Doubled Haploids in Eggplant
Abstract
:Simple Summary
Abstract
1. Introduction
2. Anther Culture in Eggplant
In Vitro Culture of Isolated Eggplant Microspores
3. The Critical Role of the Genotype in the Embryogenic Response of Eggplant Microspores
4. Genome Doubling of Haploid Individuals
5. Use of DHs for Eggplant Breeding Programs
6. Limitations of DH Technology and Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knapp, S.; Aubriot, X.; Prohens, J. Eggplant (Solanum melongena L.): Taxonomy and relationships. In The Eggplant Genome; Chapman, M.A., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 11–22. [Google Scholar]
- Wang, J.X.; Gao, T.G.; Knapp, S. Ancient Chinese literature reveals pathways of eggplant domestication. Ann. Bot. 2008, 102, 891–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taher, D.; Solberg, S.; Prohens, J.; Chou, Y.Y.; Rakha, M.; Wu, T.H. World vegetable center eggplant collection: Origin, composition, seed dissemination and utilization in breeding. Front. Plant Sci. 2017, 8, 1484. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: http://www.fao.org/faostat (accessed on 2 May 2021).
- Kumar, A.; Sharma, V.; Jain, B.T.; Kaushik, P. Heterosis breeding in eggplant (Solanum melongena L.): Gains and provocations. Plants 2020, 9, 403. [Google Scholar] [CrossRef] [Green Version]
- Prigge, V.; Xu, X.; Li, L.; Babu, R.; Chen, S.; Atlin, G.N.; Melchinger, A.E. New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics 2012, 190, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Yan, G.; Liu, H.; Wang, H.; Lu, Z.; Wang, Y.; Mullan, D.; Hamblin, J.; Liu, C. Accelerated generation of selfed pure line plants for gene identification and crop breeding. Front. Plant Sci. 2017, 8, 1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seguí-Simarro, J.M. Androgenesis in solanaceae. In In Vitro Embryogenesis; Germanà, M.A., Lambardi, M., Eds.; Methods in Molecular Biology; Springer Science + Business Media: New York, NY, USA, 2016; Volume 1359, pp. 209–244. [Google Scholar]
- Ren, J.; Wu, P.; Trampe, B.; Tian, X.; Lübberstedt, T.; Chen, S. Novel technologies in doubled haploid line development. Plant Biotechnol. J. 2017, 15, 1361–1370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilles, L.M.; Martinant, J.-P.; Rogowsky, P.M.; Widiez, T. Haploid induction in plants. Curr. Biol. 2017, 27, R1095–R1097. [Google Scholar] [CrossRef] [Green Version]
- Seguí-Simarro, J.M.; Belinchón Moreno, J.; Guillot Fernández, M.; Mir, R. Species with haploid or doubled haploid protocols. In Doubled Haploid Technology Vol. 1. General Topics, Alliaceae, Cereals; Seguí-Simarro, J.M., Ed.; Methods in Molecular Biology; Springer Science + Business Media: New York, NY, USA, 2021; Volume 2287, pp. 41–103. [Google Scholar]
- Guha, S.; Maheshwari, S.C. In vitro production of embryos from anthers of Datura. Nature 1964, 204, 497. [Google Scholar] [CrossRef]
- Seguí-Simarro, J.M.; Corral-Martínez, P.; Parra-Vega, V.; González-García, B. Androgenesis in recalcitrant solanaceous crops. Plant Cell Rep. 2011, 30, 765–778. [Google Scholar] [CrossRef] [PubMed]
- Seguí-Simarro, J.M.; Nuez, F. Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers. J. Exp. Bot. 2007, 58, 1119–1132. [Google Scholar] [CrossRef] [Green Version]
- Raina, S.K.; Iyer, R.D. Differentiation of diploid plants from pollen callus in anther cultures of Solanum melongena L. Z. Pflanzenzüchtg. 1973, 70, 275–280. [Google Scholar]
- Chinese Research Group of Haploid Breeding. Induction of haploid plants of Solanum melongena. In Proceedings of the Symposium on Plant Tissue Culture, 25–30 May 1978, Peking, China; Science Press: Peking, China, 1978; pp. 227–232. [Google Scholar]
