, 6, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Button, K.S.; Ioannidis, J.P.A.; Mokrysz, C.; Nosek, B.A.; Flint, J.; Robinson, E.S.J.; Munafò, M.R. Power Failure: Why Small Sample Size Undermines the Reliability of Neuroscience. Nat. Rev. Neurosci. 2013, 14, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Strekalova, T.; Couch, Y.; Kholod, N.; Boyks, M.; Malin, D.; Leprince, P.; Steinbusch, H.M. Update in the Methodology of the Chronic Stress Paradigm: Internal Control Matters. Behav. Brain Funct. 2011, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Harris, R. Failure to Change Exploration or Saccharin Preference In Rats Exposed to Chronic Mild Stress. Physiol. Behav. 1997, 63, 91–100. [Google Scholar] [CrossRef]
- Konkle, A.T.M.; Baker, S.L.; Kentner, A.C.; Barbagallo, L.S.-M.; Merali, Z.; Bielajew, C. Evaluation of the Effects of Chronic Mild Stressors on Hedonic and Physiological Responses: Sex and Strain Compared. Brain Res. 2003, 992, 227–238. [Google Scholar] [CrossRef] [PubMed]
- José Jaime, H.-P.; Venus, B.-C.; Graciela, J.-R.; Tania, H.-H.O.; Lucía, M.-M. Young-Adult Male Rats’ Vulnerability to Chronic Mild Stress Is Reflected by Anxious-Like Instead of Depressive-Like Behaviors. Neurosci. J. 2016, 2016, 317242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strekalova, T.; Spanagel, R.; Bartsch, D.; Henn, F.A.; Gass, P. Stress-Induced Anhedonia in Mice Is Associated with Deficits in Forced Swimming and Exploration. Neuropsychopharmacology 2004, 29, 2007–2017. [Google Scholar] [CrossRef] [PubMed]
- Strekalova, T.; Steinbusch, H.W.M. Measuring Behavior in Mice with Chronic Stress Depression Paradigm. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2010, 34, 348–361. [Google Scholar] [CrossRef] [PubMed]
- Strekalova, T.; Liu, Y.; Kiselev, D.; Khairuddin, S.; Chiu, J.L.Y.; Lam, J.; Chan, Y.-S.; Pavlov, D.; Proshin, A.; Lesch, K.-P.; et al. Chronic Mild Stress Paradigm as a Rat Model of Depression: Facts, Artifacts, and Future Perspectives. Psychopharmacology 2022, 239, 663–693. [Google Scholar] [CrossRef]
- Markov, D.D. Sucrose Preference Test as a Measure of Anhedonic Behavior in a Chronic Unpredictable Mild Stress Model of Depression: Outstanding Issues. Brain Sci. 2022, 12, 1287. [Google Scholar] [CrossRef]
- Meerlo, P.; Sgoifo, A.; Suchecki, D. Restricted and Disrupted Sleep: Effects on Autonomic Function, Neuroendocrine Stress Systems and Stress Responsivity. Sleep Med. Rev. 2008, 12, 197–210. [Google Scholar] [CrossRef]
- Meerlo, P.; Koehl, M.; Van Der Borght, K.; Turek, F.W. Sleep Restriction Alters the Hypothalamic-Pituitary-Adrenal Response to Stress. J. Neuroendocrinol. 2002, 14, 397–402. [Google Scholar] [CrossRef]
- Galvão, M.d.O.L.; Sinigaglia-Coimbra, R.; Kawakami, S.E.; Tufik, S.; Suchecki, D. Paradoxical Sleep Deprivation Activates Hypothalamic Nuclei That Regulate Food Intake and Stress Response. Psychoneuroendocrinology 2009, 34, 1176–1183. [Google Scholar] [CrossRef]
- Suchecki, D.; Lobo, L.; Hipolide, D.; Tufik, S. Increased ACTH and Corticosterone Secretion Induced by Different Methods of Paradoxical Sleep Deprivation. J. Sleep Res. 1998, 7, 276–281. [Google Scholar] [CrossRef]
- Andersen, M.L.; Martins, P.J.F.; D’almeida, V.; Bignotto, M.; Tufik, S. Endocrinological and Catecholaminergic Alterations during Sleep Deprivation and Recovery in Male Rats. J. Sleep Res. 2005, 14, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Koban, M.; Le, W.W.; Hoffman, G.E. Changes in Hypothalamic Corticotropin-Releasing Hormone, Neuropeptide Y, and Proopiomelanocortin Gene Expression during Chronic Rapid Eye Movement Sleep Deprivation of Rats. Endocrinology 2006, 147, 421–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchecki, D.; Antunes, J.; Tufik, S. Palatable Solutions During Paradoxical Sleep Deprivation: Reduction of Hypothalamic-Pituitary-Adrenal Axis Activity and Lack of Effect on Energy Imbalance. J. Neuroendocrinol. 2003, 15, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Leproult, R.; Copinschi, G.; Buxton, O.; Van Cauter, E. Sleep Loss Results in an Elevation of Cortisol Levels the next Evening. Sleep 1997, 20, 865–870. [Google Scholar]
- Barf, R.P.; Van Dijk, G.; Scheurink, A.J.W.; Hoffmann, K.; Novati, A.; Hulshof, H.J.; Fuchs, E.; Meerlo, P. Metabolic Consequences of Chronic Sleep Restriction in Rats: Changes in Body Weight Regulation and Energy Expenditure. Physiol. Behav. 2012, 107, 322–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venancio, D.P.; Suchecki, D. Prolonged REM Sleep Restriction Induces Metabolic Syndrome-Related Changes: Mediation by pro-Inflammatory Cytokines. Brain. Behav. Immun. 2015, 47, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Hipolide, D.C.; Suchecki, D.; Pinto, A.P.; Chiconelli Faria, E.; Tufik, S.; Luz, J. Paradoxical Sleep Deprivation and Sleep Recovery: Effects on the Hypothalamic-Pituitary-Adrenal Axis Activity, Energy Balance and Body Composition of Rats. J. Neuroendocrinol. 2006, 18, 231–238. [Google Scholar] [CrossRef]
- Koban, M.; Sita, L.V.; Le, W.W.; Hoffman, G.E. Sleep Deprivation of Rats: The Hyperphagic Response Is Real. Sleep 2008, 31, 927–933. [Google Scholar]
- Koban, M.; Stewart, C. Effects of Age on Recovery of Body Weight Following REM Sleep Deprivation of Rats. Physiol. Behav. 2006, 87, 1–6. [Google Scholar] [CrossRef]
- Murack, M.; Chandrasegaram, R.; Smith, K.B.; Ah-Yen, E.G.; Rheaume, É.; Malette-Guyon, É.; Nanji, Z.; Semchishen, S.N.; Latus, O.; Messier, C.; et al. Chronic Sleep Disruption Induces Depression-like Behavior in Adolescent Male and Female Mice and Sensitization of the Hypothalamic-Pituitary-Adrenal Axis in Adolescent Female Mice. Behav. Brain Res. 2021, 399, 113001. [Google Scholar] [CrossRef]
- Riemann, D.; Berger, M.; Voderholzer, U. Sleep and Depression—Results from Psychobiological Studies: An Overview. Biol. Psychol. 2001, 57, 67–103. [Google Scholar] [CrossRef]
- Dallaspezia, S.; Benedetti, F. Sleep Deprivation Therapy for Depression. Curr. Top. Behav. Neurosci. 2015, 25, 483–502. [Google Scholar] [PubMed]
- Gottlieb, J.F.; Goel, N.; Chen, S.; Young, M.A. Meta-analysis of Sleep Deprivation in the Acute Treatment of Bipolar Depression. Acta Psychiatr. Scand. 2021, 143, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.C.; Bunney, W.E. The Biological Basis of an Antidepressant Response to Sleep Deprivation and Relapse: Review and Hypothesis. Am. J. Psychiatry. 1990, 147, 14–21. [Google Scholar] [PubMed]
- Hemmeter, U.-M.; Hemmeter-Spernal, J.; Krieg, J.-C. Sleep Deprivation in Depression. Expert Rev. Neurother. 2010, 10, 1101–1115. [Google Scholar] [CrossRef]
- Spiegel, K.; Tasali, E.; Penev, P.; Cauter, E. Van Brief Communication: Sleep Curtailment in Healthy Young Men Is Associated with Decreased Leptin Levels, Elevated Ghrelin Levels, and Increased Hunger and Appetite. Ann. Intern. Med. 2004, 141, 846. [Google Scholar] [CrossRef]
- Heath, G.; Roach, G.D.; Dorrian, J.; Ferguson, S.A.; Darwent, D.; Sargent, C. The Effect of Sleep Restriction on Snacking Behaviour during a Week of Simulated Shiftwork. Accid. Anal. Prev. 2012, 45, 62–67. [Google Scholar] [CrossRef]
- Beebe, D.W.; Simon, S.; Summer, S.; Hemmer, S.; Strotman, D.; Dolan, L.M. Dietary Intake Following Experimentally Restricted Sleep in Adolescents. Sleep 2013, 36, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Simon, S.L.; Field, J.; Miller, L.E.; DiFrancesco, M.; Beebe, D.W. Sweet/Dessert Foods Are More Appealing to Adolescents after Sleep Restriction. PLoS ONE 2015, 10, e0115434. [Google Scholar] [CrossRef]
- Szczygiel, E.J.; Cho, S.; Tucker, R.M. Multiple Dimensions of Sweet Taste Perception Altered after Sleep Curtailment. Nutrients 2019, 11, 2015. [Google Scholar] [CrossRef] [Green Version]
- Szczygiel, E.J.; Cho, S.; Tucker, R.M. The Effect of Sleep Curtailment on Hedonic Responses to Liquid and Solid Food. Foods 2019, 8, 465. [Google Scholar] [CrossRef] [Green Version]
- Szczygiel, E.J.; Cho, S.; Snyder, M.K.; Tucker, R.M. Associations between Chemosensory Function, Sweet Taste Preference, and the Previous Night’s Sleep in Non-Obese Males. Food Qual. Prefer. 2019, 75, 105–112. [Google Scholar] [CrossRef]
