Screening and Identification of Transcription Factors Potentially Regulating Foxl2 Expression in Chlamys farreri Ovary
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Treatment and Sampling
2.2. Cloning and Activity Assays of Foxl2 Promoter
2.3. Construction of the C. farreri Gonadal Y1H cDNA Library
2.4. Y1H Screening of the Potential Transcriptional Factors Regulating Cf-Foxl2 Expression
2.5. Verification of Factors-Cf-Foxl2 Interaction with Dual-Luciferase Reporter (DLR) Assay
2.6. RT-qPCR Analysis
2.7. Statistical Analysis
3. Results
3.1. Identification of Cf-Foxl2 Promoter with High Transcriptional Activity
3.2. Screening and Verification of Candidate Factors Interacting with Cf-Foxl2 Promoter Using Y1H
3.3. Identification of the Candidate Factors Regulating Cf-Foxl2 Transcription Using Transient Transfection
3.4. Expression of the Candidate Factors in the Gonads of C. farreri during the Reproductive Cycle
4. Discussion
4.1. A High Transcriptional Activity Region of Cf-Foxl2 Promoter Is Identified for Conducting the Y1H Assay
4.2. High Quality C. farreri Gonadal Y1H Library Is Constructed
4.3. Specific Transcription Factors Potential Involved in the Regulation of Foxl2 Expression in C. farreri Gonad
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cocquet, J.; De Baere, E.; Gareil, M.; Pannetier, M.; Xia, X.; Fellous, M.; Veitia, R. Structure, evolution and expression of the FOXL2 transcription unit. Cytogenet. Genome Res. 2003, 101, 206–211. [Google Scholar] [CrossRef] [Green Version]
- Crisponi, L.; Deiana, M.; Loi, A.; Chiappe, F.; Uda, M.; Amati, P.; Bisceglia, L.; Zelante, L.; Nagaraja, R.; Porcu, S.; et al. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat. Genet. 2001, 27, 159–166. [Google Scholar] [CrossRef]
- Méduri, G.; Bachelot, A.; Duflos, C.; Bständig, B.; Poirot, C.; Genestie, C.; Veitia, R.; De Baere, E.; Touraine, P. FOXL2 mutations lead to different ovarian phenotypes in BPES patients: Case Report. Hum. Reprod. 2010, 25, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Cocquet, J.; Pailhoux, E.; Jaubert, F.; Servel, N.; Xia, X.; Pannetier, M.; De Baere, E.; Messiaen, L.; Cotinot, C.; Fellous, M.; et al. Evolution and expression of FOXL. J. Med. Genet. 2002, 39, 916–921. [Google Scholar] [CrossRef]
- Bertho, S.; Pasquier, J.; Pan, Q.; Le Trionnaire, G.; Bobe, J.; Postlethwait, J.H.; Pailhoux, E.; Schartl, M.; Herpin, A.; Guiguen, Y. Foxl2 and Its Relatives Are Evolutionary Conserved Players in Gonadal Sex Differentiation. Sex. Dev. 2016, 10, 111–129. [Google Scholar] [CrossRef]
- Fan, Z.; Zou, Y.; Liang, D.; Tan, X.; Jiao, S.; Wu, Z.; Li, J.; Zhang, P.; You, F. Roles of forkhead box protein L2 (foxl2) during gonad differentiation and maintenance in a fish, the olive flounder (Paralichthys olivaceus). Reprod. Fertil. Dev. 2019, 31, 1742. [Google Scholar] [CrossRef]
- Beysen, D.; De Paepe, A.; De Baere, E. FOXL2mutations and genomic rearrangements in BPES. Hum. Mutat. 2009, 30, 158–169. [Google Scholar] [CrossRef]
- Marongiu, M.; Marcia, L.; Pelosi, E.; Lovicu, M.; Deiana, M.; Zhang, Y.; Puddu, A.; Loi, A.; Uda, M.; Forabosco, A.; et al. FOXL2 modulates cartilage, skeletal development and IGF1-dependent growth in mice. BMC Dev. Biol. 2015, 15, 27. [Google Scholar] [CrossRef] [Green Version]
