Protection of Halophytes and Their Uses for Cultivation of Saline-Alkali Soil in China
Abstract
:Simple Summary
Abstract
1. Area and Distribution of Saline Land
2. Definition of a Halophyte and Types of Halophytes
3. Protection of Halophytes in China
4. Utilization of Halophytes
4.1. Halophytes as Model Plants for Studying the Mechanisms of Plant Salt Resistance
4.2. Halophytes Used for Ecological Protection and Sustainable Development of Regional Economies
4.3. Halophytes Used for Greening and Ecological Reconstruction in Coastal Cities
4.4. Halophytes Used for Forage
4.5. Halophytes Used for Biofuel
4.6. Halophytes Used for Medicine
4.7. Halophytes Grown for Vegetables in Seawater and Saline-Alkali Land
4.8. Halophytes Used as Fruits
5. Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef] [PubMed]
- Radanielson, A.M.; Angeles, O.; Li, T.; Ismail, A.M.; Gaydon, D.S. Describing the physiological responses of different rice genotypes to salt stress using sigmoid and piecewise linear functions. Field Crops Res. 2018, 220, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Leng, B.Y.; Wang, B.S. Progress in studying salt secretion from the salt glands in recretohalophytes: How do plants secrete salt? Front. Plant Sci. 2016, 7, 977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jose, A.M.; Maria, O.O.; Agustina, B.V.; Pedro, D.V.; Maria, S.B.; Jose, H.J.A. Plant responses to salt stress: Adaptive mechanisms. Agronomy 2017, 7, 18. [Google Scholar]
- Ghassemi, F.; Jakeman, A.J.; Nix, H.A. Salinisation of Land and Water Resources: Human Causes, Extent, Management and Case Studies; Cab International: Wallingford, UK, 1995. [Google Scholar]
- Hossain, M.S. Present Scenario of Global Salt Affected Soils, its Management and Importance of Salinity Research. Int. J. Biol. Sci. 2019, 1, 1–3. [Google Scholar]
- Goossens, R.; Van Ranst, E.; Ghabour, T.K.; El Badawi, M. The use of remote sensing and GIS to detect gypsiferous soils in the Ismailia province, Egypt. In Operational Remote Sensing for Sustainable Development; Routledge: London, UK, 1999. [Google Scholar]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Yensen, N.P. Halophyte Uses for the Twenty-First Century; Springer: Dordrecht, The Netherlands, 2006; pp. 367–396. [Google Scholar]
- Shabala, S.; Wu, H.; Bose, J. Salt stress sensing and early signalling events in plant roots: Current knowledge and hypothesis. Plant Sci. 2015, 241, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.F.; Li, F.Z. Chinese Halophyte; Science Press: Beijing, China, 1999. [Google Scholar]
- Zhu, S.Q.; Zun, Q. Classification on Salt-Affected Soils in China; Chinese Academy of Sciences: Beijing, China, 2011. [Google Scholar]
- Liu, W.Z.; Wang, Z.Q.; Xiong, Y. Zoning soil improvement and utilization in China. J. Soil Sci. 1978, 2, 3–14. [Google Scholar]
- Yang, J.S. Development and prospect of the research on salt-affected soils in China. Acta Pedol. Sin. 2008, 45, 837–845. [Google Scholar]
- Wang, B.S. Plant Biology Under Stress; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Wang, Z.Q. Suggestions on the reasonable development and utilization of saline soil resources in China. Arid Area Res. 1985, 1, 36–37. [Google Scholar]
- Yu, R.P.; Chen, D.M. Saline soil resources in China and their exploitation. Chin. J. Soil Sci. 1999, 30, 158–159. [Google Scholar]