- Smith, S.L.; Ludy, M.-J.; Tucker, R.M. Changes in Taste Preference and Steps Taken after Sleep Curtailment. Physiol. Behav. 2016, 163, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Hogenkamp, P.S.; Nilsson, E.; Chapman, C.D.; Cedernaes, J.; Vogel, H.; Dickson, S.L.; Broman, J.-E.; Schiöth, H.B.; Benedict, C. Sweet Taste Perception Not Altered after Acute Sleep Deprivation in Healthy Young Men. Somnologie-Schlafforschung Schlafmedizi 2013, 17, 111–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, M.L.; Hoshino, K.; Tufik, S. Increased Susceptibility to Development of Anhedonia in Rats with Chronic Peripheral Nerve Injury: Involvement of Sleep Deprivation? Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2009, 33, 960–966. [Google Scholar] [CrossRef]
- McEown, K.; Takata, Y.; Cherasse, Y.; Nagata, N.; Aritake, K.; Lazarus, M. Chemogenetic Inhibition of the Medial Prefrontal Cortex Reverses the Effects of REM Sleep Loss on Sucrose Consumption. Elife 2016, 5, e20269. [Google Scholar] [CrossRef]
- Hanlon, E.C.; Andrzejewski, M.E.; Harder, B.K.; Kelley, A.E.; Benca, R.M. The Effect of REM Sleep Deprivation on Motivation for Food Reward. Behav. Brain Res. 2005, 163, 58–69. [Google Scholar] [CrossRef]
- Van Luijtelaar, E.L.J.M.; Kaiser, J.; Coenen, A.M.L. Deprivation of Paradoxical Sleep and Intracranial Self-Stimulation. Sleep 1982, 5, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Marti-Nicolovius, M.; Portell-Cortes, I.; Morgado-Bernal, I. Intracranial Self-Stimulation after Paradoxical Sleep Deprivation Induced by the Platform Method in Rats. Physiol. Behav. 1984, 33, 165–167. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhu, J. Effects of Sleep Deprivation on Behaviors and Abnormal Hippocampal BDNF/MiR-10B Expression in Rats with Chronic Stress Depression. Int. J. Clin. Exp. Pathol. 2015, 8, 586–593. [Google Scholar]
- Hawkins, P.; Golledge, H.D.R. The 9 to 5 Rodent—Time for Change? Scientific and Animal Welfare Implications of Circadian and Light Effects on Laboratory Mice and Rats. J. Neurosci. Methods 2018, 300, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Daut, R.A.; Ravenel, J.R.; Watkins, L.R.; Maier, S.F.; Fonken, L.K. The Behavioral and Neurochemical Effects of an Inescapable Stressor Are Time of Day Dependent. Stress 2020, 23, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Kelliher, P.; Connor, T.J.; Harkin, A.; Sanchez, C.; Kelly, J.P.; Leonard, B.E. Varying Responses to the Rat Forced-Swim Test under Diurnal and Nocturnal Conditions. Physiol. Behav. 2000, 69, 531–539. [Google Scholar] [CrossRef]
- Aslani, S.; Harb, M.R.; Costa, P.S.; Almeida, O.F.X.; Sousa, N.; Palha, J.A. Day and Night: Diurnal Phase Influences the Response to Chronic Mild Stress. Front. Behav. Neurosci. 2014, 8, 82. [Google Scholar] [CrossRef] [Green Version]
- Bainier, C.; Mateo, M.; Felder-Schmittbuhl, M.-P.; Mendoza, J. Circadian Rhythms of Hedonic Drinking Behavior in Mice. Neuroscience 2017, 349, 229–238. [Google Scholar] [CrossRef]
- Spector, A.C.; Smith, J.C. A Detailed Analysis of Sucrose Drinking in the Rat. Physiol. Behav. 1984, 33, 127–136. [Google Scholar] [CrossRef]
- Tõnissaar, M.; Herm, L.; Rinken, A.; Harro, J. Individual Differences in Sucrose Intake and Preference in the Rat: Circadian Variation and Association with Dopamine D2 Receptor Function in Striatum and Nucleus Accumbens. Neurosci. Lett. 2006, 403, 119–124. [Google Scholar] [CrossRef]
- Acosta, J.; Bussi, I.L.; Esquivel, M.; Höcht, C.; Golombek, D.A.; Agostino, P.V. Circadian Modulation of Motivation in Mice. Behav. Brain Res. 2020, 382, 112471. [Google Scholar] [CrossRef]
- D’Aquila, P.; Newton, J.; Willner, P. Diurnal Variation in the Effect of Chronic Mild Stress on Sucrose Intake and Preference. Physiol. Behav. 1997, 62, 421–426. [Google Scholar] [CrossRef]
- Le Magnen, J.; Marfaing-Jallat, P.; Miceli, D.; Devos, M. Pain Modulating and Reward Systems: A Single Brain Mechanism? Pharmacol. Biochem. Behav. 1980, 12, 729–733. [Google Scholar] [CrossRef]
- Leknes, S.; Tracey, I. A Common Neurobiology for Pain and Pleasure. Nat. Rev. Neurosci. 2008, 9, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Navratilova, E.; Morimura, K.; Xie, J.Y.; Atcherley, C.W.; Ossipov, M.H.; Porreca, F. Positive Emotions and Brain Reward Circuits in Chronic Pain. J. Comp. Neurol. 2016, 524, 1646–1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humo, M.; Lu, H.; Yalcin, I. The Molecular Neurobiology of Chronic Pain–Induced Depression. Cell Tissue Res. 2019, 377, 21–43. [Google Scholar] [CrossRef]
- Poole, H.; White, S.; Blake, C.; Murphy, P.; Bramwell, R. Depression in Chronic Pain Patients: Prevalence and Measurement. Pain Pract. 2009, 9, 173–180. [Google Scholar] [CrossRef]
- Sullivan, M.J.L.; Reesor, K.; Mikail, S.; Fisher, R. The Treatment of Depression in Chronic Low Back Pain: Review and Recommendations. Pain 1992, 50, 5–13. [Google Scholar] [CrossRef]
- Kim, H.; Chen, L.; Lim, G.; Sung, B.; Wang, S.; McCabe, M.F.; Rusanescu, G.; Yang, L.; Tian, Y.; Mao, J. Brain Indoleamine 2,3-Dioxygenase Contributes to the Comorbidity of Pain and Depression. J. Clin. Investig. 2012, 122, 2940–2954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, N.; Temkin, P.; Jurado, S.; Lim, B.K.; Heifets, B.D.; Polepalli, J.S.; Malenka, R.C. Decreased Motivation during Chronic Pain Requires Long-Term Depression in the Nucleus Accumbens. Science 2014, 345, 535–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, A.M.W.; Castonguay, A.; Taylor, A.J.; Murphy, N.P.; Ghogha, A.; Cook, C.; Xue, L.; Olmstead, M.C.; De Koninck, Y.; Evans, C.J.; et al. Microglia Disrupt Mesolimbic Reward Circuitry in Chronic Pain. J. Neurosci. 2015, 35, 8442–8450. [Google Scholar] [CrossRef] [Green Version]
- Nollet, M.; Le Guisquet, A.; Belzung, C. Models of Depression: Unpredictable Chronic Mild Stress in Mice. Curr. Protoc. Pharmacol. 2013, 61, 5.65.1–5.65.17. [Google Scholar] [CrossRef]
- Cloutier, S.; Wahl, K.; Baker, C.; Newberry, R.C. The Social Buffering Effect of Playful Handling on Responses to Repeated Intraperitoneal Injections in Laboratory Rats. J. Am. Assoc. Lab. Anim. Sci. 2014, 53, 168–173. [Google Scholar]
- Cloutier, S.; Wahl, K.L.; Panksepp, J.; Newberry, R.C. Playful Handling of Laboratory Rats Is More Beneficial When Applied before than after Routine Injections. Appl. Anim. Behav. Sci. 2015, 164, 81–90. [Google Scholar] [CrossRef]
- Freiman, S.V.; Onufriev, M.V.; Stepanichev, M.Y.; Moiseeva, Y.V.; Lazareva, N.A.; Gulyaeva, N.V. The Stress Effects of a Single Injection of Isotonic Saline Solution: Systemic (Blood) and Central (Frontal Cortex and Dorsal and Ventral Hippocampus). Neurochem. J. 2016, 10, 115–119. [Google Scholar] [CrossRef]
- Ryabinin, A.E.; Wang, Y.-M.; Finn, D.A. Different Levels of Fos Immunoreactivity After Repeated Handling and Injection Stress in Two Inbred Strains of Mice. Pharmacol. Biochem. Behav. 1999, 63, 143–151. [Google Scholar] [CrossRef]
- Advani, T.; Koek, W.; Hensler, J.G. Gender Differences in the Enhanced Vulnerability of BDNF+/− Mice to Mild Stress. Int. J. Neuropsychopharmacol. 2009, 12, 583. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.N.; Courtney, C.L.; Superak, H.; Taylor, D.K. Behavioral, Clinical and Pathological Effects of Multiple Daily Intraperitoneal Injections on Female Mice. Lab Anim. 2014, 43, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Du Preez, A.; Law, T.; Onorato, D.; Lim, Y.M.; Eiben, P.; Musaelyan, K.; Egeland, M.; Hye, A.; Zunszain, P.A.; Thuret, S.; et al. The Type of Stress Matters: Repeated Injection and Permanent Social Isolation Stress in Male Mice Have a Differential Effect on Anxiety- and Depressive-like Behaviours, and Associated Biological Alterations. Transl. Psychiatry 2020, 10, 325. [Google Scholar] [CrossRef] [PubMed]
- Gattoni, R.C.; Izquierdo, I. Effect of Chronic Posttrial Saline Injections on Maze Performance. Physiol. Psychol. 1973, 1, 231–232. [Google Scholar] [CrossRef] [Green Version]
- Cloutier, S.; Newberry, R.C. Use of a Conditioning Technique to Reduce Stress Associated with Repeated Intra-Peritoneal Injections in Laboratory Rats. Appl. Anim. Behav. Sci. 2008, 112, 158–173. [Google Scholar] [CrossRef]
- Stuart, S.A.; Robinson, E.S.J. Reducing the Stress of Drug Administration: Implications for the 3Rs. Sci. Rep. 2015, 5, 14288. [Google Scholar] [CrossRef] [Green Version]
- Aydin, C.; Frohmader, K.; Akil, H. Revealing a Latent Variable: Individual Differences in Affective Response to Repeated Injections. Behav. Neurosci. 2015, 129, 679–682. [Google Scholar] [CrossRef]
