Characterization of Rheumatoid Arthritis Risk-Associated SNPs and Identification of Novel Therapeutic Sites Using an In-Silico Approach
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. SNP Retrieval
2.2. Characterization of nsSNPs
2.3. Prediction of Damaging Effects of nsSNPs
2.4. Prediction of Stability, Functional, Structural Effects, and Conservation Profile of Proteins
2.5. Modeling of Proteins
2.6. Characterization of Intronic SNPs
2.7. Characterization of Splice Site SNPs
2.8. Characterization of UTR SNPs
2.9. Gene–Gene Interactions of RA Associated Genes
3. Discussion
4. Methodology
4.1. SNP Retrieval
4.2. Characterization of nsSNPs
4.2.1. Most Damaging Prediction
4.2.2. Protein Stability, Structural and Functional Effects, and Conservation Profile Prediction
4.3. Protein Modeling
4.4. Characterization of Intronic SNPs
4.5. Characterization of Splice Site SNP
4.6. Characterization of UTR SNPs
4.7. Gene–Gene Interaction of RA Associated Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halushka, M.; Fan, J.; Bentley, K.; Hsie, L.; Shen, N.; Weder, A.; Cooper, R.; Lipshutz, R.; Chakravarti, A. Patterns of sin-gle-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat. Genet. 1999, 22, 239–247. [Google Scholar] [CrossRef]
- Yamamoto, K.; Okada, Y.; Suzuki, A.; Kochi, Y. Genetics of rheumatoid arthritis in Asia—Present and future. Nat. Rev. Rheumatol. 2015, 11, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Silman, A.J. Epidemiology of rheumatoid arthritis. APMIS 1994, 102, 721–728. [Google Scholar] [CrossRef]
- Aho, K.; Koskenvuo, M.; Tuominen, J.; Kaprio, J. Occurrence of rheumatoid arthritis in a nationwide series of twins. J. Rheumatol. 1986, 13, 899–902. [Google Scholar] [PubMed]
- Silman, A.; Macgregor, A.; Thomson, W.; Holligan, S.; Carthy, D.; Farhan, A.; Ollier, W. Twin con-cordance rates for rheumatoid arthritis: Results from a nationwide study. Rheumatology 1993, 32, 903–907. [Google Scholar] [CrossRef] [PubMed]
- MacGregor, A.; Snieder, H.; Rigby, A.; Koskenvuo, M.; Kaprio, J.; Aho, K.; Silman, A. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 2000, 43, 30–37. [Google Scholar] [CrossRef]
- Van der Woude, D.; Houwing-Duistermaat, J.; Toes, R.; Huizinga, T.; Thomson, W.; Worthington, J.; van der Helm-van Mil, A.; de Vries, R. Quantitative heritability of anti-citrullinated protein antibody-positive and anti-citrullinated protein anti-body-negative rheumatoid arthritis. Arthritis Rheum. 2009, 60, 916–923. [Google Scholar] [CrossRef]
- Terao, C.; Ikari, K.; Nakayamada, S.; Takahashi, Y.; Yamada, R.; Ohmura, K.; Hashimoto, M.; Furu, M.; Ito, H.; Fujii, T.; et al. A twin study of rheumatoid arthritis in the Japanese population. Mod. Rheumatol. 2016, 26, 685–689. [Google Scholar] [CrossRef]
- Okada, Y.; Wu, D.; Trynka, G.; Raj, T.; Terao, C.; Ikari, K.; Kochi, Y.; Ohmura, K.; Suzuki, A.; Yoshida, S.; et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 2013, 506, 376–381. [Google Scholar] [CrossRef]
- Lenz, T.L.; Deutsch, A.J.; Han, B.; Hu, X.; Okada, Y.; Eyre, S.; Knapp, M.; Zhernakova, A.; Huizinga, T.W.; Abecasis, G.R.; et al. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat. Genet. 2015, 47, 1085–1090. [Google Scholar] [CrossRef] [Green Version]
