A Ten-Minute Bioassay to Test Metal Toxicity with the Freshwater Flagellate Euglena agilis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Algal Test Species and Culture Conditions
2.2. Testing Chemicals and Exposure
2.3. Measurement of Motility and Orientation
2.4. Statistical Analyses
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhuyan, M.; Bakar, M.A. Seasonal variation of heavy metals in water and sediments in the Halda River, Chittagong, Bangladesh. Environ. Sci. Pollut. Res. 2017, 24, 27587–27600. [Google Scholar] [CrossRef] [PubMed]
- Izah, S.C.; Srivastav, A.L. Level of arsenic in potable water sources in Nigeria and their potential health impacts: A review. J. Environ. Treat. Tech. 2015, 3, 15–24. [Google Scholar]
- Chu, K.W.; Chow, K.L. Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative. Aquat. Toxicol. 2002, 61, 53–64. [Google Scholar] [CrossRef]
- Rai, L.; Gaur, J.; Kumar, H. Phycology and heavy-metal pollution. Biol. Rev. 1981, 56, 99–151. [Google Scholar] [CrossRef]
- Mallick, N.; Rai, L. Physiological responses of non-vascular plants to heavy metals. In Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants; Springer: Berlin/Heidelberg, Germany, 2002; pp. 111–147. [Google Scholar]
- Klaine, S.J.; Lewis, M. Algal and plant toxicity testing. In Handbook of Ecotoxicology; CRC Press: Boca Raton, FL, USA, 1995; pp. 163–184. [Google Scholar]
- Williams, T.; Hutchinson, T.; Roberts, G.; Coleman, C. The assessment of industrial effluent toxicity using aquatic microorganisms, invertebrates and fish. Sci. Total Environ. 1993, 134, 1129–1141. [Google Scholar] [CrossRef]
- Wang, W. Literature review on duckweed toxicity testing. Environ. Res. 1990, 52, 7–22. [Google Scholar] [CrossRef]
- Pfeiffer, T.; Camagajevac, I.; Maronic, D.; Maksimovic, I.; Singh, V.; Singh, S.; Prasad, S. Regulation of photosynthesis in algae under metal stress. In Environ. Photosynth. A Future Prospect; Studium Press: Delhi, India, 2018; pp. 261–286. [Google Scholar]
- Tahedl, H.; Häder, D.-P. Automated biomonitoring using real time movement analysis of Euglena gracilis. Ecotoxicol. Environ. Saf. 2001, 48, 161–169. [Google Scholar] [CrossRef]
- Lebert, M.; Häder, D.-P. Negative gravitactic behavior of Euglena gracilis can not be described by the mechanism of buoyancy-oriented upward swimming. Adv. Space Res. 1999, 24, 851–860. [Google Scholar] [CrossRef]
- Häder, D.; Vogel, K.; Schäfer, J. Responses of the photosynthetic flagellate, Euglena gracilis, to microgravity. Microgravity Sci. Technol. 1990, 3, 110–116. [Google Scholar]
- Richter, P.R.; Ntefidou, M.; Streb, C.; Faddoul, J.; Lebert, M.; Hader, D. High light exposure leads to a sign change of gravitaxis in the flagellate Euglena gracilis. Acta Protozool. 2002, 41, 343–352. [Google Scholar]
- Richter, P.R.; Streb, C.; Ntefidou, M.; Lebert, M.; Hader, D. High light-induced sign change of gravitaxis in the flagellate Euglena gracilis is mediated by reactive oxygen species. Acta Protozool. 2003, 42, 197–204. [Google Scholar]
- Richter, P.R.; Schuster, M.; Lebert, M.; Streb, C.; Häder, D.-P. Gravitaxis of Euglena gracilis depends only partially on passive buoyancy. Adv. Space Res. 2007, 39, 1218–1224. [Google Scholar] [CrossRef]
- Watanabe, M.; Henmi, K.; Ogawa, K.i.; Suzuki, T. Cadmium-dependent generation of reactive oxygen species and mitochondrial DNA breaks in photosynthetic and non-photosynthetic strains of Euglena gracilis. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2003, 134, 227–234. [Google Scholar] [CrossRef]