- Holmes, T.H.; Rahe, R.H. The Social Readjustment Rating Scale. J. Psychosom. Res. 1967, 11, 213–218. [Google Scholar] [CrossRef]
- Teo, A.R.; Choi, H.; Valenstein, M. Social Relationships and Depression: Ten-Year Follow-Up from a Nationally Representative Study. PLoS ONE 2013, 8, e62396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kikusui, T.; Winslow, J.T.; Mori, Y. Social Buffering: Relief from Stress and Anxiety. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 2215–2228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatch, A.M.; Wiberg, G.S.; Zawidzka, Z.; Cann, M.; Airth, J.M.; Grice, H.C. Isolation Syndrome in the Rat. Toxicol. Appl. Pharmacol. 1965, 7, 737–745. [Google Scholar] [CrossRef]
- Gamallo, A.; Villanua, A.; Trancho, G.; Fraile, A. Stress Adaptation and Adrenal Activity in Isolated and Crowded Rats. Physiol. Behav. 1986, 36, 217–221. [Google Scholar] [CrossRef]
- Rygula, R.; Abumaria, N.; Flügge, G.; Fuchs, E.; Rüther, E.; Havemann-Reinecke, U. Anhedonia and Motivational Deficits in Rats: Impact of Chronic Social Stress. Behav. Brain Res. 2005, 162, 127–134. [Google Scholar] [CrossRef]
- Beery, A.K.; Kaufer, D. Stress, Social Behavior, and Resilience: Insights from Rodents. Neurobiol. Stress 2015, 1, 116–127. [Google Scholar] [CrossRef] [Green Version]
- Sharp, J.L.; Zammit, T.G.; Azar, T.A.; Lawson, D.M. Stress-like Responses to Common Procedures in Male Rats Housed Alone or with Other Rats. Contemp. Top. Lab. Anim. Sci. 2002, 41, 8–14. [Google Scholar]
- Gorlova, A.V.; Pavlov, D.A.; Zubkov, E.A.; Morozova, A.Y.; Inozemtsev, A.N.; Chekhonin, V.P. Three-Week Isolation Does Not Lead to Depressive-Like Disorders in Rats. Bull. Exp. Biol. Med. 2018, 165, 181–183. [Google Scholar] [CrossRef]
- Alshammari, T.K.; Alghamdi, H.; Alkhader, L.F.; Alqahtani, Q.; Alrasheed, N.M.; Yacoub, H.; Alnaem, N.; AlNakiyah, M.; Alshammari, M.A. Analysis of the Molecular and Behavioral Effects of Acute Social Isolation on Rats. Behav. Brain Res. 2020, 377, 112191. [Google Scholar] [CrossRef]
- Schipper, L.; Harvey, L.; van der Beek, E.M.; van Dijk, G. Home Alone: A Systematic Review and Meta-Analysis on the Effects of Individual Housing on Body Weight, Food Intake and Visceral Fat Mass in Rodents. Obes. Rev. 2018, 19, 614–637. [Google Scholar] [CrossRef]
- Martin, A.L.; Brown, R.E. The Lonely Mouse: Verification of a Separation-Induced Model of Depression in Female Mice. Behav. Brain Res. 2010, 207, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.; Bielajew, C. Influence of Housing on the Consequences of Chronic Mild Stress in Female Rats. Stress 2007, 10, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Bauer, E.R.; Angelo, W.L. Social Isolation and Saccharin Consumption by the Rat. Physiol. Behav. 1971, 7, 909–911. [Google Scholar] [CrossRef]
- Van den Berg, C. Isolation Changes the Incentive Value of Sucrose and Social Behaviour in Juvenile and Adult Rats. Behav. Brain Res. 1999, 106, 133–142. [Google Scholar] [CrossRef]
- Varholick, J.A.; Pontiggia, A.; Murphy, E.; Daniele, V.; Palme, R.; Voelkl, B.; Würbel, H.; Bailoo, J.D. Social Dominance Hierarchy Type and Rank Contribute to Phenotypic Variation within Cages of Laboratory Mice. Sci. Rep. 2019, 9, 13650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanchard, D.C.; Sakai, R.R.; McEwen, B.; Weiss, S.M.; Blanchard, R.J. Subordination Stress: Behavioral, Brain, and Neuroendocrine Correlates. Behav. Brain Res. 1993, 58, 113–121. [Google Scholar] [CrossRef]
- Wood, S.K.; Walker, H.E.; Valentino, R.J.; Bhatnagar, S. Individual Differences in Reactivity to Social Stress Predict Susceptibility and Resilience to a Depressive Phenotype: Role of Corticotropin-Releasing Factor. Endocrinology 2010, 151, 1795–1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawker, D.S.; Boulton, M.J. Twenty Years’ Research on Peer Victimization and Psychosocial Maladjustment: A Meta-Analytic Review of Cross-Sectional Studies. J. Child Psychol. Psychiatry. 2000, 41, 441–455. [Google Scholar] [CrossRef]
- Gilbert, P.; Allan, S.; Brough, S.; Melley, S.; Miles, J.N. Relationship of Anhedonia and Anxiety to Social Rank, Defeat and Entrapment. J. Affect. Disord. 2002, 71, 141–151. [Google Scholar] [CrossRef]
- Larrieu, T.; Sandi, C. Stress-Induced Depression: Is Social Rank a Predictive Risk Factor? BioEssays 2018, 40, 1800012. [Google Scholar] [CrossRef] [PubMed]
- Larrieu, T.; Cherix, A.; Duque, A.; Rodrigues, J.; Lei, H.; Gruetter, R.; Sandi, C. Hierarchical Status Predicts Behavioral Vulnerability and Nucleus Accumbens Metabolic Profile Following Chronic Social Defeat Stress. Curr. Biol. 2017, 27, 2202–2210.e4. [Google Scholar] [CrossRef] [Green Version]
- Einat, H.; Ezer, I.; Kara, N.Z.; Belzung, C. Individual Responses of Rodents in Modelling of Affective Disorders and in Their Treatment: Prospective Review. Acta Neuropsychiatr. 2018, 30, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Mineur, Y.S.; Belzung, C.; Crusio, W.E. Effects of Unpredictable Chronic Mild Stress on Anxiety and Depression-like Behavior in Mice. Behav. Brain Res. 2006, 175, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Bekris, S.; Antoniou, K.; Daskas, S.; Papadopoulou-Daifoti, Z. Behavioural and Neurochemical Effects Induced by Chronic Mild Stress Applied to Two Different Rat Strains. Behav. Brain Res. 2005, 161, 45–59. [Google Scholar] [CrossRef]
- Nielsen, C.K.; Arnt, J.; Sánchez, C. Intracranial Self-Stimulation and Sucrose Intake Differ as Hedonic Measures Following Chronic Mild Stress: Interstrain and Interindividual Differences. Behav. Brain Res. 2000, 107, 21–33. [Google Scholar] [CrossRef]
- Wu, H.H.; Wang, S. Strain Differences in the Chronic Mild Stress Animal Model of Depression. Behav. Brain Res. 2010, 213, 94–102. [Google Scholar] [CrossRef]
- Ibarguen-Vargas, Y.; Surget, A.; Touma, C.; Palme, R.; Belzung, C. Multifaceted Strain-Specific Effects in a Mouse Model of Depression and of Antidepressant Reversal. Psychoneuroendocrinology 2008, 33, 1357–1368. [Google Scholar] [CrossRef]
- Yalcin, I.; Belzung, C.; Surget, A. Mouse Strain Differences in the Unpredictable Chronic Mild Stress: A Four-Antidepressant Survey. Behav. Brain Res. 2008, 193, 140–143. [Google Scholar] [CrossRef]
- Jung, Y.-H.; Hong, S.-I.; Ma, S.-X.; Hwang, J.-Y.; Kim, J.-S.; Lee, J.-H.; Seo, J.-Y.; Lee, S.-Y.; Jang, C.-G. Strain Differences in the Chronic Mild Stress Animal Model of Depression and Anxiety in Mice. Biomol. Ther. 2014, 22, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Ducottet, C.; Belzung, C. Correlations between Behaviours in the Elevated Plus-Maze and Sensitivity to Unpredictable Subchronic Mild Stress: Evidence from Inbred Strains of Mice. Behav. Brain Res. 2005, 156, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Gosselin, T.; Le Guisquet, A.-M.; Brizard, B.; Hommet, C.; Minier, F.; Belzung, C. Fluoxetine Induces Paradoxical Effects in C57BL6/J Mice: Comparison with BALB/c Mice. Behav. Pharmacol. 2017, 28, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Pothion, S.; Bizot, J.-C.; Trovero, F.; Belzung, C. Strain Differences in Sucrose Preference and in the Consequences of Unpredictable Chronic Mild Stress. Behav. Brain Res. 2004, 155, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Theilmann, W.; Kleimann, A.; Rhein, M.; Bleich, S.; Frieling, H.; Löscher, W.; Brandt, C. Behavioral Differences of Male Wistar Rats from Different Vendors in Vulnerability and Resilience to Chronic Mild Stress Are Reflected in Epigenetic Regulation and Expression of P11. Brain Res. 2016, 1642, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Dhabhar, F.S.; McEwen, B.S.; Spencer, R.L. Adaptation to Prolonged or Repeated Stress—Comparison between Rat Strains Showing Intrinsic Differences in Reactivity to Acute Stress. Neuroendocrinology 1997, 65, 360–368. [Google Scholar] [CrossRef]
- Pecoraro, N.; Ginsberg, A.B.; Warne, J.P.; Gomez, F.; la Fleur, S.E.; Dallman, M.F. Diverse Basal and Stress-Related Phenotypes of Sprague Dawley Rats from Three Vendors. Physiol. Behav. 2006, 89, 598–610. [Google Scholar] [CrossRef]
- Dobrakovová, M.; Kvetňanský, R.; Opršalová, Z.; Jeẑová, D. Specificity of the Effect of Repeated Handling on Sympathetic-Adrenomedullary and Pituitary-Adrenocortical Activity in Rats. Psychoneuroendocrinology 1993, 18, 163–174. [Google Scholar] [CrossRef]
