Genetic Diversity and Population Differentiation of Kashgarian Loach (Triplophysa yarkandensis) in Xinjiang Tarim River Basin
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and DNA Extraction
2.2. RAD Library Construction and Sequencing
2.3. Data Processing
2.4. Genetic Diversity and Population Structure
3. Results
3.1. SNP Identification and Genotyping
3.2. Genetic Diversity and Population Structure
3.3. Gene Flow and Genetic Differentiation
3.4. Population Demographic History
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Xu, C.; Hao, X.; Li, W.; Chen, Y.; Zhu, C.; Ye, Z. Fifty-year climate change and its effect on annual runoff in the Tarim River Basin, China. Quat. Int. 2009, 208, 53–61. [Google Scholar]
- Chen, S.A.; Hou, J.; Yao, N.; Xie, C.; Li, D. Comparative transcriptome analysis of Triplophysa yarkandensis in response to salinity and alkalinity stress. Comp. Biochem. Physiol. Part D Genom. Proteom. 2019, 33, 100629. [Google Scholar] [CrossRef]
- Hou, F.; Zhang, X.; Zhang, X.; Yue, B.; Song, Z. High intra-population genetic variability and inter-population differentiation in a plateau specialized fish, Triplophysa orientalis. Environ. Biol. Fishes 2012, 93, 519–530. [Google Scholar] [CrossRef]
- Feng, C.; Zhou, W.; Tang, Y.; Gao, Y.; Chen, J.; Tong, C.; Liu, S.; Wanghe, K.; Zhao, K. Molecular systematics of the Triplophysa robusta (Cobitoidea) complex: Extensive gene flow in a depauperate lineage. Mol. Phylogenet. Evol. 2019, 132, 275–283. [Google Scholar] [CrossRef]
- Ren, Q.; Yang, J.-X.; Chen, X.-Y. Phylogeographical and Morphological Analyses of Triplophysa stenura (Cypriniformes: Nemacheilidae) from the Three Parallel Rivers Region, China. Zool. Stud. 2018, 57, e26. [Google Scholar]
- Nie, Z.; Hao, W.; Jie, W.; Xue, Z.; Ma, Z. Length-weight relationship and morphological studies in the Kashgarian loach Triplophysa yarkandensis (Day, 1877) from the Tarim River, Tarim River Basin, North-West China. Indian J. Fish. 2013, 60, 15–19. [Google Scholar]
- Yao, N.; Wang, S.; Chen, S.; Cheng, Y.; Zhang, Y.; Xie, C. Tolerance of Triplophysa yarkandensis Larvae to Salinity and Alkalinity. Guizhou Agric. Sci. 2016, 44, 117–120. [Google Scholar]
- Ning, X.; Zhang, Y.-Z.; Sui, Z.-H.; Quan, X.-Q.; Zhang, H.-G.; Liu, L.-X.; Han, Q.-D.; Liu, Y.-G. The complete mitochondrial DNA sequence of Kashgarian loach (Triplophysa yarkandensis) from Bosten Lake. Mitochondrial DNA Part B 2020, 5, 821–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, X.; Xu, H.; Xiang, W.; Fan, Z.; Zheng, L.; Wang, C. Complete mitochondrial genome of Kashgarian loach, Triplophysa yarkandensis (Day, 1877) in the Tarim river. Mitochondrial DNA Part A 2016, 27, 3192–3193. [Google Scholar] [CrossRef]
- Sherman, K.D.; Paris, J.R.; King, R.A.; Moore, K.A.; Stevens, J.R. RAD-Seq Analysis and in situ Monitoring of Nassau Grouper Reveal Fine-Scale Population Structure and Origins of Aggregating Fish. Front. Mar. Sci. 2020, 7, 157. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Ma, X.; He, S. Population genetics analysis of the Nujiang catfish Creteuchiloglanis macropterus through a genome-wide single nucleotide polymorphisms resource generated by RAD-seq. Sci. Rep. 2017, 7, 2813. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.-Y.; Euclide, P.T.; Ludsin, S.A.; Larson, W.A.; Sovic, M.G.; Gibbs, H.L.; Marschall, E.A. RAD-Seq Refines Previous Estimates of Genetic Structure in Lake Erie Walleye. Trans. Am. Fish. Soc. 2020, 149, 159–173. [Google Scholar] [CrossRef]