- Moumné, L.; Batista, F.; Benayoun, B.; Nallathambi, J.; Fellous, M.; Sundaresan, P.; Veitia, R. The mutations and potential targets of the forkhead transcription factor FOXL. Mol. Cell. Endocrinol. 2008, 282, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.-L.; Zhang, Z.-F.; Shao, M.-Y.; Liu, J.-G.; Muhammad, F. Sexually dimorphic expression of foxl2 during gametogenesis in scallop Chlamys farreri, conserved with vertebrates. Dev. Genes Evol. 2012, 222, 279–286. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.; Ma, H.; Liu, X.; Shi, H.; Wang, D. Mutation of foxl2 or cyp19a1a results in female to male sex reversal in XX Nile tilapia. Endocrinology 2017, 158, 2634–2647. [Google Scholar] [CrossRef] [Green Version]
- Bertho, S.; Herpin, A.; Branthonne, A.; Jouanno, E.; Yano, A.; Nicol, B.; Muller, T.; Pannetier, M.; Pailhoux, E.; Miwa, M.; et al. The unusual rainbow trout sex determination gene hijacked the canonical vertebrate gonadal differentiation pathway. Proc. Natl. Acad. Sci. USA 2018, 115, 12781–12786. [Google Scholar] [CrossRef] [Green Version]
- Boulanger, L.; Pannetier, M.; Gall, L.; Allais-Bonnet, A.; Elzaiat, M.; Le Bourhis, D.; Daniel, N.; Richard, C.; Cotinot, C.; Ghyselinck, N.; et al. FOXL2 Is a Female Sex-Determining Gene in the Goat. Curr. Biol. 2014, 24, 404–408. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.-S.; Kobayashi, T.; Zhou, L.-Y.; Paul-Prasanth, B.; Ijiri, S.; Sakai, F.; Okubo, K.; Morohashi, K.-I.; Nagahama, Y. Foxl2 Up-Regulates Aromatase Gene Transcription in a Female-Specific Manner by Binding to the Promoter as Well as Interacting with Ad4 Binding Protein/Steroidogenic Factor. Mol. Endocrinol. 2007, 21, 712–725. [Google Scholar] [CrossRef] [Green Version]
- Major, A.; Ayers, K.L.; Chue, J.; Roeszler, K.N.; Smith, C.A. FOXL2 antagonises the male developmental pathway in embryonic chicken gonads. J. Endocrinol. 2019, 243, 211–228. [Google Scholar] [CrossRef]
- Uhlenhaut, N.H.; Jakob, S.; Anlag, K.; Eisenberger, T.; Sekido, R.; Kress, J.; Treier, A.-C.; Klugmann, C.; Klasen, C.; Holter, N.I.; et al. Somatic Sex Reprogramming of Adult Ovaries to Testes by FOXL2 Ablation. Cell 2009, 139, 1130–1142. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Suh, D.-S.; Lee, K.; Bae, J. Positive cross talk between FOXL2 and antimüllerian hormone regulates ovarian reserve. Fertil. Steril. 2014, 102, 847–855.e1. [Google Scholar] [CrossRef]
- Georges, A.; L’Hôte, D.; Todeschini, A.L.; Auguste, A.; Legois, B.; Zider, A.; Veitia, R.A. The transcription factor FOXL2 mobilizes estrogen signaling to maintain the identity of ovarian granulosa cells. eLife 2014, 3, 04207. [Google Scholar] [CrossRef] [Green Version]
- Fang, D.-A.; Yang, X.-J.; Feng, X.; Zhou, Y.-F.; Xu, D.-P.; Zhang, M.-Y.; Liu, K. FoxL2 combined with Cyp19a1a regulate the spawning upstream migration in Coilia nasus. Gene 2019, 710, 307–315. [Google Scholar] [CrossRef]