- Gu, S.-R. Plantlets from isolated pollen cultures of eggplant (Solanum melongena L.). Acta Bot. Sin. 1979, 21, 30–36. [Google Scholar]
- Dumas de Vaulx, R.; Chambonnet, D. Culture in vitro d’anthères d’aubergine (Solanum melongena L.): Stimulation de la production de plantes au moyen de traitements à 35 °C associés à de faibles teneurs en substances de croissance. Agronomie 1982, 2, 983–988. [Google Scholar] [CrossRef] [Green Version]
- Miyoshi, K. Callus induction and plantlet formation through culture of isolated microspores of eggplant (Solanum melongena L.). Plant Cell Rep. 1996, 15, 391–395. [Google Scholar] [CrossRef]
- Gémes-Juhasz, A.; Venczel, G.; Sagi, Z.S.; Gajdos, L.; Kristof, Z.; Vagi, P.; Zatyko, L. Production of doubled haploid breeding lines in case of paprika, spice paprika, eggplant, cucumber, zucchini and onion. Acta Hortic. 2006, 725, 845–854. [Google Scholar] [CrossRef]
- Liu, D.C.; Fang, C.; Li, Y.J.; Liu, X.J.; Liang, G.Y. Studies on the anther culture technology system for eggplant (Solanum melongena L.). Southwest China J. Agric. Sci. 2008, 21, 1643–1646. [Google Scholar]
- Başay, S.; Şeniz, V.; Ellialtioğlu, Ş. Obtaining dihaploid lines by using anther culture in the different eggplant cultivars. J. Food Agric. Environ. 2011, 9, 188–190. [Google Scholar]
- Salas, P.; Rivas-Sendra, A.; Prohens, J.; Seguí-Simarro, J.M. Influence of the stage for anther excision and heterostyly in embryogenesis induction from eggplant anther cultures. Euphytica 2012, 184, 235–250. [Google Scholar] [CrossRef]
- Corral-Martínez, P.; Seguí-Simarro, J.M. Efficient production of callus-derived doubled haploids through isolated microspore culture in eggplant (Solanum melongena L.). Euphytica 2012, 187, 47–61. [Google Scholar] [CrossRef]
- Ozdemir, B.; Onus, N. The effects of phenylacetic acid (PAA) on haploid embryo induction in eggplant (Solanum melongena L.) anther culture. In Proceedings of the Breakthroughs in the Genetics and Breeding of Capsicum and Eggplant, Torino, Italy, 2–4 September 2013. [Google Scholar]
- Corral-Martínez, P.; Seguí-Simarro, J.M. Refining the method for eggplant microspore culture: Effect of abscisic acid, epibrassinolide, polyethylene glycol, naphthaleneacetic acid, 6-benzylaminopurine and arabinogalactan proteins. Euphytica 2014, 195, 369–382. [Google Scholar] [CrossRef]
- Rivas-Sendra, A.; Corral-Martínez, P.; Camacho-Fernández, C.; Seguí-Simarro, J.M. Improved regeneration of eggplant doubled haploids from microspore-derived calli through organogenesis. Plant Cell Tissue Organ Cult. 2015, 122, 759–765. [Google Scholar] [CrossRef]
- Emrani Dehkehan, M.; Moieni, A.; Movahedi, Z. Effects of zeatin riboside, mannitol and heat stress on eggplant (Solanum melongena L.) anther culture. Iran. J. Genet. Plant Breed. 2017, 6, 16–26. [Google Scholar] [CrossRef]
- Emrani Dehkehan, M.; Moieni, A.; Movahedi, Z. Effects of BAP, Kin and NH4NO3 concentration on the eggplant anther culture (Solanum melongena L.). Iran. J. Field Crop Sci. 2017, 48, 877–888. [Google Scholar] [CrossRef]
- Rivas-Sendra, A.; Campos-Vega, M.; Calabuig-Serna, A.; Seguí-Simarro, J.M. Development and characterization of an eggplant (Solanum melongena) doubled haploid population and a doubled haploid line with high androgenic response. Euphytica 2017, 213, 89. [Google Scholar] [CrossRef]
- Rivas-Sendra, A.; Calabuig-Serna, A.; Seguí-Simarro, J.M. Dynamics of calcium during in vitro microspore embryogenesis and in vivo microspore development in Brassica napus and Solanum melongena. Front. Plant Sci. 2017, 8, 1177. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Sendra, A.; Corral-Martínez, P.; Porcel, R.; Camacho-Fernández, C.; Calabuig-Serna, A.; Seguí-Simarro, J.M. Embryogenic competence of microspores is associated with their ability to form a callosic, osmoprotective subintinal layer. J. Exp. Bot. 2019, 70, 1267–1281. [Google Scholar] [CrossRef] [Green Version]