- Tahedl, H.; Häder, D.-P. Fast examination of water quality using the automatic biotest ECOTOX based on the movement behavior of a freshwater flagellate. Water Res. 1999, 33, 426–432. [Google Scholar] [CrossRef]
- Pettersson, M.; Ekelund, N.G. Effects of the herbicides Roundup and Avans on Euglena gracilis. Arch. Environ. Contam. Toxicol. 2006, 50, 175–181. [Google Scholar] [CrossRef]
- Ahmed, H.A.E.A.M. Biomonitoring of Aquatic Ecosystems. Ph.D. Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, 2010. [Google Scholar]
- Gajdosova, J.; Reichrtova, E. Different growth response of Euglena gracilis to Hg, Cd, Cr and Ni compounds. Fresenius J. Anal. Chem. 1996, 354, 641–642. [Google Scholar] [CrossRef]
- Aronsson, K.A.; Ekelund, N. Respiration measurements can assess the fitness of Gammarus pulex (L.) after exposure to different contaminants: Experiments with wood ash, cadmium and aluminum. Arch. Für Hydrobiol. 2005, 164, 479–491. [Google Scholar] [CrossRef]
- K. NASS, M.M.; Ben-Shaul, Y. Effects of ethidium bromide on growth, chlorophyll synthesis, ultrastructure and mitochondrial DNA in green and bleached mutant Euglena gracilis. J. Cell Sci. 1973, 13, 567–590. [Google Scholar] [CrossRef]
- Azizullah, A.; Richter, P.; Häder, D.-P. Sensitivity of various parameters in Euglena gracilis to short-term exposure to industrial wastewaters. J. Appl. Phycol. 2012, 24, 187–200. [Google Scholar] [CrossRef]
- Janssen, C.R.; Heijerick, D.G. Algal toxicity tests for environmental risk assessments of metals. In Reviews of Environmental Contamination and Toxicology; Springer: Berlin/Heidelberg, Germany, 2003; pp. 23–52. [Google Scholar]
- Cho, C.-W.; Jeon, Y.-C.; Pham, T.P.T.; Vijayaraghavan, K.; Yun, Y.-S. The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum. Ecotoxicol. Environ. Saf. 2008, 71, 166–171. [Google Scholar] [CrossRef]
- Nam, S.-H.; An, Y.-J. A rapid screening method to assess soil algal toxicity: Non-destructive sampling of algal cells using culture medium extraction. Appl. Soil Ecol. 2017, 120, 143–152. [Google Scholar] [CrossRef]
- Nalewajko, C. Effect’s of cadmium and metal-contaminated sediments on photosynthesis, heterotrophy, and phosphate uptake in macienme river delta phytoplankton. Chemosphere 1995, 30, 1401–1414. [Google Scholar] [CrossRef]
- Rodriguez Jr, M.; Sanders, C.A.; Greenbaum, E. Biosensors for rapid monitoring of primary-source drinking water using naturally occurring photosynthesis. Biosens. Bioelectron. 2002, 17, 843–849. [Google Scholar] [CrossRef]
- Endo, R.; Omasa, K. Chlorophyll fluorescence imaging of individual algal cells: Effects of herbicide on Spirogyra distenta at different growth stages. Environ. Sci. Technol. 2004, 38, 4165–4168. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-H.; Kao, W.-C.; Tsai, K.-P.; Chen, C.-Y. A novel algal toxicity testing technique for assessing the toxicity of both metallic and organic toxicants. Water Res. 2005, 39, 1869–1877. [Google Scholar] [CrossRef] [PubMed]
- Pardos, M.; Benninghoff, C.; Thomas, R.L. Photosynthetic and population growth response of the test alga Selenastrum capricornutum Printz to zinc, cadmium and suspended sediment elutriates. J. Appl. Phycol. 1998, 10, 145–151. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Lin, J.-H. Toxicity of chlorophenols to Pseudokirchneriella subcapitata under air-tight test environment. Chemosphere 2006, 62, 503–509. [Google Scholar] [CrossRef]
- Ahmed, H.; Häder, D.-P. Monitoring of waste water samples using the ECOTOX biosystem and the flagellate alga Euglena gracilis. Water Air Soil Pollut. 2011, 216, 547–560. [Google Scholar] [CrossRef]