- Stahl, E.A.; Diabetes Genetics Replication and Meta-analysis Consortium; Wegmann, D.; Trynka, G.; Gutierrez-Achury, J.; Do, R.; Voight, B.F.; Kraft, P.; Chen, R.; Kallberg, H.J.; et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat. Genet. 2012, 44, 483–489. [Google Scholar] [CrossRef]
- Kim, K.; Bang, S.-Y.; Lee, H.-S.; Bae, S.-Y.B.H.-S.L.S.-C. Update on the genetic architecture of rheumatoid arthritis. Nat. Rev. Rheumatol. 2017, 13, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.; Goddard, T.; Huang, C.; Couch, G.; Greenblatt, D.; Meng, E.; Ferrin, T. UCSF Chimera? A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhtar, M.; Jamal, T.; Jamal, H.; Din, J.U.; Jamal, M.; Arif, M.; Arshad, M.; Jalil, F. Identification of most damaging nsSNPs in human CCR6 gene: In silico analyses. Int. J. Immunogenet. 2019, 46, 459–471. [Google Scholar] [CrossRef]
- Akhtar, M.; Khan, S.; Ali, Y.; Haider, S.; Din, J.U.; Islam, Z.-U.; Jalil, F. Association study of CCR6 rs3093024 with Rheumatoid Arthritis in a Pakistani cohort. Saudi J. Biol. Sci. 2020, 27, 3354–3358. [Google Scholar] [CrossRef] [PubMed]
- Davey, N.E.; Van Roey, K.; Weatheritt, R.J.; Toedt, G.; Uyar, B.; Altenberg, B.; Budd, A.; Diella, F.; Dinkel, H.; Gibson, T.J. Attributes of short linear motifs. Mol. Biosyst. 2012, 8, 268–281. [Google Scholar] [CrossRef]
- Van Roey, K.; Uyar, B.; Weatheritt, R.J.; Dinkel, H.; Seiler, M.; Budd, A.; Gibson, T.J.; Davey, N.E. Short linear motifs: Ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem. Rev. 2014, 114, 6733–6778. [Google Scholar] [CrossRef] [PubMed]
- Diella, F. Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Front. Biosci. 2008, 13, 603. [Google Scholar] [CrossRef] [Green Version]
- Van Roey, K.; Gibson, T.J.; Davey, N.E. Motif switches: Decision-making in cell regulation. Curr. Opin. Struct. Biol. 2012, 22, 378–385. [Google Scholar] [CrossRef]
- Van Roey, K.; Dinkel, H.; Weatheritt, R.J.; Gibson, T.J.; Davey, N.E. The switches. ELM resource: A compendium of conditional regulatory interaction interfaces. Sci. Signal. 2013, 6, rs7. [Google Scholar] [CrossRef]
- Ramensky, V.; Bork, P.; Sunyaev, S. Human non-synonymous SNPs: Server and survey. Nucleic Acids Res. 2002, 30, 3894–3900. [Google Scholar] [CrossRef]
- Shen, M.-Y.; Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006, 15, 2507–2524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, B. Comparative protein structure modeling by iterative alignment, model building and model assessment. Nucleic Acids Res. 2003, 31, 3982–3992. [Google Scholar] [CrossRef]
- Carugo, O.; Pongor, S. A normalized root-mean-square distance for comparing protein three-dimensional structures. Protein Sci. 2001, 10, 1470–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Skolnick, J. TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 2005, 33, 2302–2309. [Google Scholar] [CrossRef]
- Zhang, B.; Nakamura, B.N.; Perlman, A.; Alipour, O.; Abbasi, S.Q.; Sohn, P.; Gulati, A.; Moore, G.; Hwang, C.; Sheibani, S.; et al. Identification of functional missense single-nucleotide polymorphisms in TNFAIP3 in a predominantly Hispanic population. J. Clin. Transl. Sci. 2018, 2, 350–355. [Google Scholar] [CrossRef] [Green Version]