- García-Fortea, E.; García-Pérez, A.; Gimeno-Páez, E.; Sánchez-Gimeno, A.; Vilanova, S.; Prohens, J.; Pastor-Calle, D. A deep learning-based system (microscan) for the identification of pollen development stages and its application to obtaining doubled haploid lines in eggplant. Biology 2020, 9, 272. [Google Scholar] [CrossRef]
- Vural, G.E.; Ari, E. Triple synergistic effect of maltose, silver nitrate and activated charcoal on high embryo yield of eggplant (Solanum melongena L.) anther cultures. Sci. Hortic. 2020, 272, 109472. [Google Scholar] [CrossRef]
- Rivas-Sendra, A.; Corral-Martínez, P.; Camacho-Fernández, C.; Porcel, R.; Seguí-Simarro, J.M. Effects of growth conditions of donor plants and in vitro culture environment in the viability and the embryogenic response of microspores of different eggplant genotypes. Euphytica 2020, 216, 167. [Google Scholar] [CrossRef]
- Seguí-Simarro, J.M. Androgenesis revisited. Bot. Rev. 2010, 76, 377–404. [Google Scholar] [CrossRef]
- Rotino, G.L. Anther culture in eggplant (Solanum melongena L.). In In Vitro Embryogenesis in Higher Plants; Germana, M.A., Lambardi, M., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2016; Volume 1359, pp. 453–466. [Google Scholar]
- Calabuig-Serna, A.; Porcel, R.; Corral-Martínez, P.; Seguí-Simarro, J.M. Anther and isolated microspore culture in eggplant (Solanum melongena L.). In Doubled Haploid Technology II: Hot Topics, Apiaceae, Brassicaceae, Solanaceae; Seguí-Simarro, J.M., Ed.; Methods in Molecular Biology; Springer Science + Business Media: New York, NY, USA, 2021; Volume 2288, pp. 235–250. [Google Scholar]
- Salas, P.; Prohens, J.; Seguí-Simarro, J.M. Evaluation of androgenic competence through anther culture in common eggplant and related species. Euphytica 2011, 182, 261–274. [Google Scholar] [CrossRef]
- Chugh, A.; Amundsen, E.; Eudes, F. Translocation of cell-penetrating peptides and delivery of their cargoes in triticale microspores. Plant Cell Rep. 2009, 28, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Eudes, F.; Shim, Y.-S.; Jiang, F. Engineering the haploid genome of microspores. Biocatal. Agric. Biotechnol. 2014, 3, 20–23. [Google Scholar] [CrossRef]
- Abdollahi, M.R.; Corral-Martinez, P.; Mousavi, A.; Salmanian, A.H.; Moieni, A.; Seguí-Simarro, J.M. An efficient method for transformation of pre-androgenic, isolated Brassica napus microspores involving microprojectile bombardment and Agrobacterium-mediated transformation. Acta Physiol. Plant. 2009, 31, 1313–1317. [Google Scholar] [CrossRef]
- Peñaloza, P.; Toloza, P. Boron increases pollen quality, pollination, and fertility of different genetic lines of pepper. J. Plant Nutr. 2018, 41, 969–979. [Google Scholar] [CrossRef]
- Hooghvorst, I.; Nogués, S. Chromosome doubling methods in doubled haploid and haploid inducer-mediated genome-editing systems in major crops. Plant Cell Rep. 2020. [Google Scholar] [CrossRef]
- Seguí-Simarro, J.M.; Nuez, F. Pathways to doubled haploidy: Chromosome doubling during androgenesis. Cytogenet. Genome Res. 2008, 120, 358–369. [Google Scholar] [CrossRef]
- Kasha, K.J. Chromosome doubling and recovery of doubled haploid plants. In Haploids in Crop Improvement II; Palmer, C.E., Keller, W.A., Kasha, K.J., Nagata, T., Lörz, H., Widholm, J.M., Eds.; Biotechnology in Agriculture and Forestry; Springer: Berlin/Heidelberg, Germany, 2005; Volume 56, pp. 123–152. [Google Scholar]