- Dobrakovová, M.; Jurčovičová, J. Corticosterone and Prolactin Responses to Repeated Handling and Transfer of Male Rats. Exp. Clin. Endocrinol. Diabetes 1984, 83, 21–27. [Google Scholar] [CrossRef]
- Meerlo, P.; Horvath, K.M.; Nagy, G.M.; Bohus, B.; Koolhaas, J.M. The Influence of Postnatal Handling on Adult Neuroendocrine and Behavioural Stress Reactivity. J. Neuroendocrinol. 1999, 11, 925–933. [Google Scholar] [CrossRef]
- Longordo, F.; Fan, J.; Steimer, T.; Kopp, C.; Lüthi, A. Do Mice Habituate to “Gentle Handling?” A Comparison of Resting Behavior, Corticosterone Levels and Synaptic Function in Handled and Undisturbed C57BL/6J Mice. Sleep 2011, 34, 679–681. [Google Scholar] [CrossRef] [Green Version]
- Asanuma, M.; Ogawa, N.; Hirata, H.; Chou, H.; Tanaka, K.; Mori, A. Opposite Effects of Rough and Gentle Handling with Repeated Saline Administration on C-Fos MRNA Expression in the Rat Brain. J. Neural Transm. 1992, 90, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Asanuma, M.; Ogawa, N. Pitfalls in Assessment of C-Fos MRNA Expression in the Brain: Effects of Animal Handling. Rev. Neurosci. 1994, 5, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Baturaite, Z.; Voipio, H.M.; Ruksenas, O.; Luodonpaa, M.; Leskinen, H.; Apanaviciene, N.; Nevalainen, T. Comparison of and Habituation to Four Common Methods of Handling and Lifting of Rats with Cardiovascular Telemetry. Scand. J. Lab. Anim. Sci. 2005, 32, 137–148. [Google Scholar]
- Clarkson, J.M.; Dwyer, D.M.; Flecknell, P.A.; Leach, M.C.; Rowe, C. Handling Method Alters the Hedonic Value of Reward in Laboratory Mice. Sci. Rep. 2018, 8, 2448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouveia, K.; Hurst, J.L. Improving the Practicality of Using Non-Aversive Handling Methods to Reduce Background Stress and Anxiety in Laboratory Mice. Sci. Rep. 2019, 9, 20305. [Google Scholar] [CrossRef] [Green Version]
- Neely, C.; Lane, C.; Torres, J.; Flinn, J. The Effect of Gentle Handling on Depressive-Like Behavior in Adult Male Mice: Considerations for Human and Rodent Interactions in the Laboratory. Behav. Neurol. 2018, 2018, 2976014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, J.D. Habituatory Response Decrement in the Intact Organism. Psychol. Bull. 1943, 40, 385–422. [Google Scholar] [CrossRef]
- Thompson, R.F.; Spencer, W.A. Habituation: A Model Phenomenon for the Study of Neuronal Substrates of Behavior. Psychol. Rev. 1966, 73, 16–43. [Google Scholar] [CrossRef] [Green Version]
- Rankin, C.H.; Abrams, T.; Barry, R.J.; Bhatnagar, S.; Clayton, D.F.; Colombo, J.; Coppola, G.; Geyer, M.A.; Glanzman, D.L.; Marsland, S.; et al. Habituation Revisited: An Updated and Revised Description of the Behavioral Characteristics of Habituation. Neurobiol. Learn. Mem. 2009, 92, 135–138. [Google Scholar] [CrossRef] [Green Version]
- Grissom, N.; Bhatnagar, S. Habituation to Repeated Stress: Get Used to It. Neurobiol. Learn. Mem. 2009, 92, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Rabasa, C.; Gagliano, H.; Pastor-Ciurana, J.; Fuentes, S.; Belda, X.; Nadal, R.; Armario, A. Adaptation of the Hypothalamus–Pituitary–Adrenal Axis to Daily Repeated Stress Does Not Follow the Rules of Habituation: A New Perspective. Neurosci. Biobehav. Rev. 2015, 56, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Armario, A.; Escorihuela, R.M.; Nadal, R. Long-Term Neuroendocrine and Behavioural Effects of a Single Exposure to Stress in Adult Animals. Neurosci. Biobehav. Rev. 2008, 32, 1121–1135. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, S.; Dallman, M. Neuroanatomical Basis for Facilitation of Hypothalamic-Pituitary-Adrenal Responses to a Novel Stressor after Chronic Stress. Neuroscience 1998, 84, 1025–1039. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Vining, C. Facilitation of Hypothalamic–Pituitary–Adrenal Responses to Novel Stress Following Repeated Social Stress Using the Resident/Intruder Paradigm. Horm. Behav. 2003, 43, 158–165. [Google Scholar] [CrossRef]
- Babb, J.A.; Masini, C.V.; Day, H.E.W.; Campeau, S. Habituation of Hypothalamic–Pituitary–Adrenocortical Axis Hormones to Repeated Homotypic Stress and Subsequent Heterotypic Stressor Exposure in Male and Female Rats. Stress 2014, 17, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, M.S.; Bhatt, A.P.; Girotti, M.; Masini, C.V.; Day, H.E.W.; Campeau, S.; Spencer, R.L. Repeated Ferret Odor Exposure Induces Different Temporal Patterns of Same-Stressor Habituation and Novel-Stressor Sensitization in Both Hypothalamic-Pituitary-Adrenal Axis Activity and Forebrain c-Fos Expression in the Rat. Endocrinology 2009, 150, 749–761. [Google Scholar] [CrossRef]
- Konarska, M.; Stewart, R.E.; McCarty, R. Predictability of Chronic Intermittent Stress: Effects on Sympathetic—Adrenal Medullary Responses of Laboratory Rats. Behav. Neural Biol. 1990, 53, 231–243. [Google Scholar] [CrossRef]
- Benini, R.; Oliveira, L.A.; Gomes-de-Souza, L.; Crestani, C.C. Habituation of the Cardiovascular Responses to Restraint Stress in Male Rats: Influence of Length, Frequency and Number of Aversive Sessions. Stress 2019, 22, 151–161. [Google Scholar] [CrossRef]
- McCarty, R. Learning about Stress: Neural, Endocrine and Behavioral Adaptations. Stress 2016, 19, 449–475. [Google Scholar] [CrossRef]
- Martí, O.; García, A.; Vallès, A.; Harbuz, M.S.; Armario, A.; Vellès, A. Evidence That a Single Exposure to Aversive Stimuli Triggers Long-Lasting Effects in the Hypothalamus-Pituitary-Adrenal Axis That Consolidate with Time. Eur. J. Neurosci. 2001, 13, 129–136. [Google Scholar]
- Valles, A.; Marti, O.; Armario, A. Long-Term Effects of a Single Exposure to Immobilization Stress on the Hypothalamic-Pituitary-Adrenal Axis: Transcriptional Evidence for a Progressive Desensitization Process. Eur. J. Neurosci. 2003, 18, 1353–1361. [Google Scholar] [CrossRef] [PubMed]
- Dal-Zotto, S. Glucocorticoids Are Involved in the Long-Term Effects of a Single Immobilization Stress on the Hypothalamic–Pituitary–Adrenal Axis. Psychoneuroendocrinology 2003, 28, 992–1009. [Google Scholar] [CrossRef]
- Vallès, A.; Martí, O.; Armario, A. Long-Term Effects of a Single Exposure to Immobilization: A C-Fos MRNA Study of the Response to the Homotypic Stressor in the Rat Brain. J. Neurobiol. 2006, 66, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Belda, X.; Márquez, C.; Armario, A. Long-Term Effects of a Single Exposure to Stress in Adult Rats on Behavior and Hypothalamic–Pituitary–Adrenal Responsiveness: Comparison of Two Outbred Rat Strains. Behav. Brain Res. 2004, 154, 399–408. [Google Scholar] [CrossRef]
- Hawkins, J.; Hicks, R.A.; Phillips, N.; Moore, J.D. Swimming Rats and Human Depression. Nature 1978, 274, 512–513. [Google Scholar] [CrossRef]
- O’Neill, K.A.; Valentino, D. Escapability and Generalization: Effect on ‘Behavioral Despair. Eur. J. Pharmacol. 1982, 78, 379–380. [Google Scholar] [CrossRef]
- Borsini, F.; Volterra, G.; Meli, A. Does the Behavioral “Despair” Test Measure “Despair”? Physiol. Behav. 1986, 38, 385–386. [Google Scholar] [CrossRef]
- De Pablo, J.M.; Parra, A.; Segovia, S.; Guillamón, A. Learned Immobility Explains the Behavior of Rats in the Forced Swimming Test. Physiol. Behav. 1989, 46, 229–237. [Google Scholar] [CrossRef]
- Molendijk, M.L.; de Kloet, E.R. Immobility in the Forced Swim Test Is Adaptive and Does Not Reflect Depression. Psychoneuroendocrinology 2015, 62, 389–391. [Google Scholar] [CrossRef]
- De Kloet, E.R.; Molendijk, M.L. Coping with the Forced Swim Stressor: Towards Understanding an Adaptive Mechanism. Neural Plast. 2016, 2016, 6503162. [Google Scholar] [CrossRef] [Green Version]
- Simpkiss, J.L.; Devine, D.P. Responses of the HPA Axis after Chronic Variable Stress: Effects of Novel and Familiar Stressors. Neuro Endocrinol. Lett. 2003, 24, 97–103. [Google Scholar]
- Marin, M.T.; Cruz, F.C.; Planeta, C.S. Chronic Restraint or Variable Stresses Differently Affect the Behavior, Corticosterone Secretion and Body Weight in Rats. Physiol. Behav. 2007, 90, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Cruz, F.C.; Marin, M.T.; Leão, R.M.; Planeta, C.S. Behavioral and Neuroendocrine Effects of the Exposure to Chronic Restraint or Variable Stress in Early Adolescent Rats. Int. J. Dev. Neurosci. 2012, 30, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Ostrander, M.M.; Ulrich-Lai, Y.M.; Choi, D.C.; Richtand, N.M.; Herman, J.P. Hypoactivity of the Hypothalamo-Pituitary-Adrenocortical Axis during Recovery from Chronic Variable Stress. Endocrinology 2006, 147, 2008–2017. [Google Scholar] [CrossRef] [PubMed]
