Design of a Chimeric Multi-Epitope Vaccine (CMEV) against Both Leishmania martiniquensis and Leishmania orientalis Parasites Using Immunoinformatic Approaches
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Screening of Antigenic Proteins
2.2. Selection of Common Antigenic Proteins between the Two Species of Leishmania
2.3. Prediction of B-Cell Epitopes
2.4. Prediction of Cytotoxic T-Lymphocyte (CTL) Epitopes
2.5. Identification of Helper T-Lymphocyte (HTL) Epitopes
2.6. Prediction of Antigenicity of Epitopes
2.7. Construction of Candidate Multi-Epitope Vaccine
2.8. Antigenicity and Allergenicity
2.9. Analysis of Physicochemical Properties
2.10. Simulation of Immune Response and Efficacy of the Candidate Vaccine
2.11. Structure Evaluation, Modeling, and Validation
2.12. Prediction of B-Cell Epitope
2.13. Molecular Docking of Multi-Epitope Vaccine with TLR4
2.14. In Silico Cloning
3. Results
3.1. Common Antigenic Proteins among L. orientalis Isolate PCM2 and L. martiniquensis Isolate PCM3
3.2. Prediction of B-Cell Epitopes
3.3. Identification of CTL Epitopes and the Immunogenicity
3.4. Identification of HTL Epitopes
3.5. Construction of Multi-Epitope Vaccine
3.6. Allergenicity and Antigenicity of the Multi-Epitope Vaccine
3.7. Physiochemical Characterization of Multi-Epitope Vaccine
3.8. Tertiary Structure Prediction of Multi-Epitope Vaccine
3.9. Prediction of Conformational Epitopes
3.10. Interaction of TLR4 and the Candidate Vaccine
3.11. In Silico Cloning
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bates, P.A. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int. J. Parasitol. 2007, 37, 1097–1106. [Google Scholar] [CrossRef] [PubMed]
- Sundar, S.; Chakravarty, J. Leishmaniasis: An update of current pharmacotherapy. Expert Opin. Pharmacother. 2013, 14, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Sukmee, T.; Siripattanapipong, S.; Mungthin, M.; Worapong, J.; Rangsin, R.; Samung, Y.; Kongkaew, W.; Bumrungsana, K.; Chanachai, K.; Apiwathanasorn, C.; et al. A suspected new species of Leishmania, the causative agent of visceral leishmaniasis in a Thai patient. Int. J. Parasitol. 2008, 38, 617–622. [Google Scholar] [CrossRef]
- Suankratay, C.; Suwanpimolkul, G.; Wilde, H.; Siriyasatien, P. Case Report: Autochthonous visceral leishmaniasis in a human immunodeficiency virus (HIV)-infected patient: The first in Thailand and review of the literature. Am. J. Trop. Med. Hyg. 2010, 82, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pothirat, T.; Tantiworawit, A.; Chaiwarith, R.; Jariyapan, N.; Wannasan, A.; Siriyasatien, P.; Supparatpinyo, K.; Bates, M.D.; Kwakye-Nuako, G.; Bates, P.A. First isolation of Leishmania from Northern Thailand: Case report, identification as Leishmania martiniquensis and phylogenetic position within the Leishmania enriettii complex. PLOS Negl. Trop. Dis. 2014, 8, e3339. [Google Scholar] [CrossRef] [PubMed]
- Leelayoova, S.; Siripattanapipong, S.; Manomat, J.; Piyaraj, P.; Tan-Ariya, P.; Bualert, L.; Mungthin, M. Leishmaniasis in Thailand: A review of causative agents and situations. Am. J. Trop. Med. Hyg. 2017, 96, 534. [Google Scholar] [CrossRef] [Green Version]