- Li, H.C.; Devaux, P. High frequency regeneration of barley doubled haploid plants from isolated microspore culture. Plant Sci. 2003, 164, 379–386. [Google Scholar] [CrossRef]
- Kumaravadivel, N.; Rangasamy, S.R.S. Plant regeneration from sorghum anther cultures and field evaluation of progeny. Plant Cell Rep. 1994, 13, 286–290. [Google Scholar] [CrossRef]
- Yuan, S.; Su, Y.; Liu, Y.; Li, Z.; Fang, Z.; Yang, L.; Zhuang, M.; Zhang, Y.; Lv, H.; Sun, P. Chromosome doubling of microspore-derived plants from cabbage (Brassica oleracea var. capitata L.) and broccoli (Brassica oleracea var. italica L.). Front. Plant Sci. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Greplová, M.; Polzerová, H.; Domkářová, J. Intra- and inter-specific crosses of Solanum materials after mitotic polyploidization in vitro. Plant Breed. 2009, 128, 651–657. [Google Scholar] [CrossRef]
- Sood, S.; Dhawan, R.; Singh, K.; Bains, N.S. Development of novel chromosome doubling strategies for wheat × maize system of wheat haploid production. Plant Breed. 2003, 122, 493–496. [Google Scholar] [CrossRef]
- Hooghvorst, I.; Ramos-Fuentes, E.; López-Cristofannini, C.; Ortega, M.; Vidal, R.; Serrat, X.; Nogués, S. Antimitotic and hormone effects on green double haploid plant production through anther culture of Mediterranean japonica rice. Plant Cell Tissue Organ Cult. 2018, 134, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Hooghvorst, I.; Ribas, P.; Nogués, S. Chromosome doubling of androgenic haploid plantlets of rice (Oryza sativa) using antimitotic compounds. Plant Breed. 2020, 134, 754–761. [Google Scholar] [CrossRef]
- Claveria, E.; Garcia-Mas, J.; Dolcet-Sanjuan, R. Optimization of cucumber doubled haploid line production using in vitro rescue of in vivo induced parthenogenic embryos. J. Am. Soc. Hortic. Sci. 2005, 130, 555–560. [Google Scholar] [CrossRef] [Green Version]
- Fayos, O.; Vallés, M.P.; Garcés-Claver, A.; Mallor, C.; Castillo, A.M. Doubled haploid production from Spanish onion (Allium cepa L.) germplasm: Embryogenesis induction, plant regeneration and chromosome doubling. Front. Plant Sci 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Gürel, S.; Gürel, E.; Kaya, Z. Doubled haploid plant production from unpollinated ovules of sugar beet (Beta vulgaris L.). Plant Cell Rep. 2000, 19, 1155–1159. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.L.; Gertz, A.; Joersbo, M.; Andersen, S.B. Short-duration colchicine treatment for in vitro chromosome doubling during ovule culture of Beta vulgaris L. Plant Breed. 1995, 114, 515–519. [Google Scholar] [CrossRef]
- Shariatpanahi, M.E.; Niazian, M.; Ahmadi, B. Methods for chromosome doubling. In Doubled Haploid Technology Vol. 1. General Topics, Alliaceae, Cereals; Seguí-Simarro, J.M., Ed.; Methods in Molecular Biology; Springer Science + Business Media: New York, NY, USA, 2021; Volume 2287, pp. 127–148. [Google Scholar]
- Rotino, G.L. Haploidy in eggplant. In In Vitro Haploid Production in Higher Plants; Jain, S.M., Sopory, S.K., Veilleux, R.E., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996; Volume 3, pp. 115–141. [Google Scholar]
- Thompson, K.F. Oil-seed rape. In Reports of the Plant Breeding Institute; Cambridge University Press: Cambridge, UK, 1972; pp. 94–96. [Google Scholar]
- Ho, K.M.; Jones, G.E. Mingo barley. Can. J. Plant Sci. 1980, 60, 279–280. [Google Scholar] [CrossRef]
- Dunwell, J.M. Haploids in flowering plants: Origins and exploitation. Plant Biotechnol. J. 2010, 8, 377–424. [Google Scholar] [CrossRef]
- Germanà, M.A. Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep. 2011, 30, 839–857. [Google Scholar] [CrossRef]