- Matrov, D.; Vonk, A.; Herm, L.; Rinken, A.; Harro, J. Activating Effects of Chronic Variable Stress in Rats with Different Exploratory Activity: Association with Dopamine D1 Receptor Function in Nucleus Accumbens. Neuropsychobiology 2011, 64, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Grønli, J.; Murison, R.; Bjorvatn, B.; Sørensen, E.; Portas, C.M.; Ursin, R. Chronic Mild Stress Affects Sucrose Intake and Sleep in Rats. Behav. Brain Res. 2004, 150, 139–147. [Google Scholar] [CrossRef]
- Pałucha-Poniewiera, A.; Podkowa, K.; Rafało-Ulińska, A.; Brański, P.; Burnat, G. The Influence of the Duration of Chronic Unpredictable Mild Stress on the Behavioural Responses of C57BL/6J Mice. Behav. Pharmacol. 2020, 31, 574–582. [Google Scholar] [CrossRef]
- Cavigelli, S.A.; Bao, A.D.; Bourne, R.A.; Caruso, M.J.; Caulfield, J.I.; Chen, M.; Smyth, J.M. Timing Matters: The Interval between Acute Stressors within Chronic Mild Stress Modifies Behavioral and Physiologic Stress Responses in Male Rats. Stress 2018, 21, 453–463. [Google Scholar] [CrossRef]
- Sengupta, P. The Laboratory Rat: Relating Its Age With Human’s. Int. J. Prev. Med. 2013, 4, 624–630. [Google Scholar]
- Lewis, E.M.; Barnett, J.F.; Freshwater, L.; Hoberman, A.M.; Christian, M.S. Sexual maturation data for Crl Sprague-Dawley rats: Criteria and confounding factors. Drug Chem. Toxicol. 2002, 25, 437–458. [Google Scholar] [CrossRef]
- Quinn, R. Comparing Rat’s to Human’s Age: How Old Is My Rat in People Years? Nutrition 2005, 21, 775–777. [Google Scholar] [CrossRef] [PubMed]
- Andreollo, N.A.; dos Santos, E.F.; Araújo, M.R.; Lopes, L.R. Idade Dos Ratos versus Idade Humana: Qual é a Relação? ABCD. Arq. Bras. Cir. Dig. 2012, 25, 49–51. [Google Scholar] [CrossRef] [Green Version]
- Kessler, R.C.; Berglund, P.; Demler, O.; Jin, R.; Koretz, D.; Merikangas, K.R.; Rush, A.J.; Walters, E.E.; Wang, P.S. The Epidemiology of Major Depressive Disorder. JAMA 2003, 289, 3095. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.J.; Charlson, F.J.; Norman, R.E.; Patten, S.B.; Freedman, G.; Murray, C.J.L.; Vos, T.; Whiteford, H.A. Burden of Depressive Disorders by Country, Sex, Age, and Year: Findings from the Global Burden of Disease Study 2010. PLoS Med. 2013, 10, e1001547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormick, C.M.; Mathews, I.Z. HPA Function in Adolescence: Role of Sex Hormones in Its Regulation and the Enduring Consequences of Exposure to Stressors. Pharmacol. Biochem. Behav. 2007, 86, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Cotella, E.M.; Gómez, A.S.; Lemen, P.; Chen, C.; Fernández, G.; Hansen, C.; Herman, J.P.; Paglini, M.G. Long-Term Impact of Chronic Variable Stress in Adolescence versus Adulthood. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 88, 303–310. [Google Scholar] [CrossRef]
- Toth, E.; Gersner, R.; Wilf-Yarkoni, A.; Raizel, H.; Dar, D.E.; Richter-Levin, G.; Levit, O.; Zangen, A. Age-Dependent Effects of Chronic Stress on Brain Plasticity and Depressive Behavior. J. Neurochem. 2008, 107, 522–532. [Google Scholar] [CrossRef]
- Herrera-Pérez, J.J.; Martínez-Mota, L.; Fernández-Guasti, A. Aging Increases the Susceptibility to Develop Anhedonia in Male Rats. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2008, 32, 1798–1803. [Google Scholar] [CrossRef]
- Li, Y.; Ji, Y.; Jiang, H.; Liu, D.; Zhang, Q.; Fan, S.; Pan, F. Effects of Unpredictable Chronic Stress on Behavior and Brain-Derived Neurotrophic Factor Expression in CA3 Subfield and Dentate Gyrus of the Hippocampus in Different Aged Rats. Chin. Med. J. 2009, 122, 1564–1569. [Google Scholar]
- Jankord, R.; Solomon, M.B.; Albertz, J.; Flak, J.N.; Zhang, R.; Herman, J.P. Stress Vulnerability during Adolescent Development in Rats. Endocrinology 2011, 152, 629–638. [Google Scholar] [CrossRef]
- Duarte, J.O.; Cruz, F.C.; Leão, R.M.; Planeta, C.S.; Crestani, C.C. Stress Vulnerability During Adolescence. Psychosom. Med. 2015, 77, 186–199. [Google Scholar] [CrossRef] [PubMed]
- Yohn, N.L.; Blendy, J.A. Adolescent Chronic Unpredictable Stress Exposure Is a Sensitive Window for Long-Term Changes in Adult Behavior in Mice. Neuropsychopharmacology 2017, 42, 1670–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherrill, J.T.; Anderson, B.; Frank, E.; Reynolds, C.F.; Tu, X.M.; Patterson, D.; Ritenour, A.; Kupfer, D.J. Is Life Stress More Likely to Provoke Depressive Episodes in Women than in Men? Depress. Anxiety 1997, 6, 95–105. [Google Scholar] [CrossRef]
- Weissman, M.M. Sex Differences and the Epidemiology of Depression. Arch. Gen. Psychiatry 1977, 34, 98. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R. Sex and Depression in the National Comorbidity Survey I: Lifetime Prevalence, Chronicity and Recurrence. J. Affect. Disord. 1993, 29, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Marcus, S.M.; Young, E.A.; Kerber, K.B.; Kornstein, S.; Farabaugh, A.H.; Mitchell, J.; Wisniewski, S.R.; Balasubramani, G.K.; Trivedi, M.H.; Rush, A.J. Gender Differences in Depression: Findings from the STAR*D Study. J. Affect. Disord. 2005, 87, 141–150. [Google Scholar] [CrossRef]
- Schiller, C.E.; Johnson, S.L.; Abate, A.C.; Schmidt, P.J.; Rubinow, D.R. Reproductive Steroid Regulation of Mood and Behavior. Compr. Physiol. 2016, 6, 1135–1160. [Google Scholar]
- Labonté, B.; Engmann, O.; Purushothaman, I.; Menard, C.; Wang, J.; Tan, C.; Scarpa, J.R.; Moy, G.; Loh, Y.-H.E.; Cahill, M.; et al. Sex-Specific Transcriptional Signatures in Human Depression. Nat. Med. 2017, 23, 1102–1111. [Google Scholar] [CrossRef]
- Wald, C.; Wu, C. Of Mice and Women: The Bias in Animal Models. Science 2010, 327, 1571–1572. [Google Scholar] [CrossRef] [Green Version]
- Zucker, I.; Beery, A.K. Males Still Dominate Animal Studies. Nature 2010, 465, 690. [Google Scholar] [CrossRef]
- Beery, A.K.; Zucker, I. Sex Bias in Neuroscience and Biomedical Research. Neurosci. Biobehav. Rev. 2011, 35, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Clayton, J.A.; Collins, F.S. Policy: NIH to Balance Sex in Cell and Animal Studies. Nature 2014, 509, 282–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, J.B.; Prendergast, B.J.; Liang, J.W. Female Rats Are Not More Variable than Male Rats: A Meta-Analysis of Neuroscience Studies. Biol. Sex Differ. 2016, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Beery, A.K. Inclusion of Females Does Not Increase Variability in Rodent Research Studies. Curr. Opin. Behav. Sci. 2018, 23, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J.; Kelly, J.P. An Investigation of Whether There Are Sex Differences in Certain Behavioural and Neurochemical Parameters in the Rat. Behav. Brain Res. 2012, 229, 289–300. [Google Scholar] [CrossRef]
- McCarthy, M.M.; Arnold, A.P.; Ball, G.F.; Blaustein, J.D.; De Vries, G.J. Sex Differences in the Brain: The Not So Inconvenient Truth. J. Neurosci. 2012, 32, 2241–2247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bangasser, D.A.; Valentino, R.J. Sex Differences in Stress-Related Psychiatric Disorders: Neurobiological Perspectives. Front. Neuroendocrinol. 2014, 35, 303–319. [Google Scholar] [CrossRef] [Green Version]
- Bangasser, D.A.; Wicks, B. Sex-specific Mechanisms for Responding to Stress. J. Neurosci. Res. 2017, 95, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Heck, A.L.; Handa, R.J. Sex Differences in the Hypothalamic–Pituitary–Adrenal Axis’ Response to Stress: An Important Role for Gonadal Hormones. Neuropsychopharmacology 2019, 44, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Dalla, C.; Pitychoutis, P.M.; Kokras, N.; Papadopoulou-Daifoti, Z. Sex Differences in Animal Models of Depression and Antidepressant Response. Basic Clin. Pharmacol. Toxicol. 2010, 106, 226–233. [Google Scholar] [CrossRef]
- Dalla, C.; Pitychoutis, P.M.; Kokras, N.; Papadopoulou-Daifoti, Z. Sex Differences in Response to Stress and Expression of Depressive-Like Behaviours in the Rat. In Biological Basis of Sex Differences in Psychopharmacology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 8, pp. 97–118. [Google Scholar]