- Couturier, N.; Bucciarelli, F.; Nurtdinov, R.N.; Debouverie, M.; Lebrun-Frenay, C.; Defer, G.; Moreau, T.; Confavreux, C.; Vukusic, S.; Cournu-Rebeix, I.; et al. Tyrosine kinase 2 variant influences T lymphocyte polarization and multiple sclerosis susceptibility. Brain 2011, 134, 693–703. [Google Scholar] [CrossRef] [Green Version]
- Dendrou, C.; Cortes, A.; Shipman, L.; Evans, H.; Attfield, K.; Jostins, L. Resolving TYK2 locus genotype-to-phenotype differ-ences in autoimmunity. Sci. Transl. Med. 2016, 8, 363ra149. [Google Scholar] [CrossRef] [Green Version]
- Lesgidou, N.; Eliopoulos, E.; Goulielmos, G.N.; Vlassi, M. Insights on the alteration of functionality of a tyrosine kinase 2 variant: A molecular dynamics study. Bioinformatics 2018, 34, i781–i786. [Google Scholar] [CrossRef]
- Fu, X.-D.; Maniatis, T. Factor required for mammalian spliceosome assembly is localized to discrete regions in the nucleus. Nat. Cell Biol. 1990, 343, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Zuo, P.; Manley, J.L. Primary structure of the human splicing factor ASF reveals similarities with Drosophila regulators. Cell 1991, 66, 373–382. [Google Scholar] [CrossRef]
- Krainer, A.R.; Mayeda, A.; Kozak, D.; Binns, G. Functional expression of cloned human splicing factor SF2: Homology to RNA-binding proteins, U1 70K, and Drosophila splicing regulators. Cell 1991, 66, 383–394. [Google Scholar] [CrossRef]
- Zahler, A.M.; Lane, W.S.; Stolk, J.A.; Roth, M.B. SR proteins: A conserved family of pre-mRNA splicing factors. Genes Dev. 1992, 6, 837–847. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Hoang, A.; Sinha, R.; Zhong, X.-Y.; Fu, X.-D.; Krainer, A.R.; Ghosh, G. Interaction between the RNA binding domains of Ser-Arg splicing factor 1 and U1-70K snRNP protein determines early spliceosome assembly. Proc. Natl. Acad. Sci. USA 2011, 108, 8233–8238. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.D.; Maniatis, T. The 35-kDa mammalian splicing factor SC35 mediates specific interactions between U1 and U2 small nuclear ribonucleoprotein particles at the 3′ splice site. Proc. Natl. Acad. Sci. USA 1992, 89, 1725–1729. [Google Scholar] [CrossRef] [Green Version]
- Kohtz, J.D.; Jamison, S.F.; Will, C.L.; Zuo, P.; Lührmann, R.; Garcia-Blanco, M.A.; Manley, J.L. Protein–protein interactions and 5′-splice-site recognition in mammalian mRNA precursors. Nat. Cell Biol. 1994, 368, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Roscigno, R.F.; Garcia-Blanco, M.A. SR proteins escort the U4/U6.U5 tri-snRNP to the spliceosome. RNA 1995, 1, 692–706. [Google Scholar] [PubMed]
- Clark, D.; Lambert, J.; Till, R.; Argueta, L.; Greenhalgh, K.; Henrie, B.; Poole, B.D. Molecular Effects of Autoimmune-Risk Promoter Poly-morphisms on Expression, Exon Choice, and Translational Efficiency of Interferon Regulatory Factor. J. Interferon Cytokine Res. 2014, 34, 354–365. [Google Scholar] [CrossRef]
- Hedl, M.; Yan, J.; Abraham, C. IRF5 and IRF5 Disease-Risk Variants Increase Glycolysis and Human M1 Macrophage Polariza-tion by Regulating Proximal Signaling and Akt2 Activation. Cell Rep. 2016, 16, 2442–2455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grillo, G.; Turi, A.; Licciulli, F.; Mignone, F.; Liuni, S.; Banfi, S.; Gennarino, V.; Horner, D.; Pavesi, G.; Picardi, E.; et al. UTRdb and UTRsite (RELEASE 2010): A collection of sequences and regulatory motifs of the untranslated regions of eukary-otic mRNAs. Nucleic Acids Res. 2009, 38, D75–D80. [Google Scholar] [CrossRef]