- Li, B.; Wang, Z.C.; Sun, Z.G.; Chen, Y.; Yang, F. Resources and sustainable resource exploitation of salinized land in China. Agric. Res. Arid Areas 2005, 23, 154–158. [Google Scholar]
- Deng, Y.Q.; Feng, Z.T.; Yuan, F.; Guo, J.R.; Suo, S.S.; Wang, B.S. Identification and functional analysis of the autofluorescent substance in Limonium bicolor salt glands. Plant Physiol. Biochem. 2015, 97, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Guo, J.; Shabala, S.; Wang, B.S. Reproductive physiology of halophytes: Current standing. Front. Plant Sci. 2019, 9, 1954. [Google Scholar] [CrossRef] [PubMed]
- Breckle, S. How do halophytes overcome salinity. Biol. Salt Toler. Plants 1995, 23, 199–203. [Google Scholar]
- Aslam, R.; Bostan, N.; Nabgha, E.A.; Maria, M.; Safdar, W. A critical review on halophytes: Salt tolerant plants. J. Med. Plants Res. 2011, 5, 7108–7118. [Google Scholar]
- Chen, M.; Yang, Z.; Liu, J.; Zhu, T.T.; Wei, X.C.; Fan, H.; Wang, B.S. Adaptation mechanism of salt excluders under saline conditions and its applications. Int. J. Mol. Sci. 2018, 19, 3668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.X.; Zhang, Y.; Liu, H.; Wu, Y.T.; Li, W.B.; Zhang, H.X. Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1, and salt tolerance in transgenic soybean for over six generations. Chin. Sci. Bull. 2010, 55, 1127–1134. [Google Scholar] [CrossRef]
- Zhao, K.F.; Feng, L.T. China Halophyte Resources; Science Press: Beijing, China, 2001. [Google Scholar]
- Ksouri, R.; Ksouri, W.M.; Jallali, I.; Debez, A.; Magne, C.; Hiroko, I.; Abdelly, C. Medicinal halophytes: Potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit. Rev. Biotechnol. 2012, 32, 289–326. [Google Scholar] [CrossRef] [PubMed]
- Suhaj, M. Spice antioxidants isolation and their antiradical activity: A review. J. Food Compos. Anal. 2006, 19, 531–537. [Google Scholar] [CrossRef]
- Anjum, N.A.; Ahmad, I.; Valega, M.; Mohmood, I.; Gill, S.S.; Tuteja, N.; Duarte, A.C.; Pereira, E. Salt marsh halophyte services to metal-metalloid remediation: Assessment of the processes and underlying mechanisms. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2038–2106. [Google Scholar] [CrossRef]
- Leng, B.Y.; Yuan, F.; Deng, Y.Q.; Feng, Z.T.; Wang, B.S. Preliminary study on the rule of salt gland in mangrove’s salt tolerance. J. Shandong Radanielson Norm. Univ. Nat. Sci. 2013, 28, 123–126. [Google Scholar]
- Xiao, Z.C.; Zhang, G.L. Development and utilization of Chenopodium quinoa Willd. Chin. Wild Plant Resour. 2014, 2, 62–66. [Google Scholar]
- Wang, K.; Yin, J.L.; Zhou, C.L.; Hong, L.Z.; Ding, J.H.; Wang, M.W. Studies on introduction and cultivation of Atriplex triangularis. Jiangsu Agric. Sci. 2001, 4, 57–59. [Google Scholar]
- Wang, C.J.; Zhao, X.W.; Lu, G.Q.; Mao, Q. A review of characteristics and utilization of Chenopodium quinoa. J. Zhejiang AF Univ. 2014, 31, 296–301. [Google Scholar]
- Nguyen, X.V.; Klein, M.; Riemenschneider, A.; Papenbrock, J. Distinctive features and role of sulfur-containing compounds in marine plants, seaweeds, seagrasses and halophytes, from an evolutionary point of view. In Sabkha Ecosystems: Cash Crop Halophyte and Biodiversity Conservation; Khan, M.A., Böer, B., Öztürk, M., Al Abdessalaam, T.Z., Clüsener-Godt, M., Gul, B., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 4, pp. 299–312. [Google Scholar]
- Yuan, F.; Lyu, M.J.A.; Leng, B.Y.; Zhu, X.G.; Wang, B.S. The transcriptome of NaCl-treated Limonium bicolor leaves reveals the genes controlling salt secretion of salt gland. Plant Mol. Biol. 2016, 91, 241–256. [Google Scholar] [CrossRef]