- Ma, L.; Xu, Y.; Wang, G.; Li, R. What Do We Know about Sex Differences in Depression: A Review of Animal Models and Potential Mechanisms. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 89, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Franceschelli, A.; Herchick, S.; Thelen, C.; Papadopoulou-Daifoti, Z.; Pitychoutis, P.M. Sex Differences in the Chronic Mild Stress Model of Depression. Behav. Pharmacol. 2014, 25, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wu, X.-Y.; Zhu, Q.-B.; Li, J.; Shi, L.-G.; Wu, J.-L.; Zhang, Q.-J.; Huang, M.-L.; Bao, A.-M. Sex Differences in the Stress Response in SD Rats. Behav. Brain Res. 2015, 284, 231–237. [Google Scholar] [CrossRef]
- Ning, L.-N.; Zhang, T.; Chu, J.; Qu, N.; Lin, L.; Fang, Y.-Y.; Shi, Y.; Zeng, P.; Cai, E.-L.; Wang, X.-M.; et al. Gender-Related Hippocampal Proteomics Study from Young Rats After Chronic Unpredicted Mild Stress Exposure. Mol. Neurobiol. 2018, 55, 835–850. [Google Scholar] [CrossRef] [PubMed]
- Farhan, M.; Ikram, H.; Kanwal, S.; Haleem, D.J. Unpredictable Chronic Mild Stress Induced Behavioral Deficits: A Comparative Study in Male and Female Rats. Pak. J. Pharm. Sci. 2014, 27, 879–884. [Google Scholar]
- Dalla, C.; Antoniou, K.; Drossopoulou, G.; Xagoraris, M.; Kokras, N.; Sfikakis, A.; Papadopoulou-Daifoti, Z. Chronic Mild Stress Impact: Are Females More Vulnerable? Neuroscience 2005, 135, 703–714. [Google Scholar] [CrossRef]
- Vieira, J.O.; Duarte, J.O.; Costa-Ferreira, W.; Morais-Silva, G.; Marin, M.T.; Crestani, C.C. Sex Differences in Cardiovascular, Neuroendocrine and Behavioral Changes Evoked by Chronic Stressors in Rats. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 81, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; He, J.; Hou, J.; Lin, F.; Tian, J.; Kurihara, H. Gender Differences in CMS and the Effects of Antidepressant Venlafaxine in Rats. Neurochem. Int. 2013, 63, 570–575. [Google Scholar] [CrossRef]
- Dalla, C.; Antoniou, K.; Kokras, N.; Drossopoulou, G.; Papathanasiou, G.; Bekris, S.; Daskas, S.; Papadopoulou-Daifoti, Z. Sex Differences in the Effects of Two Stress Paradigms on Dopaminergic Neurotransmission. Physiol. Behav. 2008, 93, 595–605. [Google Scholar] [CrossRef]
- Jiang, S.; Lin, L.; Guan, L.; Wu, Y. Selection of the Male or Female Sex in Chronic Unpredictable Mild Stress-Induced Animal Models of Depression. Biomed Res. Int. 2022, 2022, 2602276. [Google Scholar] [CrossRef]
- Liu, L.-L.; Li, J.-M.; Su, W.-J.; Wang, B.; Jiang, C.-L. Sex Differences in Depressive-like Behaviour May Relate to Imbalance of Microglia Activation in the Hippocampus. Brain. Behav. Immun. 2019, 81, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Sachs, B.D.; Ni, J.R.; Caron, M.G. Sex Differences in Response to Chronic Mild Stress and Congenital Serotonin Deficiency. Psychoneuroendocrinology 2014, 40, 123–129. [Google Scholar] [CrossRef]
- Hodes, G.E.; Pfau, M.L.; Purushothaman, I.; Ahn, H.F.; Golden, S.A.; Christoffel, D.J.; Magida, J.; Brancato, A.; Takahashi, A.; Flanigan, M.E.; et al. Sex Differences in Nucleus Accumbens Transcriptome Profiles Associated with Susceptibility versus Resilience to Subchronic Variable Stress. J. Neurosci. 2015, 35, 16362–16376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Cai, W.; Li, C.; Su, Z.; Guo, Z.; Li, Z.; Wang, C.; Xu, F. Sex Differences in Peripheral Monoamine Transmitter and Related Hormone Levels in Chronic Stress Mice with a Depression-like Phenotype. PeerJ 2022, 10, e14014. [Google Scholar] [CrossRef] [PubMed]
- Nair, B.B.; Khant Aung, Z.; Porteous, R.; Prescott, M.; Glendining, K.A.; Jenkins, D.E.; Augustine, R.A.; Silva, M.S.B.; Yip, S.H.; Bouwer, G.T.; et al. Impact of Chronic Variable Stress on Neuroendocrine Hypothalamus and Pituitary in Male and Female C57BL/6J Mice. J. Neuroendocrinol. 2021, 33, e12972. [Google Scholar] [CrossRef] [PubMed]
- Karisetty, B.C.; Khandelwal, N.; Kumar, A.; Chakravarty, S. Sex Difference in Mouse Hypothalamic Transcriptome Profile in Stress-Induced Depression Model. Biochem. Biophys. Res. Commun. 2017, 486, 1122–1128. [Google Scholar] [CrossRef] [PubMed]
- Karisetty, B.C.; Joshi, P.C.; Kumar, A.; Chakravarty, S. Sex Differences in the Effect of Chronic Mild Stress on Mouse Prefrontal Cortical BDNF Levels: A Role of Major Ovarian Hormones. Neuroscience 2017, 356, 89–101. [Google Scholar] [CrossRef]
- LaPlant, Q.; Chakravarty, S.; Vialou, V.; Mukherjee, S.; Koo, J.W.; Kalahasti, G.; Bradbury, K.R.; Taylor, S.V.; Maze, I.; Kumar, A.; et al. Role of Nuclear Factor ΚB in Ovarian Hormone-Mediated Stress Hypersensitivity in Female Mice. Biol. Psychiatry 2009, 65, 874–880. [Google Scholar] [CrossRef] [Green Version]
- Karisetty, B.C.; Maitra, S.; Wahul, A.B.; Musalamadugu, A.; Khandelwal, N.; Guntupalli, S.; Garikapati, R.; Jhansyrani, T.; Kumar, A.; Chakravarty, S. Differential Effect of Chronic Stress on Mouse Hippocampal Memory and Affective Behavior: Role of Major Ovarian Hormones. Behav. Brain Res. 2017, 318, 36–44. [Google Scholar] [CrossRef]
- Lagunas, N.; Calmarza-Font, I.; Diz-Chaves, Y.; Garcia-Segura, L.M. Long-Term Ovariectomy Enhances Anxiety and Depressive-like Behaviors in Mice Submitted to Chronic Unpredictable Stress. Horm. Behav. 2010, 58, 786–791. [Google Scholar] [CrossRef] [Green Version]
- Valenstein, E.S.; Kakolewski, J.W.; Cox, V.C. Sex Differences in Taste Preference for Glucose and Saccharin Solutions. Science 1967, 156, 942–943. [Google Scholar] [CrossRef] [PubMed]
- Tapia, M.A.; Lee, J.R.; Weise, V.N.; Tamasi, A.M.; Will, M.J. Sex Differences in Hedonic and Homeostatic Aspects of Palatable Food Motivation. Behav. Brain Res. 2019, 359, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Clarke, S.N.D.A.; Ossenkopp, K.-P. Taste Reactivity Responses in Rats: Influence of Sex and the Estrous Cycle. Am. J. Physiol. Integr. Comp. Physiol. 1998, 274, R718–R724. [Google Scholar] [CrossRef]
- Curtis, K.; Stratford, J.; Contreras, R. Estrogen Increases the Taste Threshold for Sucrose in Rats. Physiol. Behav. 2005, 86, 281–286. [Google Scholar] [CrossRef]
- Curtis, K.S.; Davis, L.M.; Johnson, A.L.; Therrien, K.L.; Contreras, R.J. Sex Differences in Behavioral Taste Responses to and Ingestion of Sucrose and NaCl Solutions by Rats. Physiol. Behav. 2004, 80, 657–664. [Google Scholar] [CrossRef]
- Than, T.T.; Delay, E.R.; Maier, M.E. Sucrose Threshold Variation during the Menstrual Cycle. Physiol. Behav. 1994, 56, 237–239. [Google Scholar] [CrossRef]
- Selye, H. A Syndrome Produced by Diverse Nocuous Agents. Nature 1936, 138, 32. [Google Scholar] [CrossRef] [Green Version]
- Pacák, K.; Palkovits, M. Stressor Specificity of Central Neuroendocrine Responses: Implications for Stress-Related Disorders. Endocr. Rev. 2001, 22, 502–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawchenko, P.E.; Li, H.-Y.; Ericsson, A. Circuits and Mechanisms Governing Hypothalamic Responses to Stress: A Tale of Two Paradigms. Prog Brain Res. 2000, 122, 61–78. [Google Scholar] [PubMed]
- Fortier, C. Dual control of adrenocorticotrophin release. Endocrinology 1951, 49, 782–788. [Google Scholar] [CrossRef]
- Pacak, K.; Palkovits, M.; Yadid, G.; Kvetnansky, R.; Kopin, I.J.; Goldstein, D.S. Heterogeneous Neurochemical Responses to Different Stressors: A Test of Selye’s Doctrine of Nonspecificity. Am. J. Physiol. Integr. Comp. Physiol. 1998, 275, R1247–R1255. [Google Scholar] [CrossRef] [PubMed]
- Pacak, K. Stressor-Specific Activation of the Hypothalamic-Pituitary-Adrenocortical Axis. Physiol. Res. 2000, 49, 11–17. [Google Scholar]
- Nadal, R.; Gabriel-Salazar, M.; Sanchís-Ollé, M.; Gagliano, H.; Belda, X.; Armario, A. Individual Differences in the Neuroendocrine Response of Male Rats to Emotional Stressors Are Not Trait-like and Strongly Depend on the Intensity of the Stressors. Psychoneuroendocrinology 2021, 125, 105127. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Abellán, C.; Andero, R.; Nadal, R.; Armario, A. Marked Dissociation between Hypothalamic–Pituitary–Adrenal Activation and Long-Term Behavioral Effects in Rats Exposed to Immobilization or Cat Odor. Psychoneuroendocrinology 2008, 33, 1139–1150. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Abellán, C.; Rabasa, C.; Daviu, N.; Nadal, R.; Armario, A. Behavioral and Endocrine Consequences of Simultaneous Exposure to Two Different Stressors in Rats: Interaction or Independence? PLoS ONE 2011, 6, e21426. [Google Scholar] [CrossRef] [Green Version]
