Research Progress in Plant Molecular Systematics of Lauraceae
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Main Controversy over Cinnamoneae and Laureae Tribes
3. The Main Controversy over Perseeae and Cinnamoneae Tribes
4. The Systematic Positions of Genera Neocinnamomum, Caryodaphnopsis and Cassytha
5. Application of Chloroplast Genome in the Phylogeny of Lauraceae
6. Applications of DNA Barcodings in the Phylogenetic Studies of Lauraceae
7. Discussion and Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chanderbali, A.S.; van der Werff, H.; Renner, S.S. Phylogeny and Historical Biogeography of Lauraceae: Evidence from the Chloroplast and Nuclear Genomes. Ann. Mo. Bot. Gard. 2001, 88, 104. [Google Scholar] [CrossRef] [Green Version]
- Van Der Werff, H.; Richter, H.G. Toward an Improved Classification of Lauraceae. Ann. Mo. Bot. Gard. 1996, 83, 409. [Google Scholar] [CrossRef]
- Kostermans, A.J.G.H. Lauraceae. Reinwardtia 1957, 4, 193–256. [Google Scholar]
- Li, H.W. Lauraceae. In Flora of China; Science Press: Beijing, China, 1982; Volume 7. [Google Scholar]
- Li, X.W. The Origin and Evolution of Litsea Genera Group (Laureae) in Lauraceae. Acta Bot. Yunnanica 1995, 17, 251–254. [Google Scholar]
- Gentry, A.H. Changes in Plant Community Diversity and Floristic Composition on Environmental and Geographical Gradients. Ann. Mo. Bot. Gard. 1988, 75, 1–34. [Google Scholar] [CrossRef]
- Werff, H.V.D. An annotated key to the genera of Lauraceae in the Flora Malesiana Region. Blumea J. Plant Taxon. Plant Geogr. 2001, 46, 125–140. [Google Scholar]
- Trofimov, D.; Rudolph, B.; Rohwer, J.G. Phylogenetic study of the genus Nectandra (Lauraceae), and reinstatement of Damburneya. Taxon 2016, 65, 980–996. [Google Scholar] [CrossRef]
- Rohde, R.; Rudolph, B.; Ruthe, K.; Lorea-Hernández, F.G.; de Moraes, P.L.R.; Li, J.; Rohwer, J.G. Neither Phoebe nor Cinnamomum—The tetrasporangiate species of Aiouea (Lauraceae). Taxon 2017, 66, 1085–1111. [Google Scholar] [CrossRef]
- Trofimov, D.; de Moraes, P.L.R.; Rohwer, J.G. Towards a phylogenetic classification of the Ocotea complex (Lauraceae): Classification principles and reinstatement of Mespilodaphne. Bot. J. Linn. Soc. 2019, 190, 25–50. [Google Scholar] [CrossRef]
- Qian, X.S.; Zhang, W.M.; Gu, G.P.; Zhang, G.L. Development of Persea americana resources. Chin. Wild Plant Resour. 2010, 29, 23–25. [Google Scholar]
- Song, Y.; Yao, X.; Tan, Y.; Gan, Y.; Corlett, R.T. Complete chloroplast genome sequence of the avocado: Gene organization, comparative analysis, and phylogenetic relationships with other Lauraceae. Can. J. For. Res. 2016, 46, 1293–1301. [Google Scholar] [CrossRef]
- Chen, H.; Morrell, P.L.; Ashworth, V.E.T.M.; de la Cruz, M.; Clegg, M.T. Tracing the Geographic Origins of Major Avocado Cultivars. J. Hered. 2008, 100, 56–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.-W.; Feng, Y.-C.; Huang, Y.; Li, H.-L. Potential cosmetic application of essential oil extracted from Litsea cubeba fruits from China. J. Essent. Oil Res. 2013, 25, 112–119. [Google Scholar] [CrossRef]
- Su, Y.-C.; Ho, C.-L. Essential Oil Compositions and Antimicrobial Activities of Various Parts of Litsea cubeba from Taiwan. Nat. Prod. Commun. 2016, 11, 515–518. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.; Lebrun, M.; Caruso, D.; Chu-Ky, S.; Sarter, S.; van Nguyen, H.; Meile, J.-C. Litsea cubeba leaf essential oil from Vietnam: Chemical diversity and its impacts on antibacterial activity. Lett. Appl. Microbiol. 2018, 66, 207–214. [Google Scholar] [CrossRef]