- Pesole, G.; Mignone, F.; Gissi, C.; Grillo, G.; Licciulli, F.; Liuni, S. Structural and functional features of eukaryotic mRNA un-translated regions. Gene 2001, 276, 73–81. [Google Scholar] [CrossRef]
- Lai, E.C.; Posakony, J.W. The Bearded box, a novel 3′ UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression. Development 1997, 124, 4847–4856. [Google Scholar] [CrossRef]
- Shan, S.; Dang, J.; Li, J.; Yang, Z.; Zhao, H.; Xin, Q.; Liu, Q. ETS1 variants confer susceptibility to ankylosing spondylitis in Han Chinese. Arthritis Res. Ther. 2014, 16, R87. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Shen, N.; Ye, D.; Liu, Q.; Zhang, Y.; Qian, X.; Asian Lupus Genetics Consortium. Genome-Wide Association Study in Asian Populations Identifies Vari-ants in ETS1 and WDFY4 Associated with Systemic Lupus Erythematosus. PLoS Genet. 2010, 6, e1000841. [Google Scholar] [CrossRef] [Green Version]
- Simpfendorfer, K.; Armstead, B.; Shih, A.; Li, W.; Curran, M.; Manjarrez-Orduño, N.; Lee, A.; Diamond, B.; Gregersen, P. Autoimmune Disease-Associated Haplotypes of BLK Exhibit Lowered Thresholds for B Cell Activation and Expansion of Ig Class-Switched B Cells. Arthritis Rheumatol. 2015, 67, 2866–2876. [Google Scholar] [CrossRef] [Green Version]
- Chemin, K.; Ramsköld, D.; Diaz-Gallo, L.; Herrath, J.; Houtman, M.; Tandre, K.; Rönnblom, L.; Catrina, A.; Malmström, V. EOMES-positive CD4+T cells are increased inPTPN22(1858T) risk allele carriers. Eur. J. Immunol. 2018, 48, 655–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.; Sims, G.E.; Murphy, S.; Miller, J.R.; Chan, A.P. Predicting the Functional Effect of Amino Acid Substitutions and Indels. PLoS ONE 2012, 7, e46688. [Google Scholar] [CrossRef] [Green Version]
- Ng, P.C.; Henikoff, S. Predicting the Effects of Amino Acid Substitutions on Protein Function. Annu. Rev. Genom. Hum. Genet. 2006, 7, 61–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.; Henikoff, S.; Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 2009, 4, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, E.; Calabrese, R.; Fariselli, P.; Martelli, P.L.; Altman, R.B.; Casadio, R. WS-SNPs&GO: A web server for predicting the dele-terious effect of human protein variants using functional annotation. BMC Genom. 2013, 3, S6. [Google Scholar]
- Capriotti, E.; Calabrese, R.; Casadio, R. Predicting the insurgence of human genetic diseases associated to single point pro-teinmutations with support vector machines and evolutionary information. Bioinformatics 2006, 22, 2729–2734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Sunyaev, S.R. A method and server for predicting damag-ing missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef] [Green Version]
- Capriotti, E.; Fariselli, P.; Casadio, R. I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005, 33, W306–W310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Krishnan, V.G.; Mort, M.E.; Xin, F.; Kamati, K.K.; Cooper, D.N.; Mooney, S.D.; Radivojac, P. Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 2009, 25, 2744–2750. [Google Scholar] [CrossRef] [Green Version]