- Jariyapan, N.; Daroontum, T.; Jaiwong, K.; Chanmol, W.; Intakhan, N.; Sor-Suwan, S.; Siriyasatien, P.; Somboon, P.; Bates, M.D.; Bates, P.A. Leishmania (Mundinia) orientalis n. sp. (Trypanosomatidae), a parasite from Thailand responsible for localised cutaneous leishmaniasis. Parasites Vectors 2018, 11, 1–9. [Google Scholar] [CrossRef]
- Saha, A.K.; Mukherjee, T.; Bhaduri, A. Mechanism of action of amphotericin B on Leishmania donovani promastigotes. Mol. Biochem. Parasitol. 1986, 19, 195–200. [Google Scholar] [CrossRef]
- Balasegaram, M.; Ritmeijer, K.; Lima, M.A.; Burza, S.; Ortiz Genovese, G.; Milani, B.; Gaspani, S.; Potet, J.; Chappuis, F. Liposomal amphotericin B as a treatment for human leishmaniasis. Expert Opin. Emerg. Drugs 2012, 17, 493–510. [Google Scholar] [CrossRef] [Green Version]
- Kedzierski, L. Leishmaniasis vaccine: Where are we today? J. Glob. Infect. Dis. 2010, 2, 177. [Google Scholar] [CrossRef]
- Julia, V.; Rassoulzadegan, M.; Glaichenhaus, N. Resistance to Leishmania major induced by tolerance to a single antigen. Science 1996, 274, 421–423. [Google Scholar] [CrossRef] [PubMed]
- Russo, D.M.; Burns, J.M.; Carvalho, E.M.; Armitage, R.J.; Grabstein, K.H.; Button, L.L.; McMaste, W.R.; Reed, S.G. Human T cell responses to gp63, a surface antigen of Leishmania. J. Immunol. 1991, 147, 3575–3580. [Google Scholar] [PubMed]
- Sjölander, A.; Baldwin, T.M.; Curtis, J.M.; Handman, E. Induction of a Th1 immune response and simultaneous lack of activation of a Th2 response are required for generation of immunity to leishmaniasis. J. Immunol. 1998, 160, 3949–3957. [Google Scholar] [PubMed]
- Bertholet, S.; Goto, Y.; Carter, L.; Bhatia, A.; Howard, R.F.; Carter, D.; Coler, R.N.; Vedvick, T.S.; Reed, S.G. Optimized subunit vaccine protects against experimental leishmaniasis. Vaccine 2009, 27, 7036–7045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duthie, M.S.; Pereira, L.; Favila, M.; Hofmeyer, K.A.; Reed, S.J.; Metangmo, S.; Townsend, S.; Laurance, J.D.; Picone, A.; Misquith, A.; et al. A defined subunit vaccine that protects against vector-borne visceral leishmaniasis. NPJ Vaccines 2017, 2, 23. [Google Scholar] [CrossRef] [Green Version]
- Lage, D.P.; Martins, V.T.; Duarte, M.C.; Garde, E.; Chávez-Fumagalli, M.A.; Menezes-Souza, D.; Roatt, B.M.; Tavares, C.A.P.; Soto, M.; Coelho, E.A. Prophylactic properties of a Leishmania—Specific hypothetical protein in a murine model of visceral leishmaniasis. Parasite Immunol. 2015, 37, 646–656. [Google Scholar] [CrossRef] [Green Version]
- Petitdidier, E.; Pagniez, J.; Pissarra, J.; Holzmuller, P.; Papierok, G.; Vincendeau, P.; Lemesre, J.L.; Bras-Gonçalves, R. Peptide-based vaccine successfully induces protective immunity against canine visceral leishmaniasis. NPJ Vaccines 2019, 4, 49. [Google Scholar] [CrossRef] [Green Version]
- Livingston, B.; Crimi, C.; Newman, M.; Higashimoto, Y.; Appella, E.; Sidney, J.; Sette, A. A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. J. Immunol. 2002, 168, 5499–5506. [Google Scholar] [CrossRef] [Green Version]
- Nezafat, N.; Karimi, Z.; Eslami, M.; Mohkam, M.; Zandian, S.; Ghasemi, Y. Designing an efficient multi-epitope peptide vaccine against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches. Comput. Biol. Chem. 2016, 62, 82–95. [Google Scholar] [CrossRef]