- Jarvis, D.E.; Ho, Y.S.; Lightfoot, D.J.; Schmöckel, S.M.; Li, B.; Tja, B.; Ohyanagi, H.; Mineta, K.; Michell, C.T.; Saber, N. The genome of Chenopodium quinoa. Nature 2017, 542, 307–312. [Google Scholar] [CrossRef] [Green Version]
- Ding, F.; Yang, J.C.; Yuan, F.; Wang, B.S. Progress in mechanism of salt excretion in recretohalopytes. Front. Biol. 2010, 5, 164–170. [Google Scholar] [CrossRef]
- Yuan, F.; Chen, M.; Leng, B.Y.; Wang, B.S. An efficient autofluorescence method for screening Limonium bicolor mutants for abnormal salt gland density and salt secretion. S. Afr. J. Bot. 2013, 88, 110–117. [Google Scholar] [CrossRef]
- Feng, Z.T.; Sun, Q.J.; Deng, Y.Q.; Sun, S.F.; Zhang, J.G.; Wang, B.S. Study on pathway and characteristics of ion secretion of salt glands of Limonium bicolor. Acta Physiol. Plant. 2014, 36, 2729–2741. [Google Scholar] [CrossRef]
- Yuan, F.; Chen, M.; Yang, J.C.; Leng, B.Y.; Wang, B.S. A system for the transformation and regeneration of the recretohalophyte Limonium bicolor. Vitr. Cell. Dev. Biol. Anim. 2014, 50, 610–617. [Google Scholar] [CrossRef]
- Feng, Z.T.; Deng, Y.Q.; Zhang, S.C.; Liang, X.; Yuan, F.; Hao, J.L.; Zhang, J.C.; Feng, S.S.; Wang, B.S. K+ accumulation in the cytoplasm and nucleus of the salt gland cells of Limonium bicolor accompanies increased rates of salt secretion under NaCl treatment using NanoSIMS. Plant Sci. 2015, 238, 286–296. [Google Scholar] [CrossRef]
- Sui, N.; Yang, Z.; Liu, M.L.; Wang, B.S. Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves. BMC Genom. 2015, 16, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Chen, M.; Yang, J.C.; Song, J.; Wang, B.S. The optimal dosage of 60Co gamma irradiation for obtaining salt gland mutants of exorecretohalophyte Limonium bicolor (Bunge) O. Kuntze. Pak. J. Bot. 2015, 47, 71–76. [Google Scholar]
- Leng, B.Y.; Yuan, F.; Dong, X.X.; Wang, J.; Wang, B.S. Distribution pattern and salt excretion rate of salt glands in two recretohalophyte species of Limonium (Plumbaginaceae). S. Afr. J. Bot. 2018, 115, 74–80. [Google Scholar] [CrossRef]
- Yuan, F.; Liang, X.; Li, Y.; Yin, S.; Wang, B. Methyl jasmonate improves tolerance to high salt stress in the recretohalophyte Limonium bicolor. Funct. Plant Biol. 2019, 46, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wang, B.S. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model. Ann. Bot. 2015, 115, 541–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, S.-L.; Chi, Z.; Liu, G.-L.; Hu, Z.; Chi, Z.-M. Fungi in mangrove ecosystems and their potential applications. Crit. Rev. Biotechnol. 2020, 40, 852–864. [Google Scholar] [CrossRef]
- Yang, S.C.; Lu, W.X.; Zou, Z.; Li, S. Mangrove wetlands: Distribution, species composition and protection in China. Subtrop. Plant Sci. 2017, 46, 301–310. [Google Scholar]
- Zhang, Z.H.; Hu, G.; Liang, S.C. The distribution, protection and ecological value of mangrove forests in China. Bull. Biol. 2006, 41, 9–11. [Google Scholar]
- Dan, X.Q.; Liao, B.W.; Wu, Z.B.; Wu, H.J.; Bao, D.M.; Dan, W.Q.; Liu, S.H. Resources, conservation status and main threats of mangrove wetlands in China. Ecol. Environ. 2016, 25, 1237–1243. [Google Scholar]
- Chen, L.Z.; Tam, N.F.Y.; Huang, J.H.; Zeng, X.Q.; Meng, X.L.; Zhong, C.R.; Wong, Y.S.; Lin, G.H. Comparison of ecophysiological characteristic between introduced and indigenous mangrove species in China. Estuar. Coast. Shelf Sci. 2008, 79, 644–652. [Google Scholar] [CrossRef]
