Expression Analysis Reveals That Sorghum Disease Resistance Protein SbSGT1 Is Regulated by Auxin
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Growth Conditions and Treatments
2.2. Prokaryotic and Transient Expression Plasmid Construction
2.3. Analysis of SbSGT1 Promoter Cis-Acting Elements
2.4. SbSGT1 Expression Profiles
2.5. Soluble Expression Conditions Screening for SbSGT1
2.6. SbSGT1 Purification and Desalting
2.7. Micro Scale Thermophoresis (MST)
2.8. Tobacco Transient Expression, Plant Protein Extraction, and Western Blot Detection
3. Results
3.1. Sorghum SbSGT1 Cloning and Plasmid Construction
3.2. Putative Cis-Acting Regulatory Elements of SbSGT1
3.3. SbSGT1 Expression Profile
3.3.1. Tissue Specificity Analysis of SbSGT1
3.3.2. Analysis of Sorghum SbSGT1 Response to Plant Hormone Stress
3.4. Prokaryotic Expression of SbSGT1
3.4.1. Optimal Expression Strain for SbSGT1
3.4.2. Optimum Expression Temperature for SbSGT1
3.4.3. Optimum IPTG Concentration for SbSGT1
3.4.4. Western Blot Detection of SbSGT1
3.5. SbSGT1 Purification and Desalting
3.5.1. SbSGT1 Purification
3.5.2. SbSGT1 Desalting
3.6. Interaction between the SbSGT1 Protein and Plant Hormones
3.7. Auxin Inhibited SbSGT1 Expression at the Transcriptional and Translational Level In Vivo
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Gene Name | Forward Primer Sequence |
---|---|
SbSGT1-qR | 5′-GTAAACCTTGAATCGCCTGATG-3′ |
SbSGT1-qF | 5′-TGAACTTGATCCTACGATGCAT-3′ |
SbEIF4a-qF | 5′-AGGATTGGCACCAGAAGGGT-3′ |
SbEIF4a-qR | 5′-CACATCAAGCCCCTTGCAGA-3′ |
SbSGT1-F | 5′-GCGAATTCATGGCCGCGTCGGATCT-3′ |
SbSGT1-R | 5′-CGCTCGAGTTAGTATTCCCACTTCTTGAGCT-3′ |
NbEF1-F | 5′-AGAGGCCCTCAGACCAAC-3′ |
NbEF1-R | 5′-TAGGTCCAAAGGTCACAA-3′ |
Cis-Elements | Sequence(5′–3′) | Function | Number |
---|---|---|---|
MYC | CATGTG | Drought response | 3 |
GC-motif | CCCCCG | Enhancer-like element involved in anoxic specific inducibility | 1 |
GT1-motif | GGTTAA | Light responsive element | 5 |
ABRE | ACGTG | Cis-acting element involved in the abscisic acid responsiveness | 1 |
WUN-motif | TTATTACAT | Wound-responsive element | 2 |
TGA-element | AACGAC | Auxin-responsive element | 2 |
P-box | CCTTTTG | Gibberellin-response | 1 |
TGACG-motif | TGACG | Cis-acting regulatory element involved in the MeJA-responsiveness | 1 |
CAT-box | GCCACT | Cis-acting regulatory element related to meristem expression | 1 |
CGTCA-motif | CGTCA | Cis-acting regulatory element involved in the MeJA-responsiveness | 1 |
MRE | AACCTAA | MYB binding site involved in light response | 1 |
GATA-motif | AAGATAAGATT | Part of a light responsive element | 1 |
TATA-box | TATA, TATAAAA, TATAAA, TATAA, TAAAGATT, TATAAAT, TATATTTATATTT, TATATA, ATATAA, ATATAT | Core promoter element around -30 of transcription start | 41 |
ARE | AAACCA | Cis-acting regulatory element essential for the anaerobic induction | 1 |
References
- Azevedo, C.; Sadanandom, A.; Kitagawa, K.; Freialdenhoven, A.; Shirasu, K.; Schulze-Lefert, P. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 2002, 295, 2073–2076. [Google Scholar] [CrossRef] [PubMed]
