Hormonal (Im)Balance and Reproductive System’s Disorders in Transplant Recipients—A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Renal Transplant Recipients
Renal Transplant Recipients vs. CKD/Dialyzed Patients
3. Liver Transplant Recipients
4. Bone Marrow Recipients
5. Cardiac Transplant Recipients
6. Summary
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pietrzak, B.; Bobrowska, K.; Jabiry-Zieniewicz, Z.; Kaminski, P.; Wielgos, M.; Pazik, J.; Durlik, M. Oral and transdermal hormonal contraception in women after kidney transplantation. Transpl. Proc. 2007, 39, 2759–2762. [Google Scholar] [CrossRef]
- Hui, D.; Qiang, L.; Jian, W.; Ti, Z.; Da-Lu, K. A randomized, controlled trial of postoperative adjuvant cytokine-induced killer cells immunotherapy after radical resection of hepatocellular carcinoma. Dig. Liver Dis. 2009, 41, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Ulinska, E.; Mycko, K.; Salacinska-Los, E.; Pastorczak, A.; Siwicka, A.; Mlynarski, W.; Matysiak, M. Impact of mTOR expression on clinical outcome in paediatric patients with B-cell acute lymphoblastic leukaemia—Preliminary report. Contemp. Oncol. 2016, 20, 291–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, T.W.; Lin, Y.J.; Ou, M.Y.; Chen, K.B. Efficacy and safety of everolimus treatment on liver transplant recipients: A meta-analysis. Eur. J. Clin. Investig. 2019, 49, e13179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferjani, H.; Draz, H.; Abid, S.; Achour, A.; Bacha, H.; Boussema-Ayed, I. Combination of tacrolimus and mycophenolate mofetil induces oxidative stress and genotoxicity in spleen and bone marrow of Wistar rats. Mutat. Res. 2016, 810, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Ferjani, H.; El Arem, A.; Bouraoui, A.; Achour, A.; Abid, S.; Bacha, H.; Boussema-Ayed, I. Protective effect of mycophenolate mofetil against nephrotoxicity and hepatotoxicity induced by tacrolimus in Wistar rats. J. Physiol. Biochem. 2016, 72, 133–144. [Google Scholar] [CrossRef]
- Sikora-Grabka, E.; Adamczak, M.; Kuczera, P.; Wiecek, A. Serum sex hormones concentrations in young women in the early period after successful kidney transplantation. Endokrynol. Pol. 2018, 69, 150–155. [Google Scholar] [CrossRef]
- Vecchio, M.; Navaneethan, S.D.; Johnson, D.W.; Lucisano, G.; Graziano, G.; Querques, M.; Saglimbene, V.; Ruospo, M.; Bonifati, C.; Jannini, E.A.; et al. Treatment options for sexual dysfunction in patients with chronic kidney disease: A systematic review of randomized controlled trials. Clin. J. Am. Soc. Nephrol. 2010, 5, 985–995. [Google Scholar] [CrossRef] [Green Version]
- Kuczera, P.; Adamczak, M.; Wiecek, A. Endocrine Abnormalities in Patients with Chronic Kidney Disease. Prilozi 2015, 36, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Anantharaman, P.; Schmidt, R.J. Sexual function in chronic kidney disease. Adv. Chronic. Kidney Dis. 2007, 14, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, S.M.; Walschaerts, M.; Bujan, L.; Rostaing, L.; Kamar, N. A prospective study in male recipients of kidney transplantation reveals divergent patterns for inhibin B and testosterone secretions. Basic Clin. Androl. 2014, 24, 11. [Google Scholar] [CrossRef] [Green Version]