- Pannetier, M.; Fabre, S.; Batista, F.; Kocer, A.; Renault, L.; Jolivet, G.; Mandon-Pépin, B.; Cotinot, C.; Veitia, R.; Pailhoux, E. FOXL2 activates P450 aromatase gene transcription: Towards a better characterization of the early steps of mammalian ovarian development. J. Mol. Endocrinol. 2006, 36, 399–413. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Hu, Y.; Chen, M.; Han, F.; Qin, Y.; Cui, X.; Duo, S.; Tang, F.; Gao, F. β-Catenin directs the transformation of testis Sertoli cells to ovarian granulosa-like cells by inducing Foxl2 expression. J. Biol. Chem. 2017, 292, 17577–17586. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Wu, J.; Yang, W.; Wang, D.; Zhang, T.; Cheng, M. New STAT3-FOXL2 pathway and its function in cancer cells. BMC Mol. Cell Biol. 2019, 20, 17. [Google Scholar] [CrossRef]
- Dong, J.; Wang, R.; Ren, G.; Li, X.; Wang, J.; Sun, Y.; Liang, J.; Nie, Y.; Wu, K.; Feng, B.; et al. HMGA2–FOXL2 Axis Regulates Metastases and Epithelial-to-Mesenchymal Transition of Chemoresistant Gastric Cancer. Clin. Cancer Res. 2017, 23, 3461–3473. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Zhang, L.; Li, W.; Zhang, Y.; Li, Y.; Zhang, M.; Zhao, L.; Hu, X.; Wang, S.; Bao, Z. FOXL2 and DMRT1L Are Yin and Yang Genes for Determining Timing of Sex Differentiation in the Bivalve Mollusk Patinopecten yessoensis. Front. Physiol. 2018, 9, 1166. [Google Scholar] [CrossRef]
- Nagasawa, K.; Thitiphuree, T.; Osada, M. Phenotypic Stability of Sex and Expression of Sex Identification Markers in the Adult Yesso Scallop Mizuhopecten yessoensis throughout the Reproductive Cycle. Animals 2019, 9, 277. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Dong, S.; Guo, P.; Cui, X.; Duan, S.; Li, J. Identification of Foxl2 in freshwater mussel Hyriopsis cumingii and its involvement in sex differentiation. Gene 2020, 754, 144853. [Google Scholar] [CrossRef]
- Ning, J.; Cao, W.; Lu, X.; Chen, M.; Liu, B.; Wang, C. Identification and functional analysis of a sex-biased transcriptional factor Foxl2 in the bay scallop Argopecten irradians irradians. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2021, 256, 110638. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Ma, X.; Liang, S.; Yang, D. Characteristics of 17β-hydroxysteroid dehydrogenase 8 and its potential role in gonad of Zhikong scallop Chlamys farreri. J. Steroid Biochem. Mol. Biol. 2014, 141, 77–86. [Google Scholar] [CrossRef]
- Li, Y.; Sun, X.; Zhihui, Y.; Xun, X.; Zhang, J.; Guo, X.; Jiao, W.; Zhang, L.; Liu, W.; Wang, J.; et al. Scallop genome reveals molecular adaptations to semi-sessile life and neurotoxins. Nat. Commun. 2017, 8, 1721. [Google Scholar] [CrossRef]
- Huang, B.; Dong, J.; Sang, X.; Li, L.; Li, F.; Ma, J.; Wang, X.; Wang, X.; Liu, Y. A review on marine mollusk NF-κB/Rel studies in immunity and the characterization of a Chlamys farreri Rel gene. Aquaculture 2021, 544, 737046. [Google Scholar] [CrossRef]
- Deplancke, B.; Dupuy, D.; Vidal, M.; Walhout, A.J. A Gateway-Compatible Yeast One-Hybrid System. Genome Res. 2004, 14, 2093–2101. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Li, Y.; Yu, H.; Zhang, L.; Hu, J.; Bao, Z.; Wang, S. MolluscDB: An integrated functional and evolutionary genomics database for the hyper-diverse animal Phylum mollusca. Nucleic Acids Res. 2021, 49, D988–D997. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Jhaveri, D.J.; Marshall, V.M.; Bauer, D.; Edson, J.; Narayanan, R.K.; Robinson, G.J.; Lundberg, A.E.; Bartlett, P.F.; Wray, N.; et al. A Comparative Study of Techniques for Differential Expression Analysis on RNA-Seq Data. PLoS ONE 2014, 9, e103207. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, L.; Sun, Y.; Ma, X.; Wang, J.; Li, R.; Zhang, M.; Wang, S.; Hu, X.; Bao, Z. Transcriptome Sequencing and Comparative Analysis of Ovary and Testis Identifies Potential Key Sex-Related Genes and Pathways in Scallop Patinopecten yessoensis. Mar. Biotechnol. 2016, 18, 453–465. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Peng, C.; Yang, Z.; Liu, Z.; Wang, S.; Yu, H.; Cui, C.; Hu, Y.; Xing, Q.; Hu, J.; Huang, X.; et al. A Systematical Survey on the TRP Channels Provides New Insight into Its Functional Diversity in Zhikong Scallop (Chlamys farreri). Int. J. Mol. Sci. 2021, 22, 11075. [Google Scholar] [CrossRef]
- Menon, S.; Piramanayakam, S.; Agarwal, G. Computational identification of promoter regions in prokaryotes and eukaryotes. EPRA Int. J. Agric. Rural. Econ. Res. 2021, 9, 21–28. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.; Ma, X.; Li, X.; Zhou, D.; Gao, B.; Bai, Y. Sulfide exposure results in enhanced sqr transcription through upregulating the expression and activation of HSF1 in echiuran worm Urechis unicinctus. Aquat. Toxicol. 2016, 170, 229–239. [Google Scholar] [CrossRef]
- Han, Y.; Wang, T.; Sun, S.; Zhai, Z.; Tang, S. Cloning of the promoter region of a human gene, FOXL2, and its regulation by STAT. Mol. Med. Rep. 2017, 16, 2856–2862. [Google Scholar] [CrossRef]
- Hu, B.; Huang, H.; Hu, S.; Ren, M.; Wei, Q.; Tian, X.; Elzaki, M.E.A.; Bass, C.; Su, J.; Palli, S.R. Changes in both trans- and cis-regulatory elements mediate insecticide resistance in a lepidopteron pest, Spodoptera exigua. PLoS Genet. 2021, 17, e1009403. [Google Scholar] [CrossRef]
- Hu, T.; Ye, J.; Tao, P.; Li, H.; Zhang, J.; Zhang, Y.; Ye, Z. The tomato HD-Zip I transcription factor SlHZ24 modulates ascorbate accumulation through positive regulation of thed-mannose/l-galactose pathway. Plant J. 2015, 85, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Nolan, T.; Yin, Y.; Bassham, D.C. Identification of transcription factors that regulate ATG8 expression and autophagy in Arabidopsis. Autophagy 2020, 16, 123–139. [Google Scholar] [CrossRef]
- Dey, B.; Thukral, S.; Krishnan, S.; Chakrobarty, M.; Gupta, S.; Manghani, C.; Rani, V. DNA–protein interactions: Methods for detection and analysis. Mol. Cell. Biochem. 2012, 365, 279–299. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, H.; Wei, F.; Cheng, Z.; Yan, A.; Wang, D. Construction of yeast two-hybrid cDNA libraries for wheat near-isogenic line TcLr19 under the stress of Puccinia recondita and its preliminary appreciation. Front. Agric. China 2011, 5, 450–455. [Google Scholar] [CrossRef]
- Ohara, O. Directional cDNA library construction assisted by the in vitro recombination reaction. Nucleic Acids Res. 2001, 29, e22. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Xie, Y.; Wu, Q.; Wang, L.; Yin, G.; Ye, X.; Zeng, L.; Xu, J.; Ji, C.; Gu, S.; et al. Molecular cloning and characterization of a novel human hydroxysteroid dehydrogenase-like 2 (HSDL2) cDNA from fetal brain. Biochem. Genet. 2003, 41, 165–174. [Google Scholar] [CrossRef]
