Handgrip Strength and Its Relationship with White Blood Cell Count in U.S. Adolescents
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Procedures
2.2.1. Anthropometric Data and Body Composityion
2.2.2. Blood Extraction
2.2.3. Handgrip Strength
2.2.4. Covariates
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pérez-de-Heredia, F.; Gómez-Martínez, S.; Díaz, L.-E.; Veses, A.M.; Nova, E.; Wärnberg, J.; Huybrechts, I.; Vyncke, K.; Androutsos, O.; Ferrari, M.; et al. Influence of Sex, Age, Pubertal Maturation and Body Mass Index on Circulating White Blood Cell Counts in Healthy European Adolescents—The HELENA Study. Eur. J. Pediatr. 2015, 174, 999–1014. [Google Scholar] [CrossRef] [PubMed]
- Warner, E.A.; Herold, A.H. Interpreting Laboratory Tests. In Textbook of Family Medicine; Elsevier: Amsterdam, The Netherlands, 2012; pp. 176–204. ISBN 978-1-4377-1160-8. [Google Scholar]
- Wheeler, J. Associations between Differential Leucocyte Count and Incident Coronary Heart Disease: 1764 Incident Cases from Seven Prospective Studies of 30 374 Individuals. Eur. Heart J. 2004, 25, 1287–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Hermoso, A.; Ramírez-Campillo, R.; Izquierdo, M. Is Muscular Fitness Associated with Future Health Benefits in Children and Adolescents? A Systematic Review and Meta-Analysis of Longitudinal Studies. Sports Med. 2019, 49, 1079–1094. [Google Scholar] [CrossRef] [PubMed]
- García-Hermoso, A.; Ramírez-Velez, R.; García-Alonso, Y.; Alonso-Martinez, A.; Izquierdo, M. Association of Cardiorespiratory Fitness Levels during Youth with Health Risk Later in Life. A Systematic Review and Meta-Analysis. JAMA Pediatr. 2020, 174, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fraser, B.J.; Blizzard, L.; Schmidt, M.D.; Dwyer, T.; Venn, A.J.; Magnussen, C.G. The Association between Muscular Power from Childhood to Adulthood and Adult Measures of Glucose Homeostasis. Scand. J. Med. Sci. Sports 2019, 29, 1909–1916. [Google Scholar] [CrossRef]
- Tuttle, C.S.L.; Thang, L.A.N.; Maier, A.B. Markers of Inflammation and Their Association with Muscle Strength and Mass: A Systematic Review and Meta-Analysis. Ageing Res. Rev. 2020, 64, 101185. [Google Scholar] [CrossRef]
- Martinez-Gomez, D.; Eisenmann, J.C.; Healy, G.N.; Gomez-Martinez, S.; Diaz, L.E.; Dunstan, D.W.; Veiga, O.L.; Marcos, A. Sedentary Behaviors and Emerging Cardiometabolic Biomarkers in Adolescents. J. Pediatr. 2012, 160, 104–110.e2. [Google Scholar] [CrossRef]
- dos Tenório, T.R.S.; Farah, B.Q.; Ritti-Dias, R.M.; Botero, J.P.; Brito, D.C.; de Moura, P.M.M.F.; do Prado, W.L. Relation between Leukocyte Count, Adiposity, and Cardiorespiratory Fitness in Pubertal Adolescents. Einstein São Paulo 2014, 12, 420–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Hermoso, A.; Ramírez-Vélez, R.; Alfonso-Rosa, R.M.; Pozo Cruz, B. Cardiorespiratory Fitness, Physical Activity, Sedentary Behavior, and Circulating White Blood Cells in US Youth. Scand. J. Med. Sci. Sports 2020, 31, 439–445. [Google Scholar] [CrossRef]
- Kuczmarski, R.J.; Ogden, C.L.; Guo, S.S. 2000 CDC Growth Charts for the United States: Methods and Development. Vital and Health Statistics. Series 11, Data from the National Health Survey; CDC: Atlanta, GA, USA, 2002.
- Ruiz, J.R.; Castro-Pinero, J.; Espana-Romero, V.; Artero, E.G.; Ortega, F.B.; Cuenca, M.M.; Jimenez-Pavon, D.; Chillon, P.; Girela-Rejon, M.J.; Mora, J.; et al. Field-Based Fitness Assessment in Young People: The ALPHA Health-Related Fitness Test Battery for Children and Adolescents. Br. J. Sports Med. 2011, 45, 518–524. [Google Scholar] [CrossRef]
- Centers of Disease Control and Prevention. National Health and Nutrition Examination Survey (NHANES): Muscle Strength Procedures Manual.; CDC: Atlanta, GA, USA, 2011.