- Hajighahramani, N.; Nezafat, N.; Eslami, M.; Negahdaripour, M.; Rahmatabadi, S.S.; Ghasemi, Y. Immunoinformatics analysis and in silico designing of a novel multi-epitope peptide vaccine against Staphylococcus aureus. Infect. Genet. Evol. 2017, 48, 83–94. [Google Scholar] [CrossRef]
- Khatoon, N.; Pandey, R.K.; Prajapati, V.K. Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Sci. Rep. 2017, 7, 8285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vakili, B.; Eslami, M.; Hatam, G.R.; Zare, B.; Erfani, N.; Nezafat, N.; Ghasemi, Y. Immunoinformatics-aided design of a potential multi-epitope peptide vaccine against Leishmania infantum. Int. J. Biol. Macromol. 2018, 120, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Agallou, M.; Margaroni, M.; Kotsakis, S.D.; Karagouni, E. A canine-directed chimeric multi-epitope vaccine induced protective immune responses in BALB/c mice infected with Leishmania infantum. Vaccines 2020, 8, 350. [Google Scholar] [CrossRef] [PubMed]
- Dias, D.S.; Ribeiro, P.A.; Martins, V.T.; Lage, D.P.; Costa, L.E.; Chávez-Fumagalli, M.A.; Ramos, F.F.; Santos, T.T.O.; Ludolf, F.; Oliveira, J.S.; et al. Vaccination with a CD4+ and CD8+ T-cell epitopes-based recombinant chimeric protein derived from Leishmania infantum proteins confers protective immunity against visceral leishmaniasis. Transl. Res. 2018, 200, 18–34. [Google Scholar] [CrossRef] [PubMed]
- Anuntasomboon, P.; Siripattanapipong, S.; Unajak, S.; Choowongkomon, K.; Burchmore, R.; Leelayoova, S.; Mungthin, M.; E-kobon, T. Comparative draft genomes of Leishmania orientalis isolate PCM2 (formerly named Leishmania siamensis) and Leishmania martiniquensis isolate PCM3 from the southern province of Thailand. Biology 2022, 11, 515. [Google Scholar] [CrossRef]
- Saha, S.; Raghava, G.P.S. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 2006, 65, 40–48. [Google Scholar] [CrossRef]
- Larsen, M.V.; Lundegaard, C.; Lamberth, K.; Buus, S.; Lund, O.; Nielsen, M. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinform. 2007, 8, 424. [Google Scholar] [CrossRef] [Green Version]
- Doolan, D.L.; Hoffman, S.L.; Southwood, S.; Wentworth, P.A.; Sidney, J.; Chesnut, R.W.; Keogh, E.; Appella, E.; Nutman, T.B.; Lal, A.A.; et al. Degenerate cytotoxic T cell epitopes from P. falciparum restricted by multiple HLA-A and HLA-B supertype alleles. Immunity 1997, 7, 97–112. [Google Scholar] [CrossRef] [Green Version]
- Jensen, K.K.; Andreatta, M.; Marcatili, P.; Buus, S.; Greenbaum, J.A.; Yan, Z.; Sette, A.; Peters, B.; Nielsen, M. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology 2018, 154, 394–406. [Google Scholar] [CrossRef]
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007, 8, 4. [Google Scholar] [CrossRef]
- Rahmani, A.; Baee, M.; Rostamtabar, M.; Karkhah, A.; Alizadeh, S.; Tourani, M.; Nouri, H.R. Development of a conserved chimeric vaccine based on helper T-cell and CTL epitopes for induction of strong immune response against Schistosoma mansoni using immunoinformatics approaches. Int. J. Biol. Macromol. 2019, 141, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, I.; Bangov, I.; Flower, D.R.; Doytchinova, I. AllerTOP v. 2—A server for in silico prediction of allergens. J. Mol. Model. 2014, 20, 2278. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook. Springer Protocols Handbooks; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005. [Google Scholar]