- Fujita, Y. Classification and Phylogeny of the Genus Cinnamomum Viewed from the Constituents of Essential Oils. J. Plant Res. 1967, 80, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Raven, P.H.; Axelrod, D.I. Angiosperm Biogeography and Past Continental Movements. Ann. Mo. Bot. Gard. 1974, 61, 539. [Google Scholar] [CrossRef]
- Moreau, J.-D.; Gomez, B.; Daviero-Gomez, V.; Néraudeau, D.; Tafforeau, P. Inflorescences of Mauldinia sp. (Lauraceae) and associated fruits from the Cenomanian of Languedoc Roussillon, France. Cretac. Res. 2016, 59, 18–29. [Google Scholar] [CrossRef]
- Huang, H.H.; Li, J.Z. Flower fossils of Lauraceae in the geological time and its phylogenetic evolutionary significance. Guihaia 2018, 38, 210–219. [Google Scholar]
- Li, J.; Li, X.W. Advances in Lauraceae systematic research on the world scale. Acta Bot. Yunnanica 2004, 26, 1–11. [Google Scholar]
- Linné, C.V. Exhibentes plantas rite cognitas ad genera relates, cum differentiis specificis nominibus trivialibus synonymis selectis, locis natalibus, secundum systema sexuale digestas. In Species Plantarum; Laurentius Salvius: Stockholm, Sweden, 1753. [Google Scholar]
- Meissner, C.F. Lauraceae. In Prodromous Systematisnaturalis Regni Vegetabilis; Masson et Sons: Paris, France, 1864; Volume 15. [Google Scholar]
- Bentham, G.; Hooker, J.D. Laurineae. In Genera Plantarum; Reeve: London, UK, 1880; Volume 3, pp. 146–168. [Google Scholar]
- Pax, F. Lauraceae. In Die Natürlichen Pflanzenfarnilien; W. Engelmann: Leipzig, Germany, 1889; Volume III, pp. 106–126. [Google Scholar]
- Mez, C. Lauraceae Americanae; Gebruder Borntraeger: Berlin, Germany, 1889; Volume 5, pp. 1–556. [Google Scholar]
- Hutchinson, J. The Genera of Flowering Plants (Dicotyledonae); Clarendon Press: Oxford, UK, 1964; Volume 1. [Google Scholar]
- Rohwer, J.G. Lauraceae. In The Families and Genera of Vascular Plants; Springer: Berlin/Heidelberg, Gernamy, 1993; Volume 2, pp. 366–391. [Google Scholar]
- Rohwer, J.G.; Rudolph, B. Jumping genera: The phylogenetic positions of Cassytha, Hypodaphnis, and Neo-cinnamomum (Lauraceae) based on different analyses of trnK intron sequences. Ann. Mo. Bot. Gard. 2005, 92, 153–178. [Google Scholar]
- Rohwer, J.G. Toward a Phylogenetic Classification of the Lauraceae: Evidence from matK Sequences. Syst. Bot. 2000, 25, 60. [Google Scholar] [CrossRef]
- Li, J.; Christophel, D.C.; Conran, J.G.; Li, H.-W. Phylogenetic relationships within the core Laureae (Litsea complex, Lauraceae) inferred from sequences of the chloroplast gene mat K and nuclear ribosomal DNA ITS regions. Plant Syst. Evol. 2004, 246, 19–34. [Google Scholar] [CrossRef]
- Gottlieb, O. Chemosystematics of the lauraceae. Phytochemistry 1972, 11, 1537–1570. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Li, Z.; Zhao, Y.-X.; Gao, M.; Wang, J.-Y.; Liu, K.-W.; Wang, X.; Wu, L.-W.; Jiao, Y.-L.; Xu, Z.-L.; et al. The Litsea genome and the evolution of the laurel family. Nat. Commun. 2020, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Tsui, H.P. Notes on Trib. Laureae (Lauraceae). Bull. Bot. Res. 1987, 7, 1–10. [Google Scholar]
- Li, Z.-M. Polyphyly of the genus Actinodaphne (Lauraceae) inferred from the analyses of nrDNA ITS and ETS sequences. Acta Phytotaxon. Sin. 2006, 44, 272. [Google Scholar] [CrossRef]
- Nie, Z.-L.; Wen, J.; Sun, H. Phylogeny and biogeography of Sassafras (Lauraceae) disjunct between eastern Asia and eastern North America. Plant Syst. Evol. 2007, 267, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Nees, V.E.F.C.G.D. Systema Laurinarum; Sumbitibus Veitii et sociorum: Berlin/Heidelberg, Gernamy, 1836. [Google Scholar]