- Kaushik, P.; Plazas, M.; Prohens, J.; Vilanova, S.; Gramazio, P. Diallel genetic analysis for multiple traits in eggplant and assessment of genetic distances for predicting hybrids performance. PLoS ONE 2018, 13, e0199943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakha, M.; Namisy, A.; Chen, J.R.; El-Mahrouk, M.E.; Metwally, E.; Taha, N.; Prohens, J.; Plazas, M.; Taher, D. Development of interspecific hybrids between a cultivated eggplant resistant to bacterial wilt (Ralstonia solanacearum) and eggplant wild relatives for the development of rootstocks. Plants 2020, 9, 1405. [Google Scholar] [CrossRef] [PubMed]
- Kumchai, J.; Wei, Y.C.; Lee, C.Y.; Chen, F.C.; Chin, S.W. Production of interspecific hybrids between commercial cultivars of the eggplant (Solanum melongena L.) and its wild relative S. torvum. Genet. Mol. Res. 2013, 12, 755–764. [Google Scholar] [CrossRef]
- Rodríguez-Burruezo, A.; Prohens, J.; Nuez, F. Performance of hybrids between local varieties of eggplant (Solanum melongena) and its relation to the mean of parents and to morphological and genetic distances among parents. Eur. J. Hortic. Sci. 2008, 73, 76–83. [Google Scholar]
- Daunay, M.-C. Eggplant. In Vegetables II: Fabaceae, Liliaceae, Solanaceae, and Umbelliferae; Prohens, J., Nuez, F., Carena, M.J., Eds.; Handbook of Plant Breeding; Springer New York: New York, NY, USA, 2008; Volume 2, pp. 163–220. [Google Scholar]
- Rotino, G.L.; Mennella, G.; Fusari, F.; Vitelli, G.; Tacconi, M.G.; D’Alessandro, A.; Acciarri, N. Towards introgression of resistance to Fusarium oxysporum F. sp. melongenae from Solanum integrifolium into eggplant. In Proceedings of the 11th Eucarpia Meeting on Genetics and Breeding of Capsicum and Eggplant, Antalya, Turkey, 9–13 April 2001; pp. 303–307. [Google Scholar]
- Mennella, G.; Rotino, G.L.; Fibiani, M.; D’Alessandro, A.; Francese, G.; Toppino, L.; Cavallanti, F.; Acciarri, N.; Lo Scalzo, R. Characterization of health-related compounds in eggplant (Solanum melongena L.) lines derived from introgression of allied species. J. Agric. Food Chem. 2010, 58, 7597–7603. [Google Scholar] [CrossRef]
- Rizza, F.; Mennella, G.; Collonnier, C.; Shiachakr, D.; Kashyap, V.; Rajam, M.V.; Prestera, M.; Rotino, G.L. Androgenic dihaploids from somatic hybrids between Solanum melongena and S. aethiopicum group Gilo as a source of resistance to Fusarium oxysporum f. sp. melongenae. Plant Cell Rep. 2002, 20, 1022–1032. [Google Scholar] [CrossRef]
- Rotino, G.L.; Sihachakr, D.; Rizza, F.; Vale, G.; Tacconi, M.G.; Alberti, P.; Mennella, G.; Sabatini, E.; Toppino, L.; D’Alessandro, A.; et al. Current status in production and utilization of dihaploids from somatic hybrids between eggplant (Solanum melongena L.) and its wild relatives. Acta Physiol. Plant. 2005, 27, 723–733. [Google Scholar] [CrossRef]
- Salgon, S.; Raynal, M.; Lebon, S.; Baptiste, J.-M.; Daunay, M.-C.; Dintinger, J.; Jourda, C. Genotyping by sequencing highlights a polygenic resistance to Ralstonia pseudosolanacearum in Eggplant (Solanum melongena L.). Int. J. Mol. Sci. 2018, 19, 357. [Google Scholar] [CrossRef] [Green Version]
- Portis, E.; Barchi, L.; Toppino, L.; Lanteri, S.; Acciarri, N.; Felicioni, N.; Fusari, F.; Barbierato, V.; Cericola, F.; Valè, G. QTL mapping in eggplant reveals clusters of yield-related loci and orthology with the tomato genome. PLoS ONE 2014, 9, e89499. [Google Scholar] [CrossRef] [Green Version]