- Grossmann, M.; Hoermann, R.; Fui, M.N.T.; Zajac, J.D.; Ierino, F.L.; Roberts, M.A. Sex steroids levels in chronic kidney disease and kidney transplant recipients: Associations with disease severity and prediction of mortality. Clin. Endocrinol. 2015, 82, 767–775. [Google Scholar] [CrossRef]
- Lofaro, D.; Perri, A.; Aversa, A.; Aquino, B.; Bonofiglio, M.; La Russa, A.; Settino, M.G.; Leone, F.; Ilacqua, A.; Armentano, F.; et al. Testosterone in renal transplant patients: Effect on body composition and clinical parameters. J. Nephrol. 2018, 31, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, W.; Kubber, H.; Dolff, S.; Benson, S.; Fuhrer, D.; Tan, S. Rapid recovery of hypogonadism in male patients with end stage renal disease after renal transplantation. Endocrine 2018, 60, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Colak, H.; Sert, I.; Kurtulmus, Y.; Karaca, C.; Toz, H.; Kursat, S. The relation between serum testosterone levels and cardiovascular risk factors in patients with kidney transplantation and chronic kidney disease. Saudi J. Kidney Dis. Transpl. 2014, 25, 951–959. [Google Scholar]
- Teng, L.C.; Wang, C.X.; Chen, L. Improved erectile function and sex hormone profiles in male Chinese recipients of kidney transplantation. Clin. Transpl. 2011, 25, 265–269. [Google Scholar] [CrossRef]
- Cueto-Manzano, A.M.; Konel, S.; Hutchison, A.J.; Crowley, V.; France, M.W.; Freemont, A.J.; Adams, J.E.; Mawer, B.; Gokal, R. Bone loss in long-term renal transplantation: Histopathology and densitometry analysis. Kidney Int. 1999, 55, 2021–2029. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.M.; Song, R.K.; Kim, M.J.; Lee, D.Y.; Jang, H.R.; Kwon, C.H.D.; Huh, W.S.; Kim, G.S.; Kim, S.J.; Choi, D.S.; et al. Hormonal differences between female kidney transplant recipients and healthy women with the same gynecologic conditions. Transpl. Proc. 2012, 44, 740–743. [Google Scholar] [CrossRef]
- Tauchmanovà, L.; Selleri, C.; De Rosa, G.; Esposito, M.; Orio, F.; Palomba, S., Jr.; Bifulco, G.; Nappi, C.; Lombardi, G.; Rotoli, B.; et al. Gonadal status in reproductive age women after haematopoietic stem cell transplantation for haematological malignancies. Hum. Reprod. 2003, 18, 1410–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.C.; Zheng, J.H.; Xu, L.G.; Min, Z.L.; Zhu, Y.H.; Qi, J.; Duan, Q.L. Measurements of serum pituitary-gonadal hormones and investigation of sexual and reproductive functions in kidney transplant recipients. Int. J. Nephrol. 2010, 2010, 612126. [Google Scholar] [CrossRef] [Green Version]
- Geng, L.; Wang, X.T.; Yu, J.; Yang, Y.L. Antagonism of cortistatin against cyclosporine-induced apoptosis in rat myocardial cells and its effect on myocardial apoptosis gene expression. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 3207–3213. [Google Scholar]
- Antonucci, M.; Palermo, G.; Recupero, S.M.; Bientinesi, R.; Presicce, F.; Foschi, N.; Bassi, P.; Gulino, G. Male sexual dysfunction in patients with chronic end-stage renal insufficiency and in renal transplant recipients. Arch. Ital. Urol. Androl. 2016, 87, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Turner, H.E.; Wass, J.A. Gonadal function in men with chronic illness. Clin. Endocrinol. 1997, 47, 379–403. [Google Scholar] [CrossRef]
- Burra, P. Sexual dysfunction after liver transplantation. Liver Transpl. 2009, 15 (Suppl. S2), S50–S56. [Google Scholar] [CrossRef] [PubMed]