- Chen, L.Z.; Wang, W.Q.; Zhang, Y.H.; Lin, G.H. Recent progresses in mangrove conservation, restoration and research in China. J. Plant Ecol. 2009, 2, 45–54. [Google Scholar] [CrossRef]
- Liao, B.W.; Zhang, Q.M. Area, Distribution and species composition of mangroves in China. Wetl. Sci. 2014, 12, 435–440. [Google Scholar]
- Abdelly, C.; Barhoumi, Z.; Ghnaya, T.; Debez, A.; Ben Hamed, K.; Ksouri, R.; Talbi, O.; Zribi, F.; Ouerghi, Z.; Smaoui, A.; et al. Potential utilisation of halophytes for the rehabilitation and valorisation of salt-affected areas in Tunisia. In Biosaline Agriculture and Salinity Tolerance in Plants; Birkhäuser Basel: Basel, Switzerland, 2006; pp. 163–172. [Google Scholar]
- Etesami, H.; Beattie, G.A. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front. Microbiol. 2018, 9, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.C.; Wang, C.H. Thoughts on the construction of efficient ecological economy in the Yellow River Delta. Spec. Zone Econ. 2010, 8, 144–146. [Google Scholar]
- Shao, Q.L.; Xie, X.D.; Xu, H.L.; Liu, Y.X. Demonstration role of the dongying halophyte garden in highly effective ecology construction of Yellow River Delta. Hubei Agric. Sci. 2011, 22, 122–125. [Google Scholar]
- Zhou, X.F. Thinking of promoting the construction of Yellow River Delta high efficiency ecological agriculture. J. China Univ. Pet. Ed. Soc. Sci. 2011, 27, 30–34. [Google Scholar]
- Wang, Z.S.; Zhu, H.; Qian, X.Z. Herbage salt-endurance and species introduction for saline-alkali soil. Grassl. China 1995, 2, 38–42. [Google Scholar]
- Zhang, Y.H.; Ban, N.R.; Fan, Z.J. Studies on efficient forage planting technology on saline-alkali-land in northern Yinchuan area. China Cattle Sci. 2007, 31, 51–54. [Google Scholar] [CrossRef]
- Wen, Y.C.; Kong, S.H.; Zhao, T.K.; Xu, J.K.; Lin, Z.A.; Li, Z.J. Screening of salt—Tolerant herbage and economic crops in saline—Alkali areas of the Yellow River Delta. Shandong Agric. Sci. 2019, 51, 42–46. [Google Scholar]
- Qin, J.H. Adapted to salt-tolerant plants and forages grown in northern saline deserts. Bull. Agric. Sci. Technol. 2003, 9, 20–21. [Google Scholar]
- Akhter, J.; Murray, R.; Mahmood, K.; Malik, K.A.; Ahmed, S. Improvement of degraded physical properties of a saline-sodic soil by reclamation with kallar grass (Leptochloa fusca). Plant Soil 2004, 258, 207–216. [Google Scholar] [CrossRef]
- Hu, W.; Shan, N.N.; Zhong, X.C. Effects of salt-tolerant forage on bioremediating saline-alkali farmland. Anhui Agric. Sci. Bull. 2008, 7, 148–149, 151. [Google Scholar]
- Jing, P.C.; Wang, S.L.; Chen, Y.S. Adaptation of salt-tolerant forage grasses to saline soil and their ability to improve saline soil utilization in southern Xinjiang region. Acta Pratacult. Sin. 2017, 26, 53–63. [Google Scholar]
- Ding, T.L.; Yang, Z.; Wei, X.C.; Yuan, F.; Yin, S.S.; Wang, B.S. Evaluation of salt-tolerant germplasm and screening of the salt-tolerance traits of sweet sorghum in the germination stage. Funct. Plant Biol. 2018, 45, 1073–1081. [Google Scholar] [CrossRef]
- Mu, Y. Aspects of world energy resources development. Energy Base Constr. 1994, 4, 56–58. [Google Scholar]