- Checcucci, A.; Colombetti, G.; Ferrara, R.; Lenci, F. Action spectra for photoaccumulation of green and colorless Euglena: Evidence for identification of receptor pigments. Photochem. Photobiol. 1976, 23, 51–54. [Google Scholar] [CrossRef]
- Lane, T.W.; Morel, F.M. Regulation of carbonic anhydrase expression by zinc, cobalt, and carbon dioxide in the marine diatom Thalassiosira weissflogii. Plant Physiol. 2000, 123, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Stallwitz, E.; Häder, D.-P. Effects of heavy metals on motility and gravitactic orientation of the flagellate, Euglena gracilis. Eur. J. Protistol. 1994, 30, 18–24. [Google Scholar] [CrossRef]
- Melkonian, M.; Beech, P.L.; Katsaros, C.; Schulze, D. Centrin-mediated cell motility in algae. In Algal Cell Motility; Springer: Berlin/Heidelberg, Germany, 1992; pp. 179–221. [Google Scholar]
- Takenaka, S.; Kondo, T.; Nazeri, S.; Tamura, Y.; Tokunaga, M.; Tsuyama, S.; Miyatake, K.; Nakano, Y. Accumulation of trehalose as a compatible solute under osmotic stress in Euglena gracilis Z. J. Eukaryot. Microbiol. 1997, 44, 609–613. [Google Scholar] [CrossRef]
- Häder, D.-P.; Lebert, M.; Tahedl, H.; Richter, P. The Erlanger flagellate test (EFT): Photosynthetic flagellates in biological dosimeters. J. Photochem. Photobiol. B Biol. 1997, 40, 23–28. [Google Scholar] [CrossRef]
- Kottuparambil, S.; Shin, W.; Brown, M.T.; Han, T. UV-B affects photosynthesis, ROS production and motility of the freshwater flagellate, Euglena agilis Carter. Aquat. Toxicol. 2012, 122, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Häder, D.-P.; Hemmersbach, R. Gravitaxis in Euglena. In Euglena: Biochemistry, Cell and Molecular Biology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 237–266. [Google Scholar]
- Kottuparambil, S.; Kim, Y.-J.; Choi, H.; Kim, M.-S.; Park, A.; Park, J.; Shin, W.; Han, T. A rapid phenol toxicity test based on photosynthesis and movement of the freshwater flagellate, Euglena agilis Carter. Aquat. Toxicol. 2014, 155, 9–14. [Google Scholar] [CrossRef]
- Tahira, S.; Khan, S.; Samrana, S.; Shahi, L.; Ali, I.; Murad, W.; Azizullah, A. Bio-assessment and remediation of arsenic (arsenite As-III) in water by Euglena gracilis. J. Appl. Phycol. 2019, 31, 423–433. [Google Scholar] [CrossRef]
- Azizullah, A.; Häder, D.-P. A comparison of commonly used and commercially available bioassays for aquatic ecosystems. In Bioassays; Elsevier: Amsterdam, The Netherlands, 2018; pp. 347–368. [Google Scholar]
- Ahmed, H.; Häder, D.-P. Rapid ecotoxicological bioassay of nickel and cadmium using motility and photosynthetic parameters of Euglena gracilis. Environ. Exp. Bot. 2010, 69, 68–75. [Google Scholar] [CrossRef]
- Navarro, L.; Torres-Márquez, M.a.E.; González-Moreno, S.; Devars, S.; Hernández, R.; Moreno-Sánchez, R. Comparison of physiological changes in Euglena gracilis during exposure to heavy metals of heterotrophic and autotrophic cells. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1997, 116, 265–272. [Google Scholar] [CrossRef]
- Devars, S.; Hernandez, R.; Moreno-Sánchez, R. Enhanced heavy metal tolerance in two strains of photosynthetic Euglena gracilis by preexposure to mercury or cadmium. Arch. Environ. Contam. Toxicol. 1998, 34, 128–135. [Google Scholar] [CrossRef]
- Watanabe, M.; Suzuki, T. Involvement of reactive oxygen stress in cadmium-induced cellular damage in Euglena gracilis. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2002, 131, 491–500. [Google Scholar] [CrossRef]