- Park, M.G.; Koo, H.S.; Lee, B. Characteristics of testosterone deficiency syndrome in men with chronic kidney disease and male renal transplant recipients: A cross-sectional study. Transpl. Proc. 2013, 45, 2970–2974. [Google Scholar] [CrossRef] [PubMed]
- Tondolo, V.; Citterio, F.; Panocchia, N.; Nanni, G.; Castagneto, M. Sirolimus impairs improvement of the gonadal function after renal transplantation. Am. J. Transpl. 2005, 5, 197. [Google Scholar] [CrossRef] [PubMed]
- Cavanaugh, T.M.; Schoenemen, H.; Goebel, J. The impact of sirolimus on sex hormones in male adolescent kidney recipients. Pediatr. Transpl. 2012, 16, 280–285. [Google Scholar] [CrossRef]
- Krämer, B.K.; Neumayer, H.H.; Stahl, R.; Pietrzyk, M.; Krüger, B.; Pfalzer, B.; Bourbigot, B.; Campbell, S.; Whelchel, J.; Eris, J.; et al. Graft function, cardiovascular risk factors, and sex hormones in renal transplant recipients on an immunosuppressive regimen of everolimus, reduced dose of cyclosporine, and basiliximab. Transpl. Proc. 2005, 37, 1601–1604. [Google Scholar] [CrossRef]
- Başaran, O.; Emiroğlu, R.; Seçme, S.; Moray, G.; Haberal, M. Pregnancy and renal transplantation. Transpl. Proc. 2004, 36, 122–124. [Google Scholar] [CrossRef] [PubMed]
- Chiang, H.C.; Chien, Y.C.; Lin, P.Y.; Lee, H.L.; Chen, Y.L. Assessing men with erectile dysfunction before and after living donor liver transplantation in real-world practice: Integrating laboratories into clinical settings. PLoS ONE 2018, 13, e0206438. [Google Scholar] [CrossRef] [Green Version]
- Brandenburg, V.M.; Politt, D.; Ketteler, M.; Fassbender, W.J.; Heussen, N.; Westenfeld, R.; Freuding, T.; Floege, J.; Ittel, T.H. Early rapid loss followed by long-term consolidation characterizes the development of lumbar bone mineral density after kidney transplantation. Transplantation 2004, 77, 1566–1571. [Google Scholar] [CrossRef]
- Lee, S.; Coco, M.; Greenstein, S.M.; Schechner, R.S.; Tellis, V.A.; Glicklich, D.G. The effect of sirolimus on sex hormone levels of male renal transplant recipients. Clin. Transpl. 2005, 19, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Karagiannis, A.; Harsoulis, F. Gonadal dysfunction in systemic diseases. Eur. J. Endocrinol. 2005, 152, 501–513. [Google Scholar] [CrossRef]
- Chan, M.Y.; Chok, K.S.H.; Fung, J.Y.Y.; Ng, S.L.; Yiu, M.K.; Lo, C.M. Prospective Study on Sexual Dysfunction in Male Chinese Liver Transplant Recipients. Am. J. Mens. Health 2019, 13, 1557988319835139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iaria, G.; Urbani, L.; Catalano, G.; De Simone, P.; Carrai, P.; Petruccelli, S.; Morelli, L.; Coletti, L.; Garcia, C.; Liermann, R.; et al. Switch to tacrolimus for cyclosporine-induced gynecomastia in liver transplant recipients. Transpl. Proc. 2005, 37, 2632–2633. [Google Scholar] [CrossRef] [PubMed]
- Mazariegos, G.V.; Salzedas, A.A.; Jain, A.; Reyes, J. Conversion from cyclosporin to tacrolimus in paediatric liver transplant recipients. Paediatr. Drugs 2001, 3, 661–672. [Google Scholar] [CrossRef]
- Jabiry-Zienjewicz, Z.; Kaminski, P.; Bobrowska, K.; Pietrzak, B.; Wielgos, M.; Zieniewicz, K.; Krawczyk, M. Menstrual cycle and sex hormone profile in perimenopausal women after liver transplantation. Transpl. Proc. 2006, 38, 2909–2912. [Google Scholar] [CrossRef] [PubMed]