- Sunde, J.; Yıldırım, Y.; Tibblin, P.; Forsman, A. Comparing the Performance of Microsatellites and RADseq in Population Genetic Studies: Analysis of Data for Pike (Esox lucius) and a Synthesis of Previous Studies. Front. Genet. 2020, 11, 218. [Google Scholar] [CrossRef] [Green Version]
- Yi, S.; Wang, W.; Zhou, X. Genomic evidence for the population genetic differentiation of Misgurnus anguillicaudatus in the Yangtze River basin of China. Genomics 2019, 111, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Yi, S.; Ma, L.; Wang, W. Evolution and phylogeography analysis of diploid and polyploid Misgurnus anguillicaudatus populations across China. Proc. R. Soc. B Biol. Sci. 2019, 286, 20190076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, S.; Li, Y.; Shi, L.; Zhang, L.; Li, Q.; Chen, J. Characterization of Population Genetic Structure of red swamp crayfish, Procambarus clarkii, in China. Sci. Rep. 2018, 8, 5586. [Google Scholar] [CrossRef] [Green Version]
- Thongda, W.; Lewis, M.; Zhao, H.; Bowen, B.; Lutz-Carrillo, D.J.; Peoples, B.K.; Peatman, E. Species-diagnostic SNP markers for the black basses (Micropterus spp.): A new tool for black bass conservation and management. Conserv. Genet. Resour. 2020, 12, 319–328. [Google Scholar] [CrossRef]
- Takahashi, T.; Nagano, A.J.; Kawaguchi, L.; Onikura, N.; Nakajima, J.; Miyake, T.; Suzuki, N.; Kanoh, Y.; Tsuruta, T.; Tanimoto, T.; et al. A ddRAD-based population genetics and phylogenetics of an endangered freshwater fish from Japan. Conserv. Genet. 2020, 21, 641–652. [Google Scholar] [CrossRef]
- Yang, X.; Liu, H.; Ma, Z.; Zou, Y.; Zou, M.; Mao, Y.; Li, X.; Wang, H.; Chen, T.; Wang, W.; et al. Chromosome-level genome assembly of Triplophysa tibetana, a fish adapted to the harsh high-altitude environment of the Tibetan Plateau. Mol. Ecol. Resour. 2019, 19, 1027–1036. [Google Scholar] [CrossRef]
- Sun, X.; Liu, D.; Zhang, X.; Li, W.; Liu, H.; Hong, W.; Jiang, C.; Ning, G.; Ma, C.; Zeng, H. SLAF-seq: An Efficient Method of Large-Scale De Novo SNP Discovery and Genotyping Using High-Throughput Sequencing. PLoS ONE 2013, 8, e58700. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Rochette, N.C.; Rivera-Colon, A.G.; Catchen, J.M. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 2019, 28, 4737–4754. [Google Scholar] [CrossRef]
- Puritz, J.B.; Hollenbeck, C.M.; Gold, J.R. dDocent: A RADseq, variant-calling pipeline designed for population genomics of non-model organisms. PeerJ 2014, 2, e431. [Google Scholar] [CrossRef] [Green Version]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Frichot, E.; Francois, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 2015, 6, 925–929. [Google Scholar] [CrossRef]