- Bansal, P.K.; Abdulle, R.; Kitagawa, K. SGT1 associates with Hsp90: An initial step of assembly of the core kinetochore complex. Cell. Mol. Biol. 2004, 24, 8069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blázquez, M.A.; Nelson, D.C.; Weijers, D. Evolution of plant hormone response pathways. Annu. Rev. Plant Biol. 2020, 71, 327–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bieri, S.; Mauch, S.; Shen, Q.H.; Peart, J.; Devoto, A.; Casais, C.; Ceron, F.; Schulze, S.; Steinbiss, H.H.; Shirasu, K.; et al. RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell 2004, 16, 3480–3495. [Google Scholar] [CrossRef] [Green Version]
- Cao, M.; Chen, R.; Li, P.; Yu, Y.; Zheng, R.; Ge, D.; Zheng, W.; Wang, X.; Gu, Y.; Gelová, Z.; et al. TMK1-mediated auxin signaling regulates differential growth of the apical hook. Nature 2019, 568, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Müller, J.D.; Tetin, S.Y.; Tyner, J.D.; Gratton, E. Probing ligand protein binding equilibria with fluorescence fluctuation spectroscopy. Biophys. J. 2000, 79, 1074–1084. [Google Scholar] [CrossRef] [Green Version]
- Entzian, C.; Schubert, T. Studying small molecule–aptamer interactions using MicroScale Thermophoresis (MST). Methods 2016, 97, 27–34. [Google Scholar] [CrossRef]
- Eunsook, C.; Choong-Min, R.; Sang-Keun, O.; Ryong, N.K.; Jeong, M.P.; Hye, S.C.; Sanghyeob, L.; Jae, S.M.; Seung-Hwan, P.; Doil, C. Suppression of pepper SGT1 and SKP1 causes severe retardation of plant growth and compromises basal resistance. Physiol. Plant. 2006, 126, 605–617. [Google Scholar]
- Guilfoyle, T.J.; Hagen, G. Auxin response factors. Curr. Opin. Plant Biol. 2007, 10, 453–460. [Google Scholar] [CrossRef]
- Guo, W.L.; Chen, B.H.; Guo, Y.Y.; Yang, H.L.; Mu, J.Y.; Wang, Y.L.; Li, X.Z.; Zhou, J.G. Improved powdery mildew resistance of transgenic Nicotiana benthamiana overexpressing the Cucurbita moschata CmSGT1 gene. Front. Plant Sci. 2019, 10, 955. [Google Scholar] [CrossRef] [PubMed]
- Jerabek-Willemsen, M.; André, T.; Wanner, R.; Roth, H.M.; Duhr, S.; Baaske, P.; Breitsprecher, D. MicroScale Thermophoresis: Interaction analysis and beyond. J. Mol. Struct. 2014, 1077, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Kang, B.; Zhang, Z.; Wang, L.; Zheng, L.; Mao, W.; Li, M.; Wu, Y.; Wu, P.; Mo, X. OsCYP2, a chaperone involved in degradation of auxin-responsive proteins, plays crucial roles in rice lateral root initiation. Plant J. 2013, 74, 86–97. [Google Scholar] [CrossRef]
- Kitagawa, K.; Skowyra, D.; Elledge, S.J.; Harper, J.W.; Hieter, P. SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol. Cell 1999, 4, 21–33. [Google Scholar] [CrossRef]
- Li, X.Y.; Wang, Y.H.; Chen, K.; Gao, D.; Wang, D.M.; Xue, W. Cucumber mosaic virus coat protein: The potential target of 1, 4-pentadien-3-one derivatives. Pestic. Biochem. Phys. 2019, 155, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Lyapina, S.; Cope, G.; Shevchenko, A.; Serino, G.; Deshaies, R.J. Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 2001, 292, 1382–1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muskett, P.; Parker, J. Role of SGT1 in the regulation of plant R gene signalling. Microbes Infect. 2003, 5, 969–976. [Google Scholar] [CrossRef]
- Pechan, T.; Ma, P.W.K.; Luthe, D.S. Heterologous expression of maize (Zea mays L.) Mir1 cysteine proteinase in eukaryotic and prokaryotic expression systems. Protein Expres. Purif. 2004, 34, 134–141. [Google Scholar] [CrossRef]