- Berezin, C.; Glaser, F.; Rosenberg, J.; Paz, I.; Pupko, T.; Fariselli, P.; Ben-Tal, N. ConSeq: The Identification of Functionallyand Structurally Important Residues in Protein Sequences. Bioinformatics 2004, 20, 1322–1324. [Google Scholar] [CrossRef] [PubMed]
- Šali, A.; Blundell, T.L. Comparative Protein Modelling by Satisfaction of Spatial Restraints. J. Mol. Biol. 1993, 234, 779–815. [Google Scholar] [CrossRef]
- Smith, P.J.; Zhang, C.; Wang, J.; Chew, S.L.; Zhang, M.Q.; Krainer, A.R. An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum. Mol. Genet. 2006, 15, 2490–2508. [Google Scholar] [CrossRef] [Green Version]
- Nordang, G.B.N.; Viken, M.K.; Amundsen, S.S.; Sanchez, E.S.; Flatø, B.; Førre Øystein, T.; Martin, J.; Kvien, T.K.; Lie, B.A. Interferon regulatory factor 5 gene polymorphism confers risk to several rheumatic diseases and correlates with expression of alternative thymic transcripts. Rheumatology 2011, 51, 619–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebsgaard, S.M.; Korning, P.G.; Tolstrup, N.; Engelbrecht, J.; Rouze, P.; Brunak, S. Splice site prediction in Arabidopsis thaliana DNA by combining local and global sequence information. Nucleic Acids Res. 1996, 24, 3439–3452. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Marín, A. Characterization and Prediction of Alternative Splice Sites. Gene 2006, 366, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Desmet, F.O.; Hamroun, D.; Lalande, M.; Collod-Beroud, G.; Claustres, M.; Beroud, C. Human Splicing Finder: An online bioinfor-matics tool to predict splicing signals. Nucleic Acid Res. 2009, 37, e67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warde-Farley, D.; Donaldson, S.L.; Comes, O.; Zuberi, K.; Badrawi, R.; Chao, P.; Franz, M.; Grouios, C.; Kazi, F.; Lopes, C.T.; et al. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010, 38, W214–W220. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | SNP ID | Amino Acid Change | Global MAF * |
---|---|---|---|
PTPN22 | rs33996649 | R263Q | T = 0.0110 |
rs2476601 | R620W | A = 0.0274 | |
PADI4 | rs11203366 | G55S | G = 0.4754 |
rs11203367 | V82A | T = 0.4667 | |
CTLA4 | rs231775 | T17A | G = 0.4273 |
TNFAIP3 | rs5029941 | A125V | T = 0.0060 |
rs2230926 | F127S | G = 0.1396 | |
FCGR2A | rs1801274 | H167R | G = 0.4417 |
FCGR2B | rs1050501 | I232T | C = 0.1859 |
IRAK1 | rs1059703 | S532L | G = 0.4832 |
rs1059702 | F196S | A = 0.3711 | |
IL6R | rs2228145 | D358A | C = 0.2931 |
AIRE | rs1800520 | S278R | G = 0.2282 |
TYK2 | rs34536443 | P1104A | C = 0.0102 |
RTKN2 | rs3125734 | H462R | T = 0.4111 |
PLD4 | rs2841280 | E34Q | C = 0.4119 |
NFKBIE | rs2233434 | V194A | G = 0.0669 |
rs2233433 | P175L | A = 0.0529 | |
SH2B3 | rs3184504 | W262R | T = 0.1474 |
CD226 | rs763361 | S307G | C = 0.4694 |
WDFY4 | rs7097397 | R1816Q | A = 0.3586 |
YDJC | rs2298428 | A263T | T = 0.2248 |
PRKCH | rs2230500 | V374I | A = 0.0605 |
Gene | SNP ID | PhD-SNP | SNP&GO | PolyPhen-2 | PROVEAN | SIFT | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Prediction | Score (Threshold 0.5) | Prediction | Score (Threshold 0.5) | Prediction | Score (0–1) | Prediction | Score (Threshold −2.5) | Prediction | TI Score (Threshold 0.05) | ||