- Barque, J.P.; Abahamid, A.; Bourezgui, Y.; Chacun, H.; Bonaly, J. Growth responses of achlorophyllous Euglena gracilis to selected concentrations of cadmium and pentachlorophenol. Arch. Environ. Contam. Toxicol. 1995, 28, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Häder, D.-P. A fast algal bioassay for assessment of copper toxicity in water using Euglena gracilis. J. Appl. Phycol. 2010, 22, 785–792. [Google Scholar] [CrossRef]
- Strauch, S.M.; Richter, P.R.; Haag, F.W.; Krueger, M.; Krueger, J.; Azizullah, A.; Breiter, R.; Lebert, M. Delayed fluorescence, steady state fluorescence, photosystem II quantum yield as endpoints for toxicity evaluation of Cu2+ and Ag+. Environ. Exp. Bot. 2016, 130, 174–180. [Google Scholar] [CrossRef]
- Rocchetta, I.; Küpper, H. Chromium-and copper-induced inhibition of photosynthesis in Euglena gracilis analysed on the single-cell level by fluorescence kinetic microscopy. New Phytol. 2009, 182, 405–420. [Google Scholar] [CrossRef]
- Fuma, S.; Ishii, N.; Takeda, H.; Miyamoto, K.; Yanagisawa, K.; Ichimasa, Y.; Saito, M.; Kawabata, Z.; Polikarpov, G. Ecological effects of various toxic agents on the aquatic microcosm in comparison with acute ionizing radiation. J. Environ. Radioact. 2003, 67, 1–14. [Google Scholar] [CrossRef]
- Einicker-Lamas, M.; Mezian, G.A.; Fernandes, T.B.; Silva, F.L.S.; Guerra, F.; Miranda, K.; Attias, M.; Oliveira, M.M. Euglena gracilis as a model for the study of Cu2+ and Zn2+ toxicity and accumulation in eukaryotic cells. Environ. Pollut. 2002, 120, 779–786. [Google Scholar] [CrossRef]
- Park, J.-S.; Brown, M.T.; Han, T. Phenol toxicity to the aquatic macrophyte Lemna paucicostata. Aquat. Toxicol. 2012, 106, 182–188. [Google Scholar] [CrossRef]
End Points | As | Cd | Cu | Hg | Mn | Pb | Zn |
---|---|---|---|---|---|---|---|
Motility | 23.58 | 161.37 | 9.36 | 7.93 | 107.46 | 90.27 | 170.99 |
r-value | 12.84 | 122.6 | 8.91 | 4.26 | 105.09 | 84.86 | 129.16 |
Velocity | 21.44 | 96.28 | 6.51 | 6.43 | 103.28 | 78.04 | 101.90 |
Upward swimming | 19.68 | 134.08 | 9.31 | 5.16 | 106.24 | 86.05 | 145.50 |
Compactness | 21.41 | 155.42 | 8.81 | 6.50 | 106.99 | 88.57 | 158.48 |
Alignment | 22.58 | 161.68 | 9.72 | 7.46 | 107.50 | 90.08 | 169.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.; Lee, H.; Lee, M.-S.; Park, J.T.; Heynderickx, P.M.; Wu, D.; Depuydt, S.; Asselman, J.; Janssen, C.; Häder, D.P.; et al. A Ten-Minute Bioassay to Test Metal Toxicity with the Freshwater Flagellate Euglena agilis. Biology 2022, 11, 1618. https://doi.org/10.3390/biology11111618
Choi S, Lee H, Lee M-S, Park JT, Heynderickx PM, Wu D, Depuydt S, Asselman J, Janssen C, Häder DP, et al. A Ten-Minute Bioassay to Test Metal Toxicity with the Freshwater Flagellate Euglena agilis. Biology. 2022; 11(11):1618. https://doi.org/10.3390/biology11111618
Chicago/Turabian StyleChoi, Soyeon, Hojun Lee, Min-Soo Lee, Joon Tae Park, Philippe M. Heynderickx, Di Wu, Stephen Depuydt, Jana Asselman, Colin Janssen, Donat P. Häder, and et al. 2022. "A Ten-Minute Bioassay to Test Metal Toxicity with the Freshwater Flagellate Euglena agilis" Biology 11, no. 11: 1618. https://doi.org/10.3390/biology11111618
APA StyleChoi, S., Lee, H., Lee, M.-S., Park, J. T., Heynderickx, P. M., Wu, D., Depuydt, S., Asselman, J., Janssen, C., Häder, D. P., Han, T., & Park, J. (2022). A Ten-Minute Bioassay to Test Metal Toxicity with the Freshwater Flagellate Euglena agilis. Biology, 11(11), 1618. https://doi.org/10.3390/biology11111618