- Peeters, K.J.; Ameye, M.; Demeestere, K.; Audenaert, K.; Höfte, M. Auxin, abscisic acid and jasmonate are the central players in rice sheath rot caused by Sarocladium oryzae and Pseudomonas fuscovaginae. Rice 2020, 13, 78. [Google Scholar] [CrossRef]
- Shanmugam, A.; Thamilarasan, S.K.; Park, J.I.; Jung, M.Y.; Nou, I.S. Characterization and abiotic stress-responsive expression analysis of SGT1 genes in Brassica oleracea. Genome 2016, 59, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, H.P.; Mortensen, K.K. Advanced genetic strategies for recombinant protein expression in Escherichia coli: Advances and challenges. Front. Microbiol. 2014, 5, 172. [Google Scholar]
- Sugawara, S.; Mashiguchi, K.; Tanaka, K.; Hishiyama, S.; Sakai, T.; Hanada, K.; Kinoshita-Tsujimura, K.; Yu, H.; Dai, X.; Takebayashi, Y.; et al. Distinct characteristics of indole-3-acetic acid and phenylacetic acid, two common auxins in plants. Plant Cell Physiol. 2015, 56, 1641–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueno, M.; Kumura, Y.; Ueda, K.; Kihara, J.; Arase, S. Indole derivatives enhance resistance against the rice blast fungus Magnaporthe oryzae. J. Gen. Plant Pathol. 2011, 77, 209–213. [Google Scholar] [CrossRef]
- Wienken, C.J.; Baaske, P.; Rothbauer, U.; Braun, D.; Duhr, S. Protein-binding assays in biological liquids using microscale thermophoresis. Nat. Commun. 2010, 1, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Gao, M.; Li, Q.; Wang, L.; Wang, J.; Jeon, J.S.; Qu, N.; Zhang, Y.; He, Z. OsRAR1 and OsSGT1 physically interact and function in rice basal disease resistance. Mol. Plant Microbe Interact. 2008, 21, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Qian, C.; Cao, A.; Li, Y.; Jiang, Z.; Li, M.; Jin, X.; Hu, J.; Zhang, Y.; Wang, X.; et al. The Hv-SGT1 gene from Haynaldia villosa contributes to resistances towards both biotrophic and hemi-biotrophic pathogens in common wheat (Triticum aestivum L.). PLoS ONE 2013, 8, e72571. [Google Scholar] [CrossRef] [PubMed]
- Austin, M.J.; Muskett, P.; Kahn, K.; Feys, B.J.; Jones, J.D.; Parker, J.E. Regulatory role of SGT1 in early R gene-mediated plant defenses. Science 2002, 295, 2077–2080. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Chen, J.; Luo, L.; Wang, L.; Ouyang, H.; Ren, M.; Li, X.; Xie, X. Expression Analysis Reveals That Sorghum Disease Resistance Protein SbSGT1 Is Regulated by Auxin. Biology 2022, 11, 67. https://doi.org/10.3390/biology11010067
Jiang J, Chen J, Luo L, Wang L, Ouyang H, Ren M, Li X, Xie X. Expression Analysis Reveals That Sorghum Disease Resistance Protein SbSGT1 Is Regulated by Auxin. Biology. 2022; 11(1):67. https://doi.org/10.3390/biology11010067
Chicago/Turabian StyleJiang, Junmei, Jun Chen, Liting Luo, Lujie Wang, Hao Ouyang, Mingjian Ren, Xiangyang Li, and Xin Xie. 2022. "Expression Analysis Reveals That Sorghum Disease Resistance Protein SbSGT1 Is Regulated by Auxin" Biology 11, no. 1: 67. https://doi.org/10.3390/biology11010067
APA StyleJiang, J., Chen, J., Luo, L., Wang, L., Ouyang, H., Ren, M., Li, X., & Xie, X. (2022). Expression Analysis Reveals That Sorghum Disease Resistance Protein SbSGT1 Is Regulated by Auxin. Biology, 11(1), 67. https://doi.org/10.3390/biology11010067