- Li, J.; Christophel, D.C. Systematic relationships within the Litsea complex (Lauraceae): A cladistic analysis on the basis of morphological and leaf cuticle data. Aust. Syst. Bot. 2000, 13, 1–13. [Google Scholar] [CrossRef]
- Li, L.; Li, J.; Conran, J.G.; Li, X.W.; Li, H.-W. Phylogeny of Neolitsea (Lauraceae) inferred from Bayesian analysis of nrDNA ITS and ETS sequences. Plant Syst. Evol. 2007, 269, 203–221. [Google Scholar] [CrossRef]
- Fijridiyanto, I.A.; Murakami, N. Phylogeny of Litsea and related genera (Laureae-Lauraceae) based on analysis of rpb2 gene sequences. J. Plant Res. 2009, 122, 283–298. [Google Scholar] [CrossRef]
- Liu, Z.-F.; Ci, X.-Q.; Li, L.; Li, H.-W.; Conran, J.G.; Li, J. DNA barcoding evaluation and implications for phylogenetic relationships in Lauraceae from China. PLoS ONE 2017, 12, e0175788. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.-F.; Li, L.; Conran, J.G.; Li, J. Phylogenetic utility of LEAFY gene in Cinnamomum (Lauraceae): Gene duplication and polymerase chain reaction-mediated recombination. J. Syst. Evol. 2016, 54, 238–249. [Google Scholar] [CrossRef]
- Rohwer, J.G.; Li, J.; Rudolph, B.; Schmidt, S.A.; van der Werff, H.; Li, H.-W. Is Persea (Lauraceae) monophyletic? Evidence from nuclear ribosomal ITS sequences. Taxon 2009, 58, 1153–1167. [Google Scholar] [CrossRef]
- Song, Y.; Yu, W.; Tan, Y.; Jin, J.; Wang, B.; Yang, J.; Liu, B.; Corlett, R.T. Plastid phylogenomics improve phylogenetic resolution in the Lauraceae. J. Syst. Evol. 2019, 58, 423–439. [Google Scholar] [CrossRef]
- Liu, H. Lauracées de Chine et d’Indochine; Hermann et Cie: Paris, France, 1934. [Google Scholar]
- Kostermans, A.J.G.H. A monograph of the genus Neocinnamomum Liou Ho. Reinwardtia 1974, 9, 85–96. [Google Scholar] [CrossRef]
- Richter, H.G. Anatomie des Sekundaren Xylerns undder Rinde der Lauraceae; Naturwiss: Hamburg, Germany, 1981; Volume 5. [Google Scholar]
- Wang, Z.-H.; Li, J.; Conran, J.G.; Li, H.-W. Phylogeny of the Southeast Asian endemic genus Neocinnamomum H. Liu (Lauraceae). Plant Syst. Evol. 2010, 290, 173–184. [Google Scholar] [CrossRef]
- Li, L.; Madriñán, S.; Li, J. Phylogeny and biogeography of Caryodaphnopsis (Lauraceae) inferred from low-copy nuclear gene and ITS sequences. Taxon 2016, 65, 433–443. [Google Scholar] [CrossRef]
- Nock, C.J.; Waters, D.L.; Edwards, M.A.; Bowen, S.G.; Rice, N.; Cordeiro, G.M.; Henry, R.J. Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol. J. 2010, 9, 328–333. [Google Scholar] [CrossRef]
- Kane, N.; Sveinsson, S.; Dempewolf, H.; Yang, J.Y.; Zhang, D.; Engels, J.M.M.; Cronk, Q. Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA. Am. J. Bot. 2012, 99, 320–329. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Ma, P.-F.; Li, H.-T.; Yang, J.-B.; Wang, H.; Li, D.-Z. Plastid Phylogenomic Analyses Resolve Tofieldiaceae as the Root of the Early Diverging Monocot Order Alismatales. Genome Biol. Evol. 2016, 8, 932–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, J.D. Applications and Limitations. In Mitochondrial DNA in Plant Systematics; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Xu, C.; Cai, X.; Chen, Q.; Zhou, H.; Cai, Y.; Ben, A. Factors Affecting Synonymous Codon Usage Bias in Chloroplast Genome of Oncidium Gower Ramsey. Evol. Bioinform. 2011, 7, EBO.S8092–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Dong, W.; Liu, B.; Xu, C.; Yao, X.; Gao, J.; Corlett, R.T. Comparative analysis of complete chloroplast genome sequences of two tropical trees Machilus yunnanensis and Machilus balansae in the family Lauraceae. Front. Plant Sci. 2015, 6, 662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NCBI/PubMed, NCBI/PMC. Available online: https://www.ncbi.nlm.nih.gov (accessed on 1 December 2020).