- Bain, B.J. Ethnic and Sex Differences in the Total and Differential White Cell Count and Platelet Count. J. Clin. Pathol. 1996, 49, 664–666. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Ertek, S.; Cicero, A. State of the Art Paper Impact of Physical Activity on Inflammation: Effects on Cardiovascular Disease Risk and Other Inflammatory Conditions. Arch. Med. Sci. 2012, 5, 794–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, K.; Yamada, M.; Kurakake, S.; Okamura, N.; Yamaya, K.; Liu, Q.; Kudoh, S.; Kowatari, K.; Nakaji, S.; Sugawara, K. Circulating Cytokines and Hormones with Immunosuppressive but Neutrophil-Priming Potentials Rise after Endurance Exercise in Humans. Eur. J. Appl. Physiol. 2000, 81, 281–287. [Google Scholar] [CrossRef]
- Liles, W.C.; Dale, D.C.; Klebanoff, S.J. Glucocorticoids Inhibit Apoptosis of Human Neutrophils. Blood 1995, 86, 3181–3188. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Gomez, D.; Eisenmann, J.C.; Gomez-Martinez, S.; Veses, A.; Romeo, J.; Veiga, O.L.; Marcos, A. Associations of Physical Activity and Fitness with Adipocytokines in Adolescents: The AFINOS Study. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 252–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarkesh-Esfahani, H.; Pockley, G.; Metcalfe, R.A.; Bidlingmaier, M.; Wu, Z.; Ajami, A.; Weetman, A.P.; Strasburger, C.J.; Ross, R.J.M. High-Dose Leptin Activates Human Leukocytes Via Receptor Expression on Monocytes. J. Immunol. 2001, 167, 4593–4599. [Google Scholar] [CrossRef] [Green Version]
- Dixit, V.D.; Schaffer, E.M.; Pyle, R.S.; Collins, G.D.; Sakthivel, S.K.; Palaniappan, R.; Lillard, J.W.; Taub, D.D. Ghrelin Inhibits Leptin- and Activation-Induced Proinflammatory Cytokine Expression by Human Monocytes and T Cells. J. Clin. Invest. 2004, 114, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Vandanmagsar, B.; Youm, Y.-H.; Ravussin, A.; Galgani, J.E.; Stadler, K.; Mynatt, R.L.; Ravussin, E.; Stephens, J.M.; Dixit, V.D. The NLRP3 Inflammasome Instigates Obesity-Induced Inflammation and Insulin Resistance. Nat. Med. 2011, 17, 179–188. [Google Scholar] [CrossRef]
- Li, S.; Zhang, R.; Pan, G.; Zheng, L.; Li, C. Handgrip Strength Is Associated with Insulin Resistance and Glucose Metabolism in Adolescents: Evidence from National Health and Nutrition Examination Survey 2011 to 2014. Pediatr. Diabetes 2018, 19, 375–380. [Google Scholar] [CrossRef]
- Ábrigo, J.; Elorza, A.A.; Riedel, C.A.; Vilos, C.; Simon, F.; Cabrera, D.; Estrada, L.; Cabello-Verrugio, C. Role of Oxidative Stress as Key Regulator of Muscle Wasting during Cachexia. Oxidative Med. Cell. Longev. 2018, 2018, 1–17. [Google Scholar] [CrossRef]
- Zaldivar, F.; McMurray, R.G.; Nemet, D.; Galassetti, P.; Mills, P.J.; Cooper, D.M. Body Fat and Circulating Leukocytes in Children. Int. J. Obes. 2006, 30, 906–911. [Google Scholar] [CrossRef] [Green Version]
- Loprinzi, P.D.; Loenneke, J.P. Lower Extremity Muscular Strength and Leukocyte Telomere Length: Implications of Muscular Strength in Attenuating Age-Related Chronic Disease. J. Phys. Act. Health 2016, 13, 454–457. [Google Scholar] [CrossRef]