- Hovi, L.; Saarinen-Pihkala, U.M.; Taskinen, M.; Wikström, A.M.; Dunkel, L. Subnormal androgen levels in young female bone marrow transplant recipients with ovarian dysfunction, chronic GVHD and receiving glucocorticoid therapy. Bone Marrow. Transpl. 2004, 33, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Shinohara, O.; Ishiguro, H.; Shimizu, T.; Hattori, K.; Ichikawa, M.; Yabe, H.; Kubota, C.; Yabe, M.; Kato, S. Ovarian function after bone marrow transplantation performed before menarche. Arch. Dis. Child. 1999, 80, 452–454. [Google Scholar] [CrossRef]
- Sanders, J.E.; Hawley, J.; Levy, W.; Gooley, T.; Buckner, C.D.; Deeg, H.J.; Doney, K.; Storb, R.; Sullivan, K.; Witherspoon, R.; et al. Pregnancies following high-dose cyclophosphamide with or without high-dose busulfan or total-body irradiation and bone marrow transplantation. Blood 1996, 87, 3045–3052. [Google Scholar] [CrossRef]
- Fleischer, J.; McMahon, D.J.; Hembree, W.; Addesso, V.; Longcope, C.; Shane, E. Serum testosterone levels after cardiac transplantation. Transplantation 2008, 85, 834–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaczmarek, I.; Groetzner, J.; Adamidis, I.; Landwehr, P.; Mueller, M.; Vogeser, M.; Gerstorfer, M.; Uberfuhr, P.; Meiser, B.; Reichart, B. Sirolimus impairs gonadal function in heart transplant recipients. Am. J. Transpl. 2004, 4, 1084–1088. [Google Scholar] [CrossRef] [PubMed]
- Luck, C.; DeMarco, V.G.; Mahmood, A.; Gavini, M.P.; Pulakat, L. Differential Regulation of Cardiac Function and Intracardiac Cytokines by Rapamycin in Healthy and Diabetic Rats. Oxid. Med. Cell. Longev. 2017, 2017, 5724046. [Google Scholar] [CrossRef]
- Kahan, B.D. Potential therapeutic interventions to avoid or treat chronic allograft dysfunction. Transplantation 2001, 71 (Suppl. S11), S52–S57. [Google Scholar]
Conditioning (Number of Patients) | Sex (Number of Patients) | Age (Years) | Time after Tx | Hormonal Changes | Post-Tx Complications | Literature | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
CsA + AZA + PRE | M (735) + F (360) | 25–34 (pregnant F) | mean 3.6 years | lack of information | gestational diabetes (28.6%); chronic transplant nephropathy during gestation and graft lost | [29] | |||||
CsA + AZA + PRE | M (68) | 26–45 | 1–2 months | PRL: ↑ vs. C; ↓ vs. bTx | Semen volume: ↓ vs. C; ↑ vs. B | [16] | |||||
LH: ↑ vs. C; ↓ vs. bTx | |||||||||||
FSH: ↔ vs. C; ↔vs. bTx | Sperm motility: ↔ vs. C; ↑ vs. B | ||||||||||
T: ↓ vs. C; ↔ vs. bTx | |||||||||||
3–4 months | PRL: ↔ vs. C; ↓ vs. bTx | Sperm density: ↓ vs. C; ↑ vs. B | |||||||||
LH: ↔ vs. C; ↓ vs. bTx | Sperm survival rate: ↔ vs. C; ↑ vs. B | ||||||||||
FSH: ↔ vs. C; ↔ vs. bTx | Sperm normal morphology: ↔ vs. C; ↑ vs. B | ||||||||||
T: vs. C ↔; vs. bTx ↑ | |||||||||||
CsA + AZA + PRE | F (32) | 26–45 | 1–2 months | PRL: ↔ vs. C; ↓ vs. bTx | lack of information | [16] | |||||
LH: ↑ vs. C; ↓ vs. bTx | |||||||||||
FSH: ↑ vs. C; ↓ vs. B | |||||||||||
E2: ↑ vs. C; ↑ vs. bTx | |||||||||||
CsA + AZA + PRE | F (32) | 26–45 | 3–4 months | PRL: ↔ vs. C; ↓ vs. bTx | lack of information | [16] | |||||
LH: ↔ vs. C; ↓ vs. bTx | |||||||||||
FSH: ↔ vs. C; ↓ vs. bTx | |||||||||||
E2: ↔ vs. C; ↑ vs. bTx | |||||||||||