- Li, L.; Li, J.; Li, X.W. Taxonomic Revision of Five Species of the Genus Phoebe (Lauraceae) from China. Plant Divers. Resour. 2011, 33, 157–160. [Google Scholar]
- Song, Y.; Yu, W.-B.; Tan, Y.; Liu, B.; Yao, X.; Jin, J.; Padmanaba, M.; Yang, J.-B.; Corlett, R.T. Evolutionary Comparisons of the Chloroplast Genome in Lauraceae and Insights into Loss Events in the Magnoliids. Genome Biol. Evol. 2017, 9, 2354–2364. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.-L.; Song, Y.; Ni, J.; Yao, X.; Tan, Y.-H.; Xu, Z.-F. Comparative chloroplast genomics and phylogenetics of nine Lindera species (Lauraceae). Sci. Rep. 2018, 8, 8844. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, J.; Rohwer, J.G.; van der Werff, H.; Wang, Z.-H.; Li, H.-W. Molecular phylogenetic analysis of the Perseagroup (Lauraceae) and its biogeographic implications on the evolution of tropical and subtropical Amphi-Pacific disjunctions. Am. J. Bot. 2011, 98, 1520–1536. [Google Scholar] [CrossRef]
- Malé, P.-J.G.; Bardon, L.; Besnard, G.; Coissac, E.; Delsuc, F.; Engel, J.; Lhuillier, E.; Scotti-Saintagne, C.; Tinaut, A.; Chave, J. Genome skimming by shotgun sequencing helps resolve the phylogeny of a pantropical tree family. Mol. Ecol. Resour. 2014, 14, 966–975. [Google Scholar] [CrossRef]
- Hinsinger, D.D.; Strijk, J.S. Toward phylogenomics of Lauraceae: The complete chloroplast genome sequence of Litsea glutinosa (Lauraceae), an invasive tree species on Indian and Pacific Ocean islands. Plant Gene 2017, 9, 71–79. [Google Scholar] [CrossRef]
- Mo, Y.-Q.; Li, L.; Li, J.-W.; Rohwer, J.G.; Li, H.-W.; Li, J. Alseodaphnopsis: A new genus of Lauraceae based on molecular and morphological evidence. PLoS ONE 2017, 12, e0186545. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Yao, X.; Liu, B.; Tan, Y.; Corlett, R.T. Complete plastid genome sequences of three tropical Alseodaphne trees in the family Lauraceae. Holzforschung 2018, 72, 337–345. [Google Scholar] [CrossRef]
- Li, L. Studies on the Phylogeny of the Avocado Group in Lauraceae; University of Chinese Academy of Sciences: Beijing, China, 2010. [Google Scholar]
- Song, Y.; Yao, X.; Tan, Y.; Gan, Y.; Yang, J.; Corlett, R.T. Comparative analysis of complete chloroplast genome sequences of two subtropical trees, Phoebe sheareri and Phoebe omeiensis (Lauraceae). Tree Genet. Genomes 2017, 13, 120. [Google Scholar] [CrossRef]
- Wang, W.Q. High-Throughput Sequencing of Three Lemnoideae (Duckweeds) Chloroplast Genomes from Total DNA. PLoS ONE 2011, 6, e24670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sytsma, K.J. DNA and morphology: Inference of plant phylogeny. Trends Ecol. Evol. 1990, 5, 104–110. [Google Scholar] [CrossRef]
- Delsuc, F.; Brinkmann, H.; Philippe, H. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 2005, 6, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Henner, B.; Philippe, H. Animal phylogeny and large-scale sequencing: Progress and pitfalls. J. Syst. Evol. 2008, 3, 274–286. [Google Scholar] [CrossRef]
- Hillis, D.M. Molecular Versus Morphological Approaches to Systematics. Annu. Rev. Ecol. Syst. 1987, 18, 23–42. [Google Scholar] [CrossRef]
- Donoghue, M.J.; Doyle, J.A. Phylogenetic studies of seed plants and angiosperms based on morphological characters. In The Hierarchy of Life: Molecules and Morphology in Phylogenetic Analysis, Proceedings of the Nobel Symposium 70, Karlskoga, Sweden, 29 August–2 September 1988; Brundin, L., Ed.; Excerpta Medica: Amsterdam, The Netherlands, 1989; pp. 181–193. [Google Scholar]