- Magnan, C.N.; Randall, A.; Baldi, P. SOLpro: Accurate sequence-based prediction of protein solubility. Bioinformatics 2009, 25, 2200–2207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapin, N.; Lund, O.; Bernaschi, M.; Castiglione, F. Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS ONE 2010, 5, e9862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lage, D.P.; Ribeiro, P.A.; Dias, D.S.; Mendonça, D.V.; Ramos, F.F.; Carvalho, L.M.; Steiner, B.T.; Tavares, G.S.V.; Martins, V.T.; Machado, A.S.; et al. Liposomal formulation of ChimeraT, a multiple T-cell epitope-containing recombinant protein, is a candidate vaccine for human visceral leishmaniasis. Vaccines 2020, 8, 289. [Google Scholar] [CrossRef] [PubMed]
- McGuffin, L.J.; Bryson, K.; Jones, D.T. The PSIPRED protein structure prediction server. Bioinformatics 2000, 16, 404–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Klose, D.P.; Wallace, B.A.; Janes, R.W. 2Struc: The secondary structure server. Bioinformatics 2010, 26, 2624–2625. [Google Scholar] [CrossRef] [Green Version]
- Heo, L.; Park, H.; Seok, C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Res. 2013, 41, W384–W388. [Google Scholar] [CrossRef] [Green Version]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993, 6, 283–291. [Google Scholar] [CrossRef]
- Ponomarenko, J.; Bui, H.H.; Li, W.; Fusseder, N.; Bourne, P.E.; Sette, A.; Peters, B. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinform. 2008, 9, 514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro web server for protein–protein docking. Nat. Protoc. 2017, 12, 255–278. [Google Scholar] [CrossRef] [PubMed]
- Reed, S.G.; Hsu, F.C.; Carter, D.; Orr, M.T. The science of vaccine adjuvants: Advances in TLR4 ligand adjuvants. Curr. Opin. Immunol. 2016, 41, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel. 1995, 8, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Grote, A.; Hiller, K.; Scheer, M.; Münch, R.; Nörtemann, B.; Hempel, D.C.; Jahn, D. JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 2005, 33, W526–W531. [Google Scholar] [CrossRef] [PubMed]
- Saadi, M.; Karkhah, A.; Nouri, H.R. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches. Infect. Genet. Evol. 2017, 51, 227–234. [Google Scholar] [CrossRef]
- Rosa, D.S.; Tzelepis, F.; Cunha, M.G.; Soares, I.S.; Rodrigues, M.M. The pan HLA DR-binding epitope improves adjuvant-assisted immunization with a recombinant protein containing a malaria vaccine candidate. Immunol. Lett. 2004, 92, 259–268. [Google Scholar] [CrossRef]
- Agallou, M.; Athanasiou, E.; Koutsoni, O.; Dotsika, E.; Karagouni, E. Experimental validation of multi-epitope peptides including promising MHC class I-and II-restricted epitopes of four known Leishmania infantum proteins. Front. Immunol. 2014, 5, 268. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.; Prakash, J.; Shukla, H.; Das, K.C.; Tripathi, T.; Dubey, V.K. Design of a multi-epitope subunit vaccine for immune-protection against Leishmania parasite. Pathog. Glob. Health 2020, 114, 471–481. [Google Scholar] [CrossRef]