PTPN22 | rs2476601 | Neutral | 0.473 | Neutral | 0.253 | Benign | 0.029 | Deleterious | −5.099 | Deleterious | 0.03 |
TNFAIP3 | rs5029941 | Neutral | 0.242 | Neutral | 0.071 | Probably damaging | 0.983 | Neutral | −2.147 | Deleterious | 0.006 |
rs2230926 | Neutral | 0.425 | Neutral | 0.222 | Possibly damaging | 0.515 | Deleterious | −3.993 | Tolerated | 0.093 | |
TYK2 | rs34536443 | Neutral | 0.300 | Neutral | 0.094 | Probably damaging | 1.00 | Deleterious | −6.755 | Deleterious | 0.007 |
Gene | SNP | CADD | REVEL | MetalR | Mutation Assessor |
---|---|---|---|---|---|
PTPN22 | rs2476601 | 14 | 0.07 | 0.003 | 0.00 |
TNFAIP3 | rs5029941 | 16 | 0.078 | 0.035 | 0.373 |
rs2230926 | 18 | 0.153 | 0.025 | 0.294 | |
TYK2 | rs34536443 | 26 | 0.586 | 0.336 | 0.36 |
Gene | SNP ID | Stability | Torsion | Predicted ΔΔG (kcal/mol) |
---|---|---|---|---|
PTPN22 | rs33996649 | Destabilizing | Unfavorable | −0.116 |
rs2476601 | Destabilizing | Favorable | −6.98 | |
PADI4 | rs11203366 | Destabilizing | Favorable | −5.91 |
rs11203367 | Destabilizing | Unfavorable | −0.46 | |
CTLA4 | rs231775 | Destabilizing | Favorable | −1.04 |
TNFAIP3 | rs5029941 | Stabilizing | Unfavorable | 2.78 |
rs2230926 | Destabilizing | Unfavorable | −4.58 | |
FCGR2A | rs1801274 | Destabilizing | Favorable | −1.19 |
FCGR2B | rs1050501 | Destabilizing | Favorable | −0.91 |
IRAK1 | rs1059703 | Destabilizing | Unfavorable | −3.43 |
rs1059702 | Stabilizing | Unfavorable | 0.16 | |
IL6R | rs2228145 | Stabilizing | Favorable | 0.04 |
AIRE | rs1800520 | Destabilizing | Favorable | −0.16 |
TYK2 | rs34536443 | Stabilizing | Favorable | 6.73 |
RTKN2 | rs3125734 | Stabilizing | Unfavorable | 1.79 |
PLD4 | rs2841280 | Stabilizing | Unfavorable | 1.99 |
NFKBIE | rs2233434 | Destabilizing | Favorable | −0.91 |
rs2233433 | Destabilizing | Favorable | −1.79 | |
SH2B3 | rs3184504 | Stabilizing | Unfavorable | 0.91 |
CD226 | rs763361 | Destabilizing | Favorable | −0.43 |
WDFY4 | rs7097397 | Destabilizing | Unfavorable | −0.09 |
YDJC | rs2298428 | Stabilizing | Unfavorable | 0.43 |
PRKCH | rs2230500 | Destabilizing | Unfavorable | −0.91 |
Gene | SNP ID | I-Mutant (Stability) | MutPred | ConSurf Conservation Profile | |
---|---|---|---|---|---|
PROSITE and ELM Motifs | Molecular Mechanisms | ||||
PTPN22 | rs33996649 | Decrease | None | None | Highly conserved, exposed, and functional residue |
rs2476601 | Decrease | None | None | Highly conserved, exposed, and functional residue | |
TNFAIP3 | rs2230926 | Decrease | ELME000053, ELME000064, ELME000106, ELME000146, ELME000220, ELME000239, | 1. Gain of intrinsic disorder 2. Loss of allosteric site at R123 | Exposed |
TYK2 | rs34536443 | Decrease | None | None | Highly conserved, exposed, and functional residue |
Query Protein | Templates | Identity (%) | Coverage (%) | Query Protein | Templates | Identity (%) | Coverage (%) |
---|---|---|---|---|---|---|---|
PTPN22 | 3BRH | 99.35 | 38 | AIRE | 2LRI | 100 | 19 |
4J51 | 100 | 37 | 1XWH | 96.88 | 19 | ||
3H2X | 100 | 37 | 2KFT | 100 | 17 | ||
2P6X | 99.67 | 37 | 4ZQL | 49.18 | 21 | ||