- Ma, Q.; Yue, L.J.; Zhang, J.L.; Yuan, J. Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. Tree Physiol. 2011, 32, 4–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Watt, E.; Pretorius, J.C. Purification and identification of active antibacterial components in Carpobrotus edulis L. J. Ethnopharmacol. 2001, 76, 87–91. [Google Scholar] [CrossRef]
- Meot-Duros, L.; Le Floch, G.; Magne, C. Radical scavenging, antioxidant and antimicrobial activities of halophytic species. J. Ethnopharmacol. 2008, 116, 258–262. [Google Scholar] [CrossRef] [Green Version]
- Davy, A.J.; Scott, R.; Cordazzo, C.V. Biological flora of the British Isles: Cakile maritima Scop. J. Ecol. 2006, 94, 695–711. [Google Scholar] [CrossRef]
- Yu, C.S. Some Chinese medicinal materials suitable for saline-alkali planting. Agric. Knowl. 2003, 928, 24. [Google Scholar]
- Guo, Y.H.; Lin, H.M.; Jia, H.X.; Xiao, W. Soil improvement effects of planting Chinese herbs in saline-alkali soil. J. Gansu Agric. Univ. 2005, 40, 757–762. [Google Scholar]
- Li, L.Y.; Zhao, Y.; Han, G.L.; Guo, J.R.; Meng, Z. Progress in the study and use of seawater vegetables. J. Agric. Food Chem. 2020, 68, 5998–6006. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.X.; Zhang, G.X.; Zhang, B.W.; Wang, R.H.; Dai, H.L. Nutritional function, development and utilization of Suaeda. Food Nutr. China 2019, 25, 59–63. [Google Scholar]
- Lian, J.W.; Han, D.; Xie, J.; Ren, G.X.; Zhang, H.R.; Wang, J. Development status Quo of China’s salicornia industry and its prospect. Agric. Outlook 2018, 14, 41–57. [Google Scholar]
- Liu, H.Y.; Han, Y.Y.; Jiang, R.Z.; Zhou, Z.J.; Zhang, Z.; Cheng, L.B. Influences of NaCl on growth and quality of Mesembryanthemum crystallinum. Jiangsu Agric. Sci. 2019, 47, 184–188. [Google Scholar]
- Jin, J.; Lu, X.Y.; Wang, Y. Advances in the studies on salt tolerance of fruit trees. Acta Hortic. Sin. 2014, 41, 1761–1776. [Google Scholar]
Family | Genus | Species | Family | Genus | Species |
---|---|---|---|---|---|
Acanthaceae | 1 | 2 | Malvaceae | 3 | 5 |
Acrosti chaceae | 1 | 2 | Meliaceae | 1 | 1 |
Aizoaceae | 2 | 2 | Myoporaceae | 1 | 1 |
Amaranthaceae | 2 | 2 | Myrsinaceae | 1 | 1 |
Apocynaceae | 3 | 4 | Najadaceae | 2 | 3 |
Asdepiadaceae | 3 | 4 | Olacaeae | 1 | 1 |
Betulaceae | 1 | 1 | Onagraceae | 1 | 1 |
Bignoniaceae | 1 | 1 | Orobanchaceae | 2 | 3 |
Boraginaceae | 8 | 10 | Palmae | 1 | 1 |
Caryophyllaceae | 1 | 1 | Pandanaceae | 1 | 1 |
Chenopodiaceae | 17 | 72 | Plantaginaceae | 1 | 4 |
Combretaceae | 2 | 3 | Plumbaginaceae | 1 | 11 |
Commelinaceae | 1 | 1 | Poaceae | 21 | 44 |
Compositae | 20 | 44 | Polygonaceae | 2 | 10 |
Conoolvulaceae | 3 | 9 | Potamogetonaceae | 6 | 13 |
Cruciferae | 4 | 9 | Primulaceae | 2 | 2 |
Cyperaceae | 7 | 16 | Ranunculaceae | 1 | 5 |
Dryopteridaceae | 1 | 1 | Restionaceae | 1 | 1 |
Elaeagnaceae | 1 | 1 | Rhizophoraceae | 4 | 9 |
Euphorbiaceae | 2 | 3 | Rosaceae | 3 | 3 |
Frankeniaceae | 1 | 1 | Rubiaceae | 1 | 1 |
Goodeni aceae | 1 | 2 | Rutaceae | 1 | 1 |
Guttiferae | 1 | 1 | Salicaceae | 1 | 2 |
Hernandiaceae | 1 | 1 | Sapindaceae | 2 | 2 |
Hydrocharitaceae | 3 | 5 | Scrophulariaceae | 4 | 4 |
Iridaceae | 1 | 3 | Simaroubaceae | 1 | 1 |
Juncaginaceae | 1 | 3 | Solanaceae | 1 | 4 |
Labiatae | 3 | 5 | Sonneratiaceae | 1 | 3 |
Lecythidaceae | 1 | 2 | Sterculiaceae | 1 | 1 |
Leguminosae | 18 | 33 | Tamaricaceae | 2 | 15 |
Liliaceae | 1 | 1 | Umbelliferae | 6 | 7 |
Loganiaceae | 1 | 1 | Verbenaceae | 3 | 3 |
Lythraceae | 1 | 1 | Zygophyllaceae | 3 | 8 |
Use | Species | Distribution | Application |
---|---|---|---|