- Rappuoli, R. Reverse vaccinology. Curr. Opin. Microbiol. 2000, 3, 445–450. [Google Scholar] [CrossRef]
- Korber, B.; LaBute, M.; Yusim, K. Immunoinformatics comes of age. Parasite Immunol. 2006, 2, e71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahrami, A.A.; Payandeh, Z.; Khalili, S.; Zakeri, A.; Bandehpour, M. Immunoinformatics: In silico approaches and computational design of a multi-epitope, immunogenic protein. Int. Rev. Immunol. 2019, 38, 307–322. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, H.; Urbaniak, M.D.; Bates, M.D.; Jariyapan, N.; Al-Salem, W.S.; Dillon, R.J.; Bates, P.A.; Gatherer, D. Chromosome-scale assembly of the complete genome sequence of Leishmania (Mundinia) martiniquensis, isolate LSCM1, strain LV760. Microbiol. Resour. Announc. 2021, 10, e00058-21. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, H.; Urbaniak, M.D.; Bates, M.D.; Jariyapan, N.; Al-Salem, W.S.; Dillon, R.J.; Bates, P.A.; Gatherer, D. Chromosome-scale assembly of the complete genome sequence of Leishmania (Mundinia) orientalis, isolate LSCM4, strain LV768. Microbiol. Resour. Announc. 2021, 10, e00574-21. [Google Scholar] [CrossRef]
- Lee, S.J.; Shin, S.J.; Lee, M.H.; Lee, M.G.; Kang, T.H.; Park, W.S.; Shin, Y.K.; Kim, H.W.; Yun, C.H.; Jung, I.D.; et al. A potential protein adjuvant derived from Mycobacterium tuberculosis Rv0652 enhances dendritic cells-based tumor immunotherapy. PLoS ONE 2014, 9, e104351. [Google Scholar] [CrossRef]
- Park, A.Y.; Hondowicz, B.D.; Scott, P. IL-12 is required to maintain a Th1 response during Leishmania major infection. J. Immunol. 2000, 165, 896–902. [Google Scholar] [CrossRef] [Green Version]
- Kaye, P.; Scott, P. Leishmaniasis: Complexity at the host–pathogen interface. Nat. Rev. Microbiol. 2011, 9, 604–615. [Google Scholar] [CrossRef]
- Kaech, S.M.; Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Microbiol. 2012, 12, 749–761. [Google Scholar] [CrossRef] [Green Version]
- Tsagozis, P.; Karagouni, E.; Dotsika, E. CD8+ T cells with parasite—specific cytotoxic activity and a Tc1 profile of cytokine and chemokine secretion develop in experimental visceral leishmaniasis. Parasite Immunol. 2003, 25, 569–579. [Google Scholar] [CrossRef]
L. Martiniquensis | L. Orientalis | Distance Value | % Identity | |
---|---|---|---|---|
1 | CN030422.1.g3678 | k59_6959.g7826 | 0.114354 | 79.57 |
2 | CN030417.1.g2464 | k59_8122.g3660 | 0.109277 | 84.94 |
3 | CN030426.1.g5328 | k59_3810.g2871 | 0.0946353 | 88.52 |
4 | CN030405.1.g85 | k59_8079.g2401 | 0.14275 | 80.25 |
5 | CN030411.1.g1102 | k59_7325.g3419 | 0.109568 | 79.16 |
6 | CN030414.1.g1733 | k59_1681.g2029 | 0.279142 | 69.95 |
7 | CN030430.1.g7697 | k59_6133.g7748 | 0.061051 | 88.03 |
8 | CN030412.1.g1340 | k59_4380.g3725 | 0.242199 | 74.82 |
9 | CN030421.1.g3586 | k59_9180.g3154 | 0.15986 | 81.75 |
10 | CN030429.1.g7028 | k59_748.g6249 | 0.0319805 | 94.73 |
11 | CN030408.1.g620 | k59_7892.g4284 | 0.250543 | 84.01 |
12 | CN030431.1.g7874 | k59_2726.g2266 | 0.184671 | 68.98 |
13 | CN030402.1.g9136 | k59_5929.g1357 | 0.100062 | 81.01 |
14 | CN030402.1.g9114 | k59_9933.g1615 | 0.15858 | 80.45 |