CsA/Tac + MMF + PRE | F (31) | 15–48 | >3 months | E2: ↑ vs. C; P: ↓ vs. C LH: ↓ vs. C; ↑ FSH vs. C PRL: ↔ vs. C; TSH: ↔ vs. C | lack of information | [18] | |||||
A: CsA/Tac + MMF B: CsA/Tac + MMF + PRE | A: F (19) B: F (12) | 15–48 | A: mean 8 months B: mean 59.5 months | E2: vs. B ↔ P: vs. B ↔ LH: vs. B ↔ FSH: vs. B ↔ PRL: vs. B ↔ TSH: vs. B ↔ | A | amenorrhea (10.5%); uterine bleeding (31.6%); infertility (5.3%); irregular menstruation (21.1%); dysmenorrhea (5.3%); menometrorrhagia (26.3%) | [18] | ||||
B | amenorrhea (8.3%); uterine bleeding (8.3%); infertility (50%); irregular menstruation (8.3%); dysmenorrhea (8.3%); menometrorrhagia (16.7%) | ||||||||||
CsA + AZA + PRE | F (54) | 31–52 | mean 6.2 years | E2: 18.5 pg/mL FSH: 129.4 IU/L | menstrual bleeding: 1 per year; decreased endometrial thickness | [1] | |||||
lack of information | F (26) | 50–62 | 4.9 years | T: ↓ vs. D & CKD DHT: ↔ vs. CKD & D E2: ↔ vs. CKD & D E1: ↔ vs. CKD & D DHEA: ↓ vs. D & CKD | Mortality: ↓ vs. D; ↑ vs. CKD | [12] | |||||
lack of information | M (44) | 43–57 | 4.7 years | T: ↑ vs. D & CKD DHT: ↔ vs. D & CKD E2: ↓ vs. CKD; ↑ vs. D E1: ↑ vs. CKD; ↓ vs. D DHEA: ↔ vs. D & CKD T/E2 ratio: ↑ vs. D & CKD | BMI: ↑ vs. D; ↓ vs. CKD mortality: ↓ vs. D & CKD | [12] | |||||
CsA + PRE + AZA (3) AZA + PRE (5) CsA (8) | M (16) | 40–54 | 120 months | T: 19.7 nmol/L PRL: 357.2 mU/L | ↓parameters of bone structure: volume; wall thickness; osteoblast number and function; osteoid surface; osteoclast number; mineralizing surface; appositional rate | [19] | |||||
CsA + PRE + AZA (1) AZA + PRE (4) CsA (1) | pre-menopausal F (6) | 37–43 | 142 months | E2: 209 pmol/L mean value of E2 level from follicular, phase, mid cycle and luteal phase PRL: 372.2 mU/L | ↓ parameters of bone structure: volume; wall thickness; osteoblast number and function; osteoid surface; osteoclast number; mineralizing surface; appositional rate | [17] | |||||
CsA + PRE + AZA (1) AZA + PRE (3) CsA (4) | post-menopausal F (8) | 53–59 | 123 months | E2: 93 pmol/L mean value of E2 level from follicular, phase, mid cycle and luteal phase PRL: 209.1 mU/L | ↓ parameters of bone structure: volume; wall thickness; osteoblast number and function; osteoid surface; osteoclast number; mineralizing surface; appositional rate | [17] | |||||
PRE + CsA PRE + Tac PRE + AZA + CsA PRE + MMF + CsA | M (20) | 23–44 | 14–75 months | FSH: ↔ vs. C; LH: ↔ vs. C; PRL: ↔ vs. C; 17-OHP: ↑ vs. C & elevated above norm; A: ↓ vs. C & lowered below norm T: ↓ vs. C & lowered below norm DHEAS: ↓ vs. C & lowered below norm | ↓ prostate volume (100%); ↓ testicular volume (100%); ↓ libido (47%); erectile dysfunction (30%) | [20] | |||||
PRE + CsA PRE + Tac PRE + AZA + CsA PRE + MMF + CsA | F (20) | 23–44 | 14–75 months | FSH: ↔ vs. C; LH: ↔ vs. C; PRL: ↑ vs. C; 17-OHP: ↔ vs. C; A: ↔ vs. C; T: ↓ vs. C lowered below norm DHEAS: ↓ vs. C lowered below norm | ovarian cysts (15%); decreased ovarian volume (15%); abnormalities with menstrual cycles; hirsutism; POF (20%) | [20] | |||||
A: CsA + PRE (21) B: Tac + PRE (16) | M (37) | A: 38.7 B: 37.3 | A: 73 months B: 46 months | FSH: A vs. B ↔ LH: A vs. B ↔ PRL: A vs. B ↔ T: A vs. B ↔ | lack of information | [30] | |||||
A: CNIs (15) B: Rapa (15) C: Rapa + CNIs (29) | M (59) | 48 | mean 56 months | T: ↑ A vs. B; ↔ A vs. C; ↔ B vs. C | lack of information | [26] | |||||