- Barchi, L.; Lanteri, S.; Portis, E.; Stagel, A.; Vale, G.; Toppino, L.; Rotino, G.L. Segregation distortion and linkage analysis in eggplant (Solanum melongena L.). Genome 2010, 53, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Thondehaalmath, T.; Kulaar, D.S.; Bondada, R.; Maruthachalam, R. Understanding and exploiting uniparental genome elimination in plants: Insights from Arabidopsis thaliana. J. Exp. Bot. 2021. [Google Scholar] [CrossRef] [PubMed]
- Jacquier, N.M.A.; Gilles, L.M.; Martinant, J.-P.; Rogowsky, P.M.; Widiez, T. The maize in planta haploid induction lines, a corner stone for doubled haploid technology. In Doubled Haploid Technology II: Hot Topics, Apiaceae, Brassicaceae, Solanaceae; Seguí-Simarro, J.M., Ed.; Methods in Molecular Biology; Springer Science + Business Media: New York, NY, USA, 2021; Volume 2288. [Google Scholar]
- Zhong, Y.; Chen, B.; Li, M.; Wang, D.; Jiao, Y.; Qi, X.; Wang, M.; Liu, Z.; Chen, C.; Wang, Y.; et al. A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis. Nat. Plants 2020, 6, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Ravi, M.; Chan, S.W.L. Haploid plants produced by centromere-mediated genome elimination. Nature 2010, 464, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Ashtiyani, R. Centromere engineering as an emerging tool for haploid plant production: Advances and challenges. In Doubled Haploid Technology Vol. 3. Emerging Tools, Cucurbits, Trees, Other Species; Seguí-Simarro, J.M., Ed.; Methods in Molecular Biology; Springer Science + Business Media: New York, NY, USA, 2021; Volume 2289, pp. 3–22. [Google Scholar]
- Kuppu, S.; Ron, M.; Marimuthu, M.P.A.; Li, G.; Huddleson, A.; Siddeek, M.H.; Terry, J.; Buchner, R.; Shabek, N.; Comai, L.; et al. A variety of changes, including CRISPR/Cas9-mediated deletions, in CENH3 lead to haploid induction on outcrossing. Plant Biotechnol. J. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kelliher, T.; Starr, D.; Wang, W.; McCuiston, J.; Zhong, H.; Nuccio, M.L.; Martin, B. Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Kelliher, T.; Starr, D.; Su, X.; Tang, G.; Chen, Z.; Carter, J.; Wittich, P.E.; Dong, S.; Green, J.; Burch, E.; et al. One-step genome editing of elite crop germplasm during haploid induction. Nat. Biotechnol. 2019, 37, 287–292. [Google Scholar] [CrossRef]
- Lv, J.; Yu, K.; Wei, J.; Gui, H.; Liu, C.; Liang, D.; Wang, Y.; Zhou, H.; Carlin, R.; Rich, R.; et al. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nat. Biotechnol. 2020. [Google Scholar] [CrossRef]
- Stajic, E.; Kielkowska, A.; Murovec, J.; Bohanec, B. Deep sequencing analysis of CRISPR/Cas9 induced mutations by two delivery methods in target model genes and the CENH3 region of red cabbage (Brassica oleracea var. capitata f. rubra). Plant Cell Tissue Organ Cult. 2019, 139, 227–235. [Google Scholar] [CrossRef]
- Karimi-Ashtiyani, R.; Ishii, T.; Niessen, M.; Stein, N.; Heckmann, S.; Gurushidze, M.; Banaei-Moghaddam, A.M.; Fuchs, J.; Schubert, V.; Koch, K.; et al. Point mutation impairs centromeric CENH3 loading and induces haploid plants. Proc. Natl. Acad. Sci. USA 2015, 112, 11211–11216. [Google Scholar] [CrossRef] [Green Version]
- Kalinowska, K.; Chamas, S.; Unkel, K.; Demidov, D.; Lermontova, I.; Dresselhaus, T.; Kumlehn, J.; Dunemann, F.; Houben, A. State-of-the-art and novel developments of in vivo haploid technologies. TAG Theor. Appl. Genet. 2019, 132, 593–605. [Google Scholar] [CrossRef] [Green Version]
- Hirakawa, H.; Shirasawa, K.; Miyatake, K.; Nunome, T.; Negoro, S.; Ohyama, A.; Yamaguchi, H.; Sato, S.; Isobe, S.; Tabata, S.; et al. Draft genome sequence of eggplant (Solanum melongena L.): The representative solanum species indigenous to the old world. DNA Res. 2014, 21, 649–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barchi, L.; Pietrella, M.; Venturini, L.; Minio, A.; Toppino, L.; Acquadro, A.; Andolfo, G.; Aprea, G.; Avanzato, C.; Bassolino, L.; et al. A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Sci. Rep. 2019, 9, 11769. [Google Scholar] [CrossRef]