- Raj, A.; Stephens, M.; Pritchard, J.K. fastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics 2014, 197, 573–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jombart, T.; Kamvar, Z.N.; Collins, C.; Lustrik, R.; Beugin, M.P.; Knaus, B.J.; Solymos, P.; Mikryukov, V.; Schliep, K.; Maié, T. Adegenet: Exploratory Analysis of Genetic and Genomic Data. Doc. Ophthalmol. 2018, 107, 13–36. [Google Scholar]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.; Bender, D.; Maller, J.; Sklar, P.; Bakker, P.; Daly, M.J. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginestet, C. ggplot2: Elegant Graphics for Data Analysis. J. R. Stat. Soc. 2011, 174, 245–246. [Google Scholar] [CrossRef]
- Paradis, E.; Claude, J.; Strimmer, K. APE: Analyses of Phylogenetics and Evolution in R Language. Bioinformatics 2004, 20, 289–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manni, F.; Guérard, E.; Heyer, E. Geographic patterns of (genetic, morphologic, linguistic) variation: How barriers can be detected by using Monmonier’s algorithm. Hum. Biol. 2004, 76, 173–190. [Google Scholar] [CrossRef] [PubMed]
- Hou, P.; Beeton, R.J.S.; Carter, R.W.; Dong, X.G.; Li, X. Response to environmental flows in the lower Tarim River, Xinjiang, China: Ground water. J. Environ. Manag. 2007, 83, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, X.; Bernard, E. Water environment carrying capacity in Bosten Lake basin. J. Clean. Prod. 2018, 199, 574–583. [Google Scholar] [CrossRef]
- Mamat, Z.; Halik, U.; Aishan, T.; Aini, A.; Hepp, L.U. Ecological effect of the riparian ecosystem in the lower reaches of the Tarim River in northwest China. PLoS ONE 2019, 14, e0208462. [Google Scholar] [CrossRef] [PubMed]
- Zhai, D.-D.; Li, W.-J.; Liu, H.-Z.; Cao, W.-X.; Gao, X. Genetic diversity and temporal changes of an endemic cyprinid fish species, Ancherythroculter nigrocauda, from the upper reaches of Yangtze River. Zool. Res. 2019, 40, 427–438. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela-Aguayo, F.; McCracken, G.R.; Manosalva, A.; Habit, E.; Ruzzante, D.E. Human-induced habitat fragmentation effects on connectivity, diversity, and population persistence of an endemic fish, Percilia irwini, in the Biobío River basin (Chile). Evol. Appl. 2020, 13, 794–807. [Google Scholar] [CrossRef] [Green Version]
- Soliman, T.; Aly, W.; Fahim, R.M.; Berumen, M.L.; Jenke-Kodama, H.; Bernardi, G. Comparative population genetic structure of redbelly tilapia (Coptodon zillii (Gervais, 1848)) from three different aquatic habitats in Egypt. Ecol. Evol. 2017, 7, 11092–11099. [Google Scholar] [CrossRef] [Green Version]
- Houde, A.L.; Fraser, D.J.; O’Reilly, P.; Hutchings, J.A. Relative risks of inbreeding and outbreeding depression in the wild in endangered salmon. Evol. Appl. 2011, 4, 634–647. [Google Scholar] [CrossRef]
- Chen, G.; Qiu, Y.; Li, L. Fish invasions and changes in the fish fauna of the Tarim Basin. Acta Ecol. Sin. 2017, 37, 700–714. [Google Scholar]
- Ye, Z.; Chen, Y.; Li, W.; Yan, Y. Effect of the ecological water conveyance project on environment in the Lower Tarim River, Xinjiang, China. Environ. Monit. Assess. 2009, 149, 9–17. [Google Scholar] [CrossRef]
Population ID | Num of Samples | Samples Per Locus | All Sites | Variant Sites | Polymorphic Sites | Fixed Alleles |