TNFAIP3 | 3DKB | 100 | 46 | RTKN | 4XH3 | 22.28 | 56 |
5LRX | 100 | 46 | 1UPQ | 31.63 | 16 | ||
2VFJ | 100 | 46 | 2Y7B | 22.22 | 17 | ||
3ZJD | 99.73 | 46 | 1WJM | 31.58 | 9 | ||
TYK2 | 4OLI | 98.57 | 53 | PLD4 | 2ZE4 | 26.52 | 34 |
4PO6 | 100 | 47 | 4GGJ | 26.32 | 22 | ||
3ZON | 100 | 50 | 2ZE9 | 25.97 | 34 | ||
5C01 | 100 | 49 | 1BYR | 24.70 | 30 | ||
CTLA4 | 2 × 44 | 94.44 | 72 | NFKBIE | 1K1A | 45.74 | 44 |
1I85 | 94.44 | 72 | 1IKN | 37.99 | 45 | ||
5XJ3 | 94.44 | 72 | 1NFI | 40 | 45 | ||
3OSK | 94.44 | 72 | 1OY3 | 38.05 | 37 | ||
FCGR2A | 1FCG | 99.43 | 54 | SH2B3 | 5W3R | 74.04 | 18 |
1H9V | 99.42 | 54 | 2HDV | 71.30 | 18 | ||
3D5O | 99.42 | 53 | 1RQQ | 69.23 | 18 | ||
3RY4 | 99.41 | 53 | 1RPY | 68.27 | 18 | ||
FCGR2B | 5OCC | 100 | 56 | CD226 | 6ISB | 100 | 69 |
3WJJ | 100 | 55 | 6ISA | 53.39 | 65 | ||
2FCB | 99.42 | 55 | 5B22 | 26.21 | 59 | ||
1H9V | 99.19 | 55 | 4FQM | 26.21 | 59 | ||
IRAK1 | 6BFN | 99.71 | 47 | PRKCH | 3TXO | 99.43 | 51 |
6EG9 | 34.74 | 45 | 4RA4 | 57.57 | 49 | ||
2NRY | 34.74 | 45 | 3IW4 | 57.27 | 49 | ||
2NRU | 34.24 | 45 | 2I0E | 58.11 | 49 | ||
IL6R | 1N26 | 100 | 69 | PADI4 | 3APM | 100 | 100 |
5FUC | 99.06 | 54 | 4X8C | 99.85 | 100 | ||
1P9M | 100 | 42 | 4DKT | 99.55 | 100 | ||
2ARW | 100 | 26 | 3APN | 99.55 | 100 | ||
WDFY4 | 1T77 | 46.72 | 11 | YDJC | 2I5I | 37.23 | 40 |
1MI1 | 46.17 | 11 | |||||
5A1U | 23.70 | 6 | |||||
6G6M | 30.30 | 5 |
Protein | Favored (%) | Allowed (%) | Outlier (%) |
---|---|---|---|
PTPN22 | 85 | 9.4 | 5.6 |
PADI4 | 91.8 | 5.1 | 3.0 |
CTLA4 | 96.5 | 2.9 | 0.6 |
TNFAIP3 | 84.3 | 8.5 | 7.2 |
FCGR2A | 95.2 | 4.4 | 0.3 |
FCGR2B | 93.8 | 4.5 | 1.6 |
IRAK1 | 93.7 | 3.5 | 2.8 |
IL6R | 88.4 | 7.7 | 3.9 |
AIRE | 84.9 | 9.6 | 5.4 |
TYK2 | 82.1 | 9.8 | 8.1 |
RTKN2 | 83.5 | 10.5 | 5.9 |
PLD4 | 90.8 | 4.9 | 4.3 |
NFKBIE | 91.6 | 6.6 | 1.8 |
SH2B3 | 83.2 | 10.6 | 6.1 |
CD226 | 94.9 | 3.8 | 1.4 |
WDFY4 | 78.5 | 13.0 | 8.5 |
YDJC | 78.5 | 13.0 | 8.5 |
PRKCH | 88.0 | 8.4 | 3.7 |
Gene | SNP ID | Potential Splicing Site | Gene | SNP ID | Potential Splicing Site |
---|---|---|---|---|---|
PTPN22 | rs3765598 | SRFSF2→ No Site | AIRE | rs2075876 | SRSF1, SRSF2, SRSF5 → No Site |
rs1217414 | SRSF2, SRSF5 → No Site | rs933150 | No Site → SRSF2, SRSF6 | ||
FCRL3 | rs3761959 | SRSF5 → No Site | TNFRSF14 | rs3890745 | No Site → SRF5 |
TRAF1/C5 | rs3761847 | SRSF1, SRSF5 → No Site | RUNX1 | rs2268277 | SRSF1 → No Site |
rs2900180 | No Site → SRSF5 | RASGRP1 | rs8043085 | SRSF1, SRSF2, SRSF5 → No Site | |
TNFAIP3 | rs5029930 | SRSF1, SRSF5 → No Site | ILF3 | rs147622113 | SRSF1, SRSF2 → No Site |
rs5029937 | No Site → SRSF2 | COG6 | rs9603612 | SRSF1, SRSF2 → SRSF6 | |
rs5029939 | SRSF2 → No Site | rs7993214 | No Site → SRSF6 | ||
STAT4 | rs7574865 | No Site → SRSF2 | UBASH3A | rs11203203 | No Site → SRSF5 |
IL2RB | rs3218253 | SRSF1 → SRSF5 | rs3788013 | No Site → SRSF6 | |
CD40 | rs4810485 | No Site → SRSF5 | TEC | rs2089510 | No Site → SRSF2 |
rs1535045 | SRSF1 → No Site | SYNGR1 | rs909685 | No Site → SRSF6 | |
rs3765459 | SRSF5 → No Site | RAD51B | rs3784099 | SRSF2 → No Site | |
CD244 | rs3766379 | No Site → SRSF5 | rs911263 | SRSF1, SRSF2, SRSF5 → No Site | |
TRAF6 | rs540386 | SRSF2, SRSF6 → No Site | PRKCH | rs912620 | No Site → SRSF2 |