- Chang, X.; Chua, K.Y.; Wang, L.; Liu, J.; Yuan, J.-M.; Khor, C.-C.; Heng, C.-K.; Koh, W.-P.; Dorajoo, R. Midlife Leukocyte Telomere Length as an Indicator for Handgrip Strength in Late Life. J. Gerontol. Ser. A 2021, 76, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Mazidi, M.; Penson, P.; Banach, M. Association between Telomere Length and Complete Blood Count in US Adults. Arch. Med. Sci. 2017, 3, 601–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamprokostopoulou, A.; Moschonis, G.; Manios, Y.; Critselis, E.; Nicolaides, N.C.; Stefa, A.; Koniari, E.; Gagos, S.; Charmandari, E. Childhood Obesity and Leucocyte Telomere Length. Eur. J. Clin. Invest. 2019, 49. [Google Scholar] [CrossRef] [PubMed]
- Fraser, B.J.; Blizzard, L.; Cleland, V.; Schmidt, M.D.; Smith, K.J.; Gall, S.L.; Dwyer, T.; Venn, A.J.; Magnussen, C.G. Factors Associated with Persistently High Muscular Power from Childhood to Adulthood. Med. Sci. Sports Exerc. 2020, 52, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Bisoendial, R.J.; Birjmohun, R.S.; Akdim, F.; van Veer, C.; Spek, C.A.; Hartman, D.; de Groot, E.R.; Bankaitis-Davis, D.M.; Kastelein, J.J.P.; Stroes, E.S.G. C-Reactive Protein Elicits White Blood Cell Activation in Humans. Am. J. Med. 2009, 122, 582.e1–582.e9. [Google Scholar] [CrossRef] [PubMed]
- Summers, C.; Rankin, S.M.; Condliffe, A.M.; Singh, N.; Peters, A.M.; Chilvers, E.R. Neutrophil Kinetics in Health and Disease. Trends Immunol. 2010, 31, 318–324. [Google Scholar] [CrossRef] [Green Version]
- Laurson, K.R.; Saint-Maurice, P.F.; Welk, G.J.; Eisenmann, J.C. Reference Curves for Field Tests of Musculoskeletal Fitness in U.S. Children and Adolescents: The 2012 NHANES National Youth Fitness Survey. J. Strength Cond. Res. 2017, 31, 2075–2082. [Google Scholar] [CrossRef]
Variables | Boys | Girls | |||
---|---|---|---|---|---|
n | M (SD)/n (%) | n | M (SD)/n (%) | p | |
Sociodemographic | |||||
Age, years | 469 | 14.5 (1.7) | 448 | 14.6 (1.7) | 0.414 |
Race, Non-Hispanic White, n (%) | 469 | 124 (26.4) | 448 | 104 (23.2) | 0.068 |
Family income to poverty ratio | 469 | 2.11 (1.59) | 448 | 2.18 (1.54) | 0.455 |
Dietary intake | |||||
Energy intake (kcal) | 469 | 2199.0 (795.1) | 448 | 1709.2 (623.0) | <0.001 |
Carbohydrates (g) | 469 | 283.8 (105.4) | 448 | 225.8 (83.9) | <0.001 |
Proteins (g) | 469 | 84.1 (39.0) | 448 | 62.3 (24.6) | <0.001 |
Fats (g) | 469 | 82.7 (36.5) | 448 | 63.9 (29.3) | <0.001 |
Physical Activity | |||||
Weekly PA (MET-min) | 469 | 3263.1 (3012.2) | 448 | 2943.2 (2975.9) | 0.092 |
Daily PA energy expenditure (kcal) | 469 | 541.7 (523.1) | 448 | 456.0 (531.3) | 0.011 |
Sedentary behavior | |||||
Daily sedentary activities (min) | 469 | 504.4 (158.1) | 448 | 540.5 (160.5) | 0.001 |
Anthropometric data | |||||
Weight, kg | 469 | 67.15 (19.75) | 448 | 61.65 (17.71) | <0.001 |
Height, cm | 469 | 168.5 (9.7) | 448 | 159.7 (6.53) | <0.001 |
BMI, kg/m2 | 469 | 23.40 (5.70) | 448 | 24.02 (6.11) | 0.095 |
Overweight/Obese, n (%) | 469 | 190 (40.5) | 448 | 172 (38.4) | 0.156 |
Body Fat, kg | 199 | 16.65 (9.36) | 205 | 21.12 (10.04) | <0.001 |