- Bowers, S.L.; Bilbo, S.D.; Dhabhar, F.S.; Nelson, R.J. Stressor-Specific Alterations in Corticosterone and Immune Responses in Mice. Brain. Behav. Immun. 2008, 22, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Emmert, M.H.; Herman, J.P. Differential Forebrain C-Fos MRNA Induction by Ether Inhalation and Novelty: Evidence for Distinctive Stress Pathways. Brain Res. 1999, 845, 60–67. [Google Scholar] [CrossRef]
- Reyes, T.M.; Walker, J.R.; DeCino, C.; Hogenesch, J.B.; Sawchenko, P.E. Categorically Distinct Acute Stressors Elicit Dissimilar Transcriptional Profiles in the Paraventricular Nucleus of the Hypothalamus. J. Neurosci. 2003, 23, 5607–5616. [Google Scholar] [CrossRef] [Green Version]
- Dayas, C.V.; Buller, K.M.; Crane, J.W.; Xu, Y.; Day, T.A. Stressor Categorization: Acute Physical and Psychological Stressors Elicit Distinctive Recruitment Patterns in the Amygdala and in Medullary Noradrenergic Cell Groups. Eur. J. Neurosci. 2001, 14, 1143–1152. [Google Scholar] [CrossRef] [Green Version]
- Kogler, L.; Müller, V.I.; Chang, A.; Eickhoff, S.B.; Fox, P.T.; Gur, R.C.; Derntl, B. Psychosocial versus Physiological Stress—Meta-Analyses on Deactivations and Activations of the Neural Correlates of Stress Reactions. Neuroimage 2015, 119, 235–251. [Google Scholar] [CrossRef] [Green Version]
- Cullinan, W.E.; Herman, J.P.; Battaglia, D.F.; Akil, H.; Watson, S.J. Pattern and Time Course of Immediate Early Gene Expression in Rat Brain Following Acute Stress. Neuroscience 1995, 64, 477–505. [Google Scholar] [CrossRef]
- Úbeda-Contreras, J.; Marín-Blasco, I.; Nadal, R.; Armario, A. Brain C-Fos Expression Patterns Induced by Emotional Stressors Differing in Nature and Intensity. Brain Struct. Funct. 2018, 223, 2213–2227. [Google Scholar] [CrossRef] [PubMed]
- Herman, J.P.; Cullinan, W.E. Neurocircuitry of Stress: Central Control of the Hypothalamo–Pituitary–Adrenocortical Axis. Trends Neurosci. 1997, 20, 78–84. [Google Scholar] [CrossRef]
- Herman, J.P.; Figueiredo, H.; Mueller, N.K.; Ulrich-Lai, Y.; Ostrander, M.M.; Choi, D.C.; Cullinan, W.E. Central Mechanisms of Stress Integration: Hierarchical Circuitry Controlling Hypothalamo–Pituitary–Adrenocortical Responsiveness. Front. Neuroendocrinol. 2003, 24, 151–180. [Google Scholar] [CrossRef] [PubMed]
- Du Preez, A.; Eum, J.; Eiben, I.; Eiben, P.; Zunszain, P.A.; Pariante, C.M.; Thuret, S.; Fernandes, C. Do Different Types of Stress Differentially Alter Behavioural and Neurobiological Outcomes Associated with Depression in Rodent Models? A Systematic Review. Front. Neuroendocrinol. 2021, 61, 100896. [Google Scholar] [CrossRef]
- Isgor, C.; Kabbaj, M.; Akil, H.; Watson, S.J. Delayed Effects of Chronic Variable Stress during Peripubertal-Juvenile Period on Hippocampal Morphology and on Cognitive and Stress Axis Functions in Rats. Hippocampus 2004, 14, 636–648. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, X.; Zhang, Y.; Pu, J.; Yang, L.; Yuan, S.; Zhao, L.; Zhou, C.; Zhang, H.; Xie, P. Hippocampal Metabolic Differences Implicate Distinctions between Physical and Psychological Stress in Four Rat Models of Depression. Transl. Psychiatry 2018, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Kavushansky, A.; Ben-Shachar, D.; Richter-Levin, G.; Klein, E. Physical Stress Differs from Psychosocial Stress in the Pattern and Time-Course of Behavioral Responses, Serum Corticosterone and Expression of Plasticity-Related Genes in the Rat. Stress 2009, 12, 412–425. [Google Scholar] [CrossRef]
- Pijlman, F.T.; Wolterink, G.; Van Ree, J.M. Physical and Emotional Stress Have Differential Effects on Preference for Saccharine and Open Field Behaviour in Rats. Behav. Brain Res. 2003, 139, 131–138. [Google Scholar] [CrossRef]
- Barnum, C.J.; Pace, T.W.; Hu, F.; Neigh, G.N.; Tansey, M.G. Psychological Stress in Adolescent and Adult Mice Increases Neuroinflammation and Attenuates the Response to LPS Challenge. J. Neuroinflamm. 2012, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Shi, R.; Wang, J.; Wang, J.-F.; Li, X.-M. Unpredictable Chronic Mild Stress Not Chronic Restraint Stress Induces Depressive Behaviours in Mice. Neuroreport 2014, 25, 1151–1155. [Google Scholar] [CrossRef] [PubMed]
- Warren, B.L.; Vialou, V.F.; Iñiguez, S.D.; Alcantara, L.F.; Wright, K.N.; Feng, J.; Kennedy, P.J.; LaPlant, Q.; Shen, L.; Nestler, E.J.; et al. Neurobiological Sequelae of Witnessing Stressful Events in Adult Mice. Biol. Psychiatry 2013, 73, 7–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterley, T.-L.; Baimoukhametova, D.; Füzesi, T.; Zurek, A.A.; Daviu, N.; Rasiah, N.P.; Rosenegger, D.; Bains, J.S. Social Transmission and Buffering of Synaptic Changes after Stress. Nat. Neurosci. 2018, 21, 393–403. [Google Scholar] [CrossRef]
- Brechbühl, J.; Moine, F.; Klaey, M.; Nenniger-Tosato, M.; Hurni, N.; Sporkert, F.; Giroud, C.; Broillet, M.-C. Mouse Alarm Pheromone Shares Structural Similarity with Predator Scents. Proc. Natl. Acad. Sci. USA 2013, 110, 4762–4767. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, H.; Kiyokawa, Y.; Tamogami, S.; Watanabe, H.; Takeuchi, Y.; Mori, Y. Identification of a Pheromone That Increases Anxiety in Rats. Proc. Natl. Acad. Sci. USA 2014, 111, 18751–18756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valenta, J.G.; Rigby, M.K. Discrimination of the Odor of Stressed Rats. Science 1968, 161, 599–601. [Google Scholar] [CrossRef]
- Bombail, V. Perception and Emotions: On the Relationships between Stress and Olfaction. Appl. Anim. Behav. Sci. 2019, 212, 98–108. [Google Scholar] [CrossRef]
- Zalaquett, C.; Thiessen, D. The Effects of Odors from Stressed Mice on Conspecific Behavior. Physiol. Behav. 1991, 50, 221–227. [Google Scholar] [CrossRef]
- Mackay-Sim, A.; Laing, D.G. Discrimination of Odors from Stressed Rats by Non-Stressed Rats. Physiol. Behav. 1980, 24, 699–704. [Google Scholar] [CrossRef]
- Gutiérrez-García, A.G.; Contreras, C.M.; Mendoza-López, M.R.; García-Barradas, O.; Cruz-Sánchez, J.S. Urine from Stressed Rats Increases Immobility in Receptor Rats Forced to Swim: Role of 2-Heptanone. Physiol. Behav. 2007, 91, 166–172. [Google Scholar] [CrossRef]
- Gutiérrez-García, A.G.; Contreras, C.M. Stressors Can Affect Immobility Time and Response to Imipramine in the Rat Forced Swim Test. Pharmacol. Biochem. Behav. 2009, 91, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Abel, E.L. Physiological Effects of Alarm Chemosignal Emitted during the Forced Swim Test. J. Chem. Ecol. 1993, 19, 2891–2901. [Google Scholar] [CrossRef] [PubMed]
- Brudzynski, S.M. Communication of Adult Rats by Ultrasonic Vocalization: Biological, Sociobiological, and Neuroscience Approaches. ILAR J. 2009, 50, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Litvin, Y.; Blanchard, D.C.; Blanchard, R.J. Rat 22kHz Ultrasonic Vocalizations as Alarm Cries. Behav. Brain Res. 2007, 182, 166–172. [Google Scholar] [CrossRef]
- Wöhr, M.; Schwarting, R.K.W. Affective Communication in Rodents: Ultrasonic Vocalizations as a Tool for Research on Emotion and Motivation. Cell Tissue Res. 2013, 354, 81–97. [Google Scholar] [CrossRef]
- Jelen, P.; Soltysik, S.; Zagrodzka, J. 22-KHz Ultrasonic Vocalization in Rats as an Index of Anxiety but Not Fear: Behavioral and Pharmacological Modulation of Affective State. Behav. Brain Res. 2003, 141, 63–72. [Google Scholar] [CrossRef]
- Brudzynski, S.M. Emission of 22 KHz Vocalizations in Rats as an Evolutionary Equivalent of Human Crying: Relationship to Depression. Behav. Brain Res. 2019, 363, 1–12. [Google Scholar] [CrossRef]
- Demaestri, C.; Brenhouse, H.C.; Honeycutt, J.A. 22 KHz and 55 KHz Ultrasonic Vocalizations Differentially Influence Neural and Behavioral Outcomes: Implications for Modeling Anxiety via Auditory Stimuli in the Rat. Behav. Brain Res. 2019, 360, 134–145. [Google Scholar] [CrossRef]
- Fendt, M.; Brosch, M.; Wernecke, K.E.A.; Willadsen, M.; Wöhr, M. Predator Odour but Not TMT Induces 22-KHz Ultrasonic Vocalizations in Rats That Lead to Defensive Behaviours in Conspecifics upon Replay. Sci. Rep. 2018, 8, 11041. [Google Scholar] [CrossRef] [Green Version]
- Reed, M.D.; Pira, A.S.; Febo, M. Behavioral Effects of Acclimatization to Restraint Protocol Used for Awake Animal Imaging. J. Neurosci. Methods 2013, 217, 63–66. [Google Scholar] [CrossRef] [Green Version]