CNIs (15) Rapa (15) Rapa + CNIs (29) | M (59) | 48 | mean 56 months | FSH: 13.7 mUI/mL elevated above norm LH: 14.7 mUI/mL within normal range | lack of information | [26] | |||||
Rapa + PRE | M (15) | 11–18 | mean 81 months | T: ↓ over 2 years below normal range LH: ↓ over 2 years FSH: ↓ over 2 years | lack of information | [27] | |||||
EVE + CsA + PRE + Basiliximab | M (123) | <50 | >6 months | T: 11.2 nmol/L within normal range; FSH: ↑ LH: ↑ | infections (58.1%); anemia (29.05%); posttransplant diabetes (4%); increased cholesterol level (100%); increased triglycerides level (100%); hypertension (25.6%) | [28] | |||||
PRE/Flu + CsA PRE/Flu + AZA | A: M (38) B: premenopausal F (15) C: postmenopausal F (13) | 23–70 | A: 81 B: 89 C: 106 | A B C | FSH: within normal range DHEAS: below normal range | ↓bone density; osteopenia (43%); osteoporosis (23%); hyperparathyroidism (100%) | [31] | ||||
A C | LH: within normal range E2: elevated above norm | ||||||||||
LH | A: within normal range B: below normal range C: elevated above norm | ||||||||||
T | A; B: within normal range C: below normal range | ||||||||||
Rapa + CNIs | M (32) | 21–65 | mean 22 months | free T: 11.6 ng/dL ↔ vs. C T: 393.3 ng/dL ↓ vs. C FSH: 12.8 mlU/mL ↑ vs. C LH: 10.9 mlU/mL ↑ vs. C PRL: 10.9 mlU/mL ↔ vs. C | lack of information | [32] | |||||
CNIs | F (63) | 18–44 | mean 4.15 years | E2: 226.86 pg/mL increased vs. C FSH: 4.99 mlU/mL ↔ vs. C LH: 9.84 mlU/mL ↔ vs. C PRL: 18.64 ng/mL ↔ vs. C P: 15.05 ng/mL ↓ vs. C | irregular menstruation (32%); prolonged menstrual cycle (31.9%); anovulatory cycles (55%) | [1] | |||||
lack of information | M (51) | >50 (51%) <50 (49%) | mean 7.2 years | free T: <40 pg/mL below normal range PRL: >15.5 ng/mL elevated above norm | erectile dysfunction (65%) | [22] | |||||
CsA (19%) Tac (71%) Rapa (7%) EVE (3%) MMF/MMS (75%) | M (112) | 54.6 | mean 8.94 years | T: <350 ng/dL (in 52%) below normal range FSH: 5.9 Ul/L within normal range LH: 5.25 Ul/L within normal range | overweight (52%); hypertriglyceridemia (100%); hypertension (37.5%); diabetes (26%) | [13] | |||||
CNIs + PRE + MMF | M (197) | A: 50–59 (44%) B: 60–69 (33%) C: ≥70 (23%) | 17–35 months | T | ↓ prostate volume | [20] | |||||
A 10.3 nmol/L ↓ vs C | B 9.01 nmol/L ↓ vs C | C 7.67 nmol/L ↓ vs C | |||||||||
lack of information | M (35) | lack of information | lack of information | T: 4.32 ng/mL ↑ vs. bTx E2: 19.57 pg/m ↓ vs. bTx PRL: 8.59 mIu/mL ↓ vs. bTx | erectile dysfunction (54%) | [16] | |||||
lack of information | F (55) | 18–40 | 1–5 years | E2: 205.9 pg/mL ↑ vs. C P: 13.2 ng/mL ↓ vs. C T: ↓ vs. C FSH, LH, PRL: ↔ vs. C | irregular menstrual cycles (27.3%) | [1] | |||||
lack of information | M (25) | 53.5 | 124 months | T: 515.7 ng/dL ↑ vs. bTx | erectile dysfunction | [25] | |||||
A: PRE + CNIs + MMF B: PRE + Rapa/EVE + MMF | M (75) | A: 40.9 B: 41.2 | >6 months | A | B | lack of information | [15] | ||||
T: 8.8 nmol/L ↑ vs. bTx FSH: 7.7 mLU/mL ↓ vs. bTx LH: 6.3 mLU/mL ↓ vs. bTx PRL: 10.5 ng/mL ↓ vs. bTx | T: 8.2 nmol/L ↑ vs. bTx FSH: 8.6 mLU/mL ↓ vs. bTx LH: 7.3 mLU/mL ↓ vs. bTx PRL: 11.2 ng/mL ↓ vs. bTx |
Conditioning (Number of Patients) | Sex (Number of Patients) | Age (Years) | Time after Tx | Hormonal Changes | Post-Tx Complications | Literature |
---|---|---|---|---|---|---|
A Tac + PRE + T (9) | A M (6