15 | CN030425.1.g4940 | k59_5159.g3601 | 0.11762 | 81.53 |
16 | CN030420.1.g3164 | k59_328.g2467 | 0.288368 | 63.49 |
No. | L. martiniquensis | L. orientalis | B-Cell | CTL | HTL |
---|---|---|---|---|---|
1 | CN030422.1.g3678 | k59_6959.g7826 | RRLLEGDRDS | FLDPEPLGV | KAKGREFLRSKSSDI |
2 | CN030417.1.g2464 | k59_8122.g3660 | QLRRPFLLK | ||
3 | CN030426.1.g5328 | k59_3810.g2871 | HHPFVISGNW | TMLECIYYL | LVFEFLFNILLRARQ |
4 | CN030405.1.g85 | k59_8079.g2401 | LVGSAETCIV | STFTVSLPY | LLFNTTVALDVVLDN |
5 | CN030411.1.g1102 | k59_7325.g3419 | RVRDGNVAL | KYIAALLVPYLSKYV | |
6 | CN030414.1.g1733 | k59_1681.g2029 | IESEARAALQ | FLLECQQFV | |
7 | CN030430.1.g7697 | k59_6133.g7748 | TPRTHATVL | ||
8 | CN030412.1.g1340 | k59_4380.g3725 | LMDDYTVHL | ||
9 | CN030421.1.g3586 | k59_9180.g3154 | RIDNLTPATT | LPSPSKDSL | |
10 | CN030429.1.g7028 | k59_748.g6249 | DPKLGSLQPI | RPLVFTLAF | HHYDWGLRALKAVLV |
11 | CN030408.1.g620 | k59_7892.g4284 | VSEALLESLR | RVRFLRRVL | AALRVLLRLVRRARA |
12 | CN030431.1.g7874 | k59_2726.g2266 | LRNVSLTLQD | YLSRFIENV | |
13 | CN030402.1.g9136 | k59_5929.g1357 | VQELEQYLRN | LLLGRFFFR | YALKAYYYLRRRQPA |
14 | CN030402.1.g9114 | k59_9933.g1615 | LQQWAFLSLF | NLIDFNFKL | |
15 | CN030425.1.g4940 | k59_5159.g3601 | IANSSPLPCT | FPIPLTNPL | |
16 | CN030420.1.g3164 | k59_328.g2467 | RASAAGVVL |
Protein/ Peptide | Number of Amino Acids | Molecular Weight (kDa) | Isoelectric Point | Instability Index | Aliphatic Index | GRAVY * |
---|---|---|---|---|---|---|
HTL | 117 | 13.8 | 10.91 | 58.99 | 116.75 | −0.196 |
CTL | 189 | 21.3 | 9.39 | 33.15 | 107.09 | 0.514 |
B-cell | 130 | 14.8 | 10.16 | 51.26 | 94.57 | −0.668 |
Multi-epitope vaccine | 598 | 66.7 | 9.87 | 38.77 | 102.27 | −0.010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imaizumi, K.; Phurahong, T.; Siripattanapipong, S.; Choowongkomon, K.; Leelayoova, S.; Mungthin, M.; E-kobon, T.; Unajak, S. Design of a Chimeric Multi-Epitope Vaccine (CMEV) against Both Leishmania martiniquensis and Leishmania orientalis Parasites Using Immunoinformatic Approaches. Biology 2022, 11, 1460. https://doi.org/10.3390/biology11101460
Imaizumi K, Phurahong T, Siripattanapipong S, Choowongkomon K, Leelayoova S, Mungthin M, E-kobon T, Unajak S. Design of a Chimeric Multi-Epitope Vaccine (CMEV) against Both Leishmania martiniquensis and Leishmania orientalis Parasites Using Immunoinformatic Approaches. Biology. 2022; 11(10):1460. https://doi.org/10.3390/biology11101460
Chicago/Turabian StyleImaizumi, Kentaro, Thararat Phurahong, Suradej Siripattanapipong, Kiattawee Choowongkomon, Saovanee Leelayoova, Mathirut Mungthin, Teerasak E-kobon, and Sasimanas Unajak. 2022. "Design of a Chimeric Multi-Epitope Vaccine (CMEV) against Both Leishmania martiniquensis and Leishmania orientalis Parasites Using Immunoinformatic Approaches" Biology 11, no. 10: 1460. https://doi.org/10.3390/biology11101460
APA StyleImaizumi, K., Phurahong, T., Siripattanapipong, S., Choowongkomon, K., Leelayoova, S., Mungthin, M., E-kobon, T., & Unajak, S. (2022). Design of a Chimeric Multi-Epitope Vaccine (CMEV) against Both Leishmania martiniquensis and Leishmania orientalis Parasites Using Immunoinformatic Approaches. Biology, 11(10), 1460. https://doi.org/10.3390/biology11101460