- Saini, D.K.; Kaushik, P. Visiting eggplant from a biotechnological perspective: A review. Sci. Hortic. 2019, 253, 327–340. [Google Scholar] [CrossRef]
- Alam, I.; Salimullah, M. Genetic engineering of eggplant (Solanum melongena L.): Progress, controversy and potential. Horticulturae 2021, 7, 78. [Google Scholar] [CrossRef]
- Maioli, A.; Gianoglio, S.; Moglia, A.; Acquadro, A.; Valentino, D.; Milani, A.M.; Prohens, J.; Orzaez, D.; Granell, A.; Lanteri, S.; et al. Simultaneous CRISPR/Cas9 editing of three PPO genes reduces fruit flesh browning in Solanum melongena L. Front. Plant Sci. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
Anther Culture | Microspore Culture | |
---|---|---|
Technical complexity | Lower | Higher |
Applicability | Higher | Lower |
Control of medium composition | Lower | Higher |
Efficiency | Lower | Higher |
Speed | Slower | Faster |
Need for checking haploid origin | Yes | No |
Microspore transformation | Not possible | Possible |
Output | Microspore-derived embryos | Microspore-derived calli |
Technique | Year | Advance |
---|---|---|
a | 1975 [15] | First report on eggplant anther culture. |
a | 1978 [16] | First eggplant DH plantlets. |
a, m | 1979 [17] | Combination of eggplant anther culture and microspore isolation. |
a | 1982 [18] | First reproducible eggplant anther culture protocol. |
m | 1996 [19] | First report of eggplant microspore culture. |
a | 2006 [20] | Effect of maltose in the embryogenic response. |
a | 2008 [21] | Effect of cold stress preculture in the embryogenic response. |
m | 2011 [22] | Colchicine-based genome doubling protocol. |
a | 2012 [23] | Effect of stage for anther excision and heterostyly. |
m | 2012 [24] | Improved protocol for microspore-derived callus production by starvation and heat stress. |
a | 2013 [25] | Study of the effect of PAA and Gamborg (B5) salts. |
m | 2014 [26] | Increased efficiency of microspore culture through modifications of the culture medium. |
m | 2015 [27] | Optimization of plant regeneration from microspore-derived calli. |
a | 2017 [28] | Protocol improvement by replacement of kinetin by zeatin riboside. |
a | 2017 [29] | Interaction between genotype and growth regulators. |
m | 2017 [30] | Development of a DH line with high embryogenic response. |
m | 2017 [31] | Role of calcium in microspore embryogenesis. |
m | 2019 [32] | Role of the cell wall in the embryogenic response of different species, including eggplant. |
m | 2020 [33] | Procedure for the identification of the microspore/pollen responsive stages. |
a | 2020 [34] | Effect of maltose, silver nitrate and activated charcoal in the embryogenic response. Establishment of a protocol for anther culture in liquid medium. |
m | 2020 [35] | Effect of light intensity over donor plants and in vitro microspore density in the embryogenic response. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mir, R.; Calabuig-Serna, A.; Seguí-Simarro, J.M. Doubled Haploids in Eggplant. Biology 2021, 10, 685. https://doi.org/10.3390/biology10070685
Mir R, Calabuig-Serna A, Seguí-Simarro JM. Doubled Haploids in Eggplant. Biology. 2021; 10(7):685. https://doi.org/10.3390/biology10070685
Chicago/Turabian StyleMir, Ricardo, Antonio Calabuig-Serna, and Jose M. Seguí-Simarro. 2021. "Doubled Haploids in Eggplant" Biology 10, no. 7: 685. https://doi.org/10.3390/biology10070685
APA StyleMir, R., Calabuig-Serna, A., & Seguí-Simarro, J. M. (2021). Doubled Haploids in Eggplant. Biology, 10(7), 685. https://doi.org/10.3390/biology10070685