- Kroes, R.A.; Burgdorf, J.; Otto, N.J.; Panksepp, J.; Moskal, J.R. Social Defeat, a Paradigm of Depression in Rats That Elicits 22-KHz Vocalizations, Preferentially Activates the Cholinergic Signaling Pathway in the Periaqueductal Gray. Behav. Brain Res. 2007, 182, 290–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mällo, T.; Matrov, D.; Kõiv, K.; Harro, J. Effect of Chronic Stress on Behavior and Cerebral Oxidative Metabolism in Rats with High or Low Positive Affect. Neuroscience 2009, 164, 963–974. [Google Scholar] [CrossRef] [PubMed]
- Riaz, M.S.; Bohlen, M.O.; Gunter, B.W.; Henry, Q.; Stockmeier, C.A.; Paul, I.A. Attenuation of Social Interaction-Associated Ultrasonic Vocalizations and Spatial Working Memory Performance in Rats Exposed to Chronic Unpredictable Stress. Physiol. Behav. 2015, 152, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Mogil, J.S. Laboratory Environmental Factors and Pain Behavior: The Relevance of Unknown Unknowns to Reproducibility and Translation. Lab Anim. 2017, 46, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Castelhano-Carlos, M.J.; Baumans, V. The Impact of Light, Noise, Cage Cleaning and in-House Transport on Welfare and Stress of Laboratory Rats. Lab. Anim. 2009, 43, 311–327. [Google Scholar] [CrossRef]
- Saré, R.M.; Lemons, A.; Smith, C.B. Behavior Testing in Rodents: Highlighting Potential Confounds Affecting Variability and Reproducibility. Brain Sci. 2021, 11, 522. [Google Scholar] [CrossRef]
- Bailey, J. Does the Stress of Laboratory Life and Experimentation on Animals Adversely Affect Research Data? A Critical Review. Altern. to Lab. Anim. 2018, 46, 291–305. [Google Scholar] [CrossRef]
- Balcombe, J.P.; Barnard, N.D.; Sandusky, C. Laboratory Routines Cause Animal Stress. Contemp. Top. Lab. Anim. Sci. 2004, 43, 42–51. [Google Scholar]
- Meijer, M.K.; Spruijt, B.M.; van Zutphen, L.F.M.; Baumans, V. Effect of Restraint and Injection Methods on Heart Rate and Body Temperature in Mice. Lab. Anim. 2006, 40, 382–391. [Google Scholar] [CrossRef] [Green Version]
- Kramer, K.; van de Weerd, H.; Mulder, A.; van Heijningen, C.; Baumans, V.; Remie, R.; Voss, H.-P.; van Zutphen, B.F.M. Effect of Conditioning on the Increase of Heart Rate and Body Temperature Provoked by Handling in the Mouse. Altern. Lab. Anim. 2004, 32, 177–181. [Google Scholar] [CrossRef]
- Gärtner, K.; Büttner, D.; Döhler, K.; Friedel, R.; Lindena, J.; Trautschold, I. Stress Response of Rats to Handling and Experimental Procedures. Lab. Anim. 1980, 14, 267–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, S.; Miller, M.M.; Filipski, S.B.; Tolwani, R.J. Cage Change Influences Serum Corticosterone and Anxiety-like Behaviors in the Mouse. J. Am. Assoc. Lab. Anim. Sci. 2011, 50, 479–483. [Google Scholar] [PubMed]
- Van Driel, K.S.; Talling, J.C. Familiarity Increases Consistency in Animal Tests. Behav. Brain Res. 2005, 159, 243–245. [Google Scholar] [CrossRef] [PubMed]
- Sorge, R.E.; Martin, L.J.; Isbester, K.A.; Sotocinal, S.G.; Rosen, S.; Tuttle, A.H.; Wieskopf, J.S.; Acland, E.L.; Dokova, A.; Kadoura, B.; et al. Olfactory Exposure to Males, Including Men, Causes Stress and Related Analgesia in Rodents. Nat. Methods 2014, 11, 629–632. [Google Scholar] [CrossRef]
- Jain, M.; Baldwin, A.L. Are Laboratory Animals Stressed by Their Housing Environment and Are Investigators Aware That This Stress Can Affect Physiological Data? Med. Hypotheses 2003, 60, 284–289. [Google Scholar] [CrossRef]
- Baldwin, A.L.; Schwartz, G.E.; Hopp, D.H. Are Investigators Aware of Environmental Noise in Animal Facilities and That This Noise May Affect Experimental Data? J. Am. Assoc. Lab. Anim. Sci. 2007, 46, 45–51. [Google Scholar]
- Milligan, S.R.; Sales, G.D.; Khirnykh, K. Sound Levels in Rooms Housing Laboratory Animals: An Uncontrolled Daily Variable. Physiol. Behav. 1993, 53, 1067–1076. [Google Scholar] [CrossRef]
- Raff, H.; Bruder, E.D.; Cullinan, W.E.; Ziegler, D.R.; Cohen, E.P. Effect of Animal Facility Construction on Basal Hypothalamic-Pituitary-Adrenal and Renin-Aldosterone Activity in the Rat. Endocrinology 2011, 152, 1218–1221. [Google Scholar] [CrossRef] [Green Version]
- Dallman, M.F.; Akana, S.F.; Bell, M.E.; Bhatnagar, S.; Choi, S.; Chu, A.; Gomez, F.; Laugero, K.; Soriano, L.; Viau, V. Warning! Nearby Construction Can Profoundly Affect Your Experiments. Endocrine 1999, 11, 111–114. [Google Scholar] [CrossRef]
- Grissom, N.; Iyer, V.; Vining, C.; Bhatnagar, S. The Physical Context of Previous Stress Exposure Modifies Hypothalamic–Pituitary–Adrenal Responses to a Subsequent Homotypic Stress. Horm. Behav. 2007, 51, 95–103. [Google Scholar] [CrossRef]
- Hooijmans, C.R.; Leenaars, M.; Ritskes-Hoitinga, M. A Gold Standard Publication Checklist to Improve the Quality of Animal Studies, to Fully Integrate the Three Rs, and to Make Systematic Reviews More Feasible. Altern. Lab. Anim. 2010, 38, 167–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef] [PubMed]
- Planchez, B.; Surget, A.; Belzung, C. Animal Models of Major Depression: Drawbacks and Challenges. J. Neural Transm. 2019, 126, 1383–1408. [Google Scholar] [CrossRef] [Green Version]
- Anisman, H.; Matheson, K. Stress, Depression, and Anhedonia: Caveats Concerning Animal Models. Neurosci. Biobehav. Rev. 2005, 29, 525–546. [Google Scholar] [CrossRef]
- Crabbe, J.C.; Wahlsten, D.; Dudek, B.C. Genetics of Mouse Behavior: Interactions with Laboratory Environment. Science 1999, 284, 1670–1672. [Google Scholar] [CrossRef] [PubMed]
- Wahlsten, D.; Metten, P.; Phillips, T.J.; Boehm, S.L.; Burkhart-Kasch, S.; Dorow, J.; Doerksen, S.; Downing, C.; Fogarty, J.; Rodd-Henricks, K.; et al. Different Data from Different Labs: Lessons from Studies of Gene-Environment Interaction. J. Neurobiol. 2003, 54, 283–311. [Google Scholar] [CrossRef]
Factor | Comment |
---|---|
sucrose solution | determination of sucrose concentration threshold to select the optimal concentration |
water and food deprivation | effects on the metabolic state of the animal |
stress susceptibility | stress-susceptible and stress-resilient animals |
time of day | stressors are often used during light phase, which causes chronic sleep deprivation which affects the physiological state of animals |
painful stressors | injections, immobilization, and other painful stressors which affects the physiological state of animals |
social stress | behavioral effects of isolation, overcrowding, and hierarchical rank; different types and combinations of social stress in different laboratories |
strain | different susceptibility to stressors |
supplier | laboratory animal supplier and housing conditions; different susceptibility to stressors |
handling | handling duration and familiarity with the experimenter |
habituation | effects of repeated exposure to the same stressor even in an unpredictable manner |
age | different susceptibility to stressors |
sex | often males; different susceptibility to stressors |
type of stressful factors | the combination of stressors of various modality, the order, and duration of presentation of each stressor |
stress transmission | effects of visual, auditory, and olfactory sensations on animals |
unaccounted factors | a large number of uncontrollable factors affecting the physiological state of animals |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markov, D.D.; Novosadova, E.V. Chronic Unpredictable Mild Stress Model of Depression: Possible Sources of Poor Reproducibility and Latent Variables. Biology 2022, 11, 1621. https://doi.org/10.3390/biology11111621
Markov DD, Novosadova EV. Chronic Unpredictable Mild Stress Model of Depression: Possible Sources of Poor Reproducibility and Latent Variables. Biology. 2022; 11(11):1621. https://doi.org/10.3390/biology11111621
Chicago/Turabian StyleMarkov, Dmitrii D., and Ekaterina V. Novosadova. 2022. "Chronic Unpredictable Mild Stress Model of Depression: Possible Sources of Poor Reproducibility and Latent Variables" Biology 11, no. 11: 1621. https://doi.org/10.3390/biology11111621
APA StyleMarkov, D. D., & Novosadova, E. V. (2022). Chronic Unpredictable Mild Stress Model of Depression: Possible Sources of Poor Reproducibility and Latent Variables. Biology, 11(11), 1621. https://doi.org/10.3390/biology11111621