- Chung, K.-F.; van der Werff, H.; Peng, C.-I. Observations on the Floral Morphology of Sassafras randaiense (Lauraceae)1. Ann. Mo. Bot. Gard. 2010, 97, 1–10. [Google Scholar] [CrossRef]
- Li, H.W. Parallel Evolutionin in Litsea and Lindera of Lauraceae. Acta Bot. Yunnanica 1985, 7, 129–135. [Google Scholar]
- Tsui, H.P. A Study on the System of Lindera. J. Syst. Evol. 1987, 25, 161–171. [Google Scholar]
- Chaw, S.-M.; Liu, Y.-C.; Wu, Y.-W.; Wang, H.-Y.; Lin, C.-Y.I.; Wu, C.-S.; Ke, H.-M.; Chang, L.-Y.; Hsu, C.-Y.; Yang, H.-T.; et al. Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution. Nat. Plants 2019, 5, 63–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rendón-Anaya, M.; Ibarra-Laclette, E.; Méndez-Bravo, A.; Lan, T.; Zheng, C.; Carretero-Paulet, L.; Perez-Torres, C.A.; Chacón-López, A.; Hernandez-Guzmán, G.; Chang, T.-H.; et al. The avocado genome informs deep angiosperm phylogeny, highlights introgressive hybridization, and reveals pathogen-influenced gene space adaptation. Proc. Natl. Acad. Sci. USA 2019, 116, 17081–17089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.-P.; Sun, W.-H.; Xiong, Y.-F.; Jiang, Y.-T.; Liu, X.-D.; Liao, X.-Y.; Zhang, D.-Y.; Jiang, S.-Z.; Li, Y.; Liu, B.; et al. The Phoebe genome sheds light on the evolution of magnoliids. Hortic. Res. 2020, 7, 146. [Google Scholar] [CrossRef] [PubMed]
Classification System | Taxonomic Character | Tribe Division | Included Genera |
---|---|---|---|
Kostermans’ 1957 [3] | Inflorescence traits Cupule structure | Litseeae | Adenodaphne, Laurus, Lindera, Litsea, Neolitsea |
Perseeae | Apollonias, Bilschmied, Dehaasia, Endiandra, Haxapora, Mezilaurus, Persea, Phoebe, Potameia | ||
Cinnamoneae | Actinidaphne, Aiouea, Aniba, Cinnamomum, Dicypellium, Endlicheria, Licaria, Ocotea, Phyllostemonodaphne, Sassafras, Systemonodaphne, Umbellulari, Urbanodendron | ||
Cryptocaryeae | Cryptocarya, EusideroxyIon, Potoxyton, Ravensara | ||
Hypodaphnideae | Hypodaphnis | ||
Subfam. Cassythoideae | Cassytha | ||
Van der Werff & Richter’s 1996 [2] | Wood and bark anatomical structure Inflorescence traits | Laureae | Actinodaphne, Litsea, Lindera, Laurus, Sassafras |
Perseae | Aniba, Cinnamomum, Dehassia, Licaria, Nectandra, Ocotea, Persea, Pleurothyrium, Phoebe | ||
Cryptocaryeae | Beilschmiedia, Cryptocarya, Endiandra, Potameria, Triadodaphne |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Zhou, J.; Zhang, Y.; Wang, S.; Wang, Y.; Liu, H.; Wang, Z. Research Progress in Plant Molecular Systematics of Lauraceae. Biology 2021, 10, 391. https://doi.org/10.3390/biology10050391
Tian Y, Zhou J, Zhang Y, Wang S, Wang Y, Liu H, Wang Z. Research Progress in Plant Molecular Systematics of Lauraceae. Biology. 2021; 10(5):391. https://doi.org/10.3390/biology10050391
Chicago/Turabian StyleTian, Yongjing, Jingbo Zhou, Yunyan Zhang, Shuang Wang, Ying Wang, Hong Liu, and Zhongsheng Wang. 2021. "Research Progress in Plant Molecular Systematics of Lauraceae" Biology 10, no. 5: 391. https://doi.org/10.3390/biology10050391
APA StyleTian, Y., Zhou, J., Zhang, Y., Wang, S., Wang, Y., Liu, H., & Wang, Z. (2021). Research Progress in Plant Molecular Systematics of Lauraceae. Biology, 10(5), 391. https://doi.org/10.3390/biology10050391