Body Fat, % | 199 | 24.13 (7.53) | 205 | 33.80 (6.38) | <0.001 |
Trunk fat, kg | 210 | 6.63 (4.81) | 205 | 8.53 (5.01) | <0.001 |
Trunk fat, % | 210 | 9.17 (3.96) | 205 | 13.34 (3.94) | <0.001 |
Muscular fitness | |||||
Absolute Handgrip Strength, kg | 469 | 32.80 (9.10) | 448 | 24.83 (4.91) | <0.001 |
Handgrip Strength, kg/Body weight, kg | 469 | 0.51 (0.12) | 448 | 0.42 (0.09) | <0.001 |
Handgrip Strength, kg/Whole body fat, kg | 199 | 2.37 (1.06) | 205 | 1.33 (0.51) | <0.001 |
Handgrip Strength, kg/Trunk fat, kg | 210 | 6.68 (3.27) | 205 | 3.60 (1.69) | <0.001 |
Blood test | |||||
Lymphocytes (1000 cells/μL) | 469 | 2.21 (0.62) | 448 | 2.22 (0.62) | 0.870 |
Monocytes (1000 cells/μL) | 469 | 0.53 (0.19) | 448 | 0.52 (0.18) | 0.439 |
Eosinophils (1000 cells/μL) | 469 | 0.24 (0.22) | 448 | 0.19 (0.19) | <0.001 |
Basophils (1000 cells/μL) | 469 | 0.03 (0.05) | 448 | 0.03 (0.05) | 0.746 |
Neutrophils (1000 cells/μL) | 469 | 3.37 (1.51) | 448 | 3.96 (1.71) | <0.001 |
WBC (1000 cells/μL) | 469 | 6.41 (1.88) | 448 | 6.94 (2.00) | <0.001 |
Variables | WCB (1000 Cells/μL) | ||||
---|---|---|---|---|---|
B | SE | p | LLCI | ULCI | |
Boys | |||||
Handgrip strength/Body weight | |||||
Low | 0.525 | 0.180 | 0.004 | 0.170 | 0.879 |
Intermediate | 0.187 | 0.180 | 0.299 | −0.167 | 0.541 |
High | (Ref.) | ||||
Handgrip strength/Body fat | |||||
Low | 0.699 | 0.294 | 0.019 | 0.118 | 1.280 |
Intermediate | 0.416 | 0.271 | 0.126 | −0.118 | 0.950 |
High | (Ref.) | ||||
Handgrip strength/Trunk fat | |||||
Low | 1.05 | 0.279 | <0.001 | 0.497 | 1.559 |
Intermediate | 0.444 | 0.265 | 0.095 | −0.078 | 0.966 |
High | (Ref.) | ||||
Girls | |||||
Handgrip strength/Body weight | |||||
Low | 0.804 | 0.196 | >0.001 | 0.419 | 1.189 |
Intermediate | 0.101 | 0.197 | 0.609 | −0.286 | 0.488 |
High | (Ref.) | ||||
Handgrip strength/Body fat | |||||
Low | 1.573 | 0.280 | <0.001 | 1.021 | 2.125 |
Intermediate | 0.739 | 0.267 | 0.006 | 0.213 | 1.265 |
High | (Ref.) | ||||
Handgrip strength/Trunk fat | |||||
Low | 1.501 | 0.271 | <0.001 | 0.967 | 2.035 |
Intermediate | 0.844 | 0.257 | 0.001 | 0.337 | 1.350 |
High | (Ref.) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Gil, J.F.; Ramírez-Vélez, R.; Izquierdo, M.; García-Hermoso, A. Handgrip Strength and Its Relationship with White Blood Cell Count in U.S. Adolescents. Biology 2021, 10, 884. https://doi.org/10.3390/biology10090884
López-Gil JF, Ramírez-Vélez R, Izquierdo M, García-Hermoso A. Handgrip Strength and Its Relationship with White Blood Cell Count in U.S. Adolescents. Biology. 2021; 10(9):884. https://doi.org/10.3390/biology10090884
Chicago/Turabian StyleLópez-Gil, José Francisco, Robinson Ramírez-Vélez, Mikel Izquierdo, and Antonio García-Hermoso. 2021. "Handgrip Strength and Its Relationship with White Blood Cell Count in U.S. Adolescents" Biology 10, no. 9: 884. https://doi.org/10.3390/biology10090884
APA StyleLópez-Gil, J. F., Ramírez-Vélez, R., Izquierdo, M., & García-Hermoso, A. (2021). Handgrip Strength and Its Relationship with White Blood Cell Count in U.S. Adolescents. Biology, 10(9), 884. https://doi.org/10.3390/biology10090884