Food | Chenopodium quinoa Willd. (Quinoa) | Quinoa is native to the Andes in South America. It has been cultivated on a small scale in Tibet, Shaanxi, Shanxi, Qinghai, Sichuan, and Zhejiang. | Quinoa seeds are edible and highly nutritious, including minerals and vitamins; moreover, their protein content is more than twice that of rice, and quinoa contains lysine, which is lacking in many grains. |
Chinese herbal medicine | Apocynum venetum L. | A. venetum grows mainly in saline-alkali wastelands, the edges of deserts, riverbanks, alluvial plains. | A. venetum leaves can be used to treat hypertension, dizziness, insomnia, neurasthenia, and heart failure, and delay aging. |
Feed | Atriplex triangularis | A. triangularis is widely distributed in saline land and used as forage. It can be irrigated with seawater and has strong salt tolerance. | A. triangularis has 1.5 times the vitamin C content of spinach, and is rich in many essential trace elements. The stems and leaves are rich in nutrients, and are high-quality feed for cattle, sheep, and horses. |
Greening | Elaeagnus angustifolia Linn. | E. angustifolia is distributed in plains, river beaches, and saline soil. | E. angustifolia has a beautiful tree shape, which can be used in urban areas and to protect against wind, dust, and noise. |
Vegetable | Suaeda salsa (L.) Pall. | S. salsa is mainly distributed in Qinghai, Xinjiang, Shandong, Jiangsu, and other coastal areas. The young leaves are edible and rich in the antioxidant betacyanin and trace elements. | S. salsa leaves have a good taste and are rich in vitamins and dietary fiber. |
Biofuel | Sorghum dochna (Forssk.) Snowden (Sweet sorghum) | Sweet sorghum is salt-tolerant and can grow in saline soils containing 0.2–0.6% salt. | S. dochna has high biomass and sugar content. As energy grasses, they can be converted into solid, liquid, or gaseous biofuels. |
Fruit | Zizyphus jujuba Mill (Winter jujube) | Winter jujube is a native species and mainly distributed in saline soil of the Bohai Bay area at the border of Hebei and Shandong Province. | Winter jujube is a well-known fruit and is rich in vitamins, calcium, iron, zinc, and essential amino acids such as aspartic acid, threonine, and serine. |
Coastal protection | Acanthus ilicifolius, Rhizophora mangle, Barringtonia racemose (Mangroves) | Mangroves are a unique woody plant community in tropical and subtropical intertidal zones and are mainly distributed along the coasts of Guangxi, Guangdong, and Taiwan. | Mangroves play an important role in reducing coastal damage from waves, protecting beaches, purifying seawater, maintaining coastal ecological balance, and marine aquaculture. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Wang, B. Protection of Halophytes and Their Uses for Cultivation of Saline-Alkali Soil in China. Biology 2021, 10, 353. https://doi.org/10.3390/biology10050353
Liu L, Wang B. Protection of Halophytes and Their Uses for Cultivation of Saline-Alkali Soil in China. Biology. 2021; 10(5):353. https://doi.org/10.3390/biology10050353
Chicago/Turabian StyleLiu, Lili, and Baoshan Wang. 2021. "Protection of Halophytes and Their Uses for Cultivation of Saline-Alkali Soil in China" Biology 10, no. 5: 353. https://doi.org/10.3390/biology10050353
APA StyleLiu, L., & Wang, B. (2021). Protection of Halophytes and Their Uses for Cultivation of Saline-Alkali Soil in China. Biology, 10(5), 353. https://doi.org/10.3390/biology10050353