---|---|---|---|---|---|---|
TKX | 15 | 12.091 | 6,825,098 | 12,019 | 10,346 | 32 |
DWQ | 15 | 13.407 | 25,761,023 | 58,354 | 50,117 | 1040 |
SWS | 15 | 13.570 | 31,271,934 | 69,585 | 5955 | 739 |
WC | 14 | 12.552 | 31,093,652 | 71,003 | 66,518 | 1033 |
JDT | 15 | 13.624 | 33,647,835 | 77,904 | 73,819 | 1406 |
AKT | 11 | 10.054 | 33,397,250 | 74,608 | 63,564 | 839 |
KZE | 4 | 3.552 | 40,984,502 | 97,754 | 66,521 | 502 |
WSX | 15 | 12.424 | 5,779,906 | 10,335 | 8984 | 9 |
TTM | 15 | 13.532 | 25,175,340 | 57,971 | 53,848 | 673 |
Total | 119 | 54,958,861 | 129,873 |
Pop ID | p | Obs_Het | Obs_Hom | Exp_Het | Exp_Hom | Pi | Fis | HWE |
---|---|---|---|---|---|---|---|---|
TKX | 0.8372 | 0.2356 | 0.7644 | 0.2345 | 0.7655 | 0.2446 | 0.0292 | 372 |
DWQ | 0.8227 | 0.2462 | 0.7538 | 0.2508 | 0.7492 | 0.2607 | 0.0441 | 3299 |
SWS | 0.8118 | 0.2562 | 0.7438 | 0.2686 | 0.7315 | 0.2789 | 0.0645 | 3606 |
WC | 0.8107 | 0.2526 | 0.7474 | 0.2689 | 0.7311 | 0.2802 | 0.0779 | 3766 |
JDT | 0.8078 | 0.2604 | 0.7396 | 0.2725 | 0.7275 | 0.2830 | 0.0667 | 4056 |
AKT | 0.8244 | 0.2554 | 0.7446 | 0.2492 | 0.7508 | 0.2625 | 0.0236 | 1989 |
KZE | 0.8195 | 0.2488 | 0.7512 | 0.2445 | 0.7555 | 0.2861 | 0.0715 | 0 |
WSX | 0.8445 | 0.2260 | 0.7740 | 0.2269 | 0.7731 | 0.2364 | 0.0403 | 447 |
TTM | 0.8139 | 0.2516 | 0.7484 | 0.2649 | 0.7351 | 0.2751 | 0.0714 | 3235 |
FST | TKX | DWQ | SWS | WC | JDT | AKT | KZE | WSX | TTM |
---|---|---|---|---|---|---|---|---|---|
TKX | 0 | ||||||||
DWQ | 0.7514 | 0 | |||||||
SWS | 0.7728 | 0.5961 | 0.0000 | ||||||
WC | 0.7720 | 0.6102 | 0.4823 | 0.0000 | |||||
JDT | 0.7831 | 0.6126 | 0.4811 | 0.4579 | 0.0000 | ||||
AKT | 0.8110 | 0.6397 | 0.5278 | 0.5318 | 0.4965 | 0.0000 | |||
KZE | 0.8617 | 0.6616 | 0.5944 | 0.5630 | 0.5294 | 0.5987 | 0.0000 | ||
WSX | 0.6625 | 0.7732 | 0.7826 | 0.7799 | 0.7903 | 0.8186 | 0.8736 | 0.0000 | |
TTM | 0.7656 | 0.6207 | 0.5622 | 0.5957 | 0.5773 | 0.5976 | 0.6604 | 0.7719 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Yi, S.; Zhao, W.; Zhou, Q.; Shen, J.; Li, D.; Huo, B.; Tang, R. Genetic Diversity and Population Differentiation of Kashgarian Loach (Triplophysa yarkandensis) in Xinjiang Tarim River Basin. Biology 2021, 10, 734. https://doi.org/10.3390/biology10080734
Zhou X, Yi S, Zhao W, Zhou Q, Shen J, Li D, Huo B, Tang R. Genetic Diversity and Population Differentiation of Kashgarian Loach (Triplophysa yarkandensis) in Xinjiang Tarim River Basin. Biology. 2021; 10(8):734. https://doi.org/10.3390/biology10080734
Chicago/Turabian StyleZhou, Xiaoyun, Shaokui Yi, Wenhao Zhao, Qiong Zhou, Jianzhong Shen, Dapeng Li, Bin Huo, and Rong Tang. 2021. "Genetic Diversity and Population Differentiation of Kashgarian Loach (Triplophysa yarkandensis) in Xinjiang Tarim River Basin" Biology 10, no. 8: 734. https://doi.org/10.3390/biology10080734
APA StyleZhou, X., Yi, S., Zhao, W., Zhou, Q., Shen, J., Li, D., Huo, B., & Tang, R. (2021). Genetic Diversity and Population Differentiation of Kashgarian Loach (Triplophysa yarkandensis) in Xinjiang Tarim River Basin. Biology, 10(8), 734. https://doi.org/10.3390/biology10080734