- Jia, L.H. Prognosis of Squamous Cell Carcinoma of Bladder and Molecular Mechanism of HSDL2 Regulating KLF5 on Proliferation of Bladder Cancer. Ph.D. Dissertation, People’s Hospital of Nanchang University, Nanchang, China, 2020. [Google Scholar]
- Mitchell, R.D.I.; Sonenshine, D.E.; De León, A.A.P. Vitellogenin Receptor as a Target for Tick Control: A Mini-Review. Front. Physiol. 2019, 10, 618. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, S. Immune-Relevant and Antioxidant Activities of Vitellogenin and Yolk Proteins in Fish. Nutrients 2015, 7, 8818–8829. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Dong, Y.; Cui, P. Vitellogenin is an immunocompetent molecule for mother and offspring in fish. Fish Shellfish Immunol. 2015, 46, 710–715. [Google Scholar] [CrossRef]
No | Candidate Factors | Function | Log2FC |
---|---|---|---|
1 | Vitellogenin-4 (Vtg) | Lipid transport and storage; antioxidant activity. | −9.4367 |
2 | Cytochrome P450 1A1 (Cyp) | Participates in the metabolism of various endogenous substrates, including fatty acids, steroid hormones, and vitamins. | −7.4725 |
3 | Hydroxysteroid dehydrogenase-like protein 2 (HSDL2) | Participates in the physiological process of female sex differentiation and the generation and maintenance of secondary sexual characteristics. | −7.3104 |
4 | Protein singed (Ps) | Acts as an actin binding protein; It is involved in setae and hair generation, cell differentiation and oogenesis. | −3.2786 |
5 | Cat eye syndrome critical region protein 5 (CECR) | Participates in ocular development through the formation of ISWI chromatin complexes. | −3.0421 |
6 | Unannotated factor 1 (Uf1) | - | # |
7 | Unannotated factor 2 (Uf2) | - | # |
8 | Unannotated factor 3 (Uf3) | - | # |
9 | Unannotated factor 4 (Uf4) | - | # |
10 | Unannotated factor 5 (Uf5) | - | 8.2517 |
11 | Transcriptional-regulating factor 1 (TRERF1) | Activation of CYP11A1 transcription; it binds to the progesterone receptor. | 1.1161 |
12 | Y-box factor homolog (YBX) | Male gonadal development; spermatogenesis. | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, S.; Li, X.; Lin, S.; Li, Y.; Ma, H.; Zhang, Z.; Qin, Z. Screening and Identification of Transcription Factors Potentially Regulating Foxl2 Expression in Chlamys farreri Ovary. Biology 2022, 11, 113. https://doi.org/10.3390/biology11010113
Fan S, Li X, Lin S, Li Y, Ma H, Zhang Z, Qin Z. Screening and Identification of Transcription Factors Potentially Regulating Foxl2 Expression in Chlamys farreri Ovary. Biology. 2022; 11(1):113. https://doi.org/10.3390/biology11010113
Chicago/Turabian StyleFan, Shutong, Xixi Li, Siyu Lin, Yunpeng Li, Huixin Ma, Zhifeng Zhang, and Zhenkui Qin. 2022. "Screening and Identification of Transcription Factors Potentially Regulating Foxl2 Expression in Chlamys farreri Ovary" Biology 11, no. 1: 113. https://doi.org/10.3390/biology11010113
APA StyleFan, S., Li, X., Lin, S., Li, Y., Ma, H., Zhang, Z., & Qin, Z. (2022). Screening and Identification of Transcription Factors Potentially Regulating Foxl2 Expression in Chlamys farreri Ovary. Biology, 11(1), 113. https://doi.org/10.3390/biology11010113