rs13031237 | SRSF6 → SRSF5 | rs959728 | SRSF5, SRSF6 → No Site | ||
CD28 | rs2140148 | SRSF1, SRSF5 → No Site | rs3783782 | SRSF2 → No Site | |
ANKRD55 | rs9295089 | No Site → SRSF1 SRSF2 | PPIL4 | rs9498368 | SRSF1 → No Site |
rs212402 | SRSF2 → No Site | PLCL2 | rs4535211 | No Site → SRSF6 | |
IL6R | rs4537545 | SRSF1, SRSF2, SRSF5 → No Site | MTF1 | rs67704103 | SRSF1, SRSF5 → No Site |
rs4329505 | No Site → SRSF2 SRSF5 | GATA3 | rs3802604 | SRSF5 → SRSF1 |
Method | Silencer/Enhancer Protein (Potential Splice Sites) | Motifs | Result | |
---|---|---|---|---|
G Allele (Value 0–100) | T Allele (Value 0–100) | |||
Human Splicing Finder 3.1 (Threshold 60) | - | CGGgtgggt (85.64) | New site (position −4 bp) | |
Enhancer motifs SF2/ASF (IgM-BRCA1) | CGGGGGG (78.92) | - | Site broken at position −4 bp | |
Silencer motifs (Sironi et al.) | Motif 2 CTCGGGG (60.84) | - | Site broken at position −7 bp | |
Motif 2 TCGGGGG (70.71) | - | Site broken at position −5 bp | ||
Motif 2 GGGGGTG (67.64) | - | Site broken at position −1 bp | ||
- | Motif 2 TGGGTGC (60.69) | New site at SNP position | ||
Silencer IIEs motifs (Zhang et al.) | CGGGGG | - | Site broken at −4 bp position | |
ESEfinder 3.0 (Threshold 1.867) | SRSF2 (IgM-BRCA1) | CGGGGGG (2.95482) | - | Site broken at position −4 bp |
Gene | SNPs | UTRScan | PolymiRTS Database | MicroSNiPer |
---|---|---|---|---|
PTPN22 | rs3811021 | - | hsa-miR-4275 → hsa-miR-548ad | hsa-miR-4275 |
TAGAP | rs4709267 | - | - | hsa-miR-4696, hsa-miR-548u |
IRF5 | rs2070197 | - | hsa-miR-3136-3p, hsa-miR-7155-3p → no site | hsa-miR-3136-3p, hsa-miR-1295b-5p |
rs10954213 | - | - | hsa-miR-181b-5p, hsa-miR-181d, hsa-miR-181a-5p, hsa-miR-181c-5p | |
ETS1 | rs1128334 | No site → BRD-BOX | hsa-miR-300, hsa-miR-381-3p, hsa-miR-6882-5p → hsa-miR-382-5p, hsa-miR-495-5p | hsa-miR-4528 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhtar, M.; Ali, Y.; Islam, Z.-u.; Arshad, M.; Rauf, M.; Ali, M.; Maodaa, S.N.; Al-Farraj, S.A.; El-Serehy, H.A.; Jalil, F. Characterization of Rheumatoid Arthritis Risk-Associated SNPs and Identification of Novel Therapeutic Sites Using an In-Silico Approach. Biology 2021, 10, 501. https://doi.org/10.3390/biology10060501
Akhtar M, Ali Y, Islam Z-u, Arshad M, Rauf M, Ali M, Maodaa SN, Al-Farraj SA, El-Serehy HA, Jalil F. Characterization of Rheumatoid Arthritis Risk-Associated SNPs and Identification of Novel Therapeutic Sites Using an In-Silico Approach. Biology. 2021; 10(6):501. https://doi.org/10.3390/biology10060501
Chicago/Turabian StyleAkhtar, Mehran, Yasir Ali, Zia-ul Islam, Maria Arshad, Mamoona Rauf, Muhammad Ali, Saleh N. Maodaa, Saleh A. Al-Farraj, Hamed A. El-Serehy, and Fazal Jalil. 2021. "Characterization of Rheumatoid Arthritis Risk-Associated SNPs and Identification of Novel Therapeutic Sites Using an In-Silico Approach" Biology 10, no. 6: 501. https://doi.org/10.3390/biology10060501
APA StyleAkhtar, M., Ali, Y., Islam, Z. -u., Arshad, M., Rauf, M., Ali, M., Maodaa, S. N., Al-Farraj, S. A., El-Serehy, H. A., & Jalil, F. (2021). Characterization of Rheumatoid Arthritis Risk-Associated SNPs and Identification of Novel Therapeutic Sites Using an In-Silico Approach. Biology, 10(6), 501. https://doi.org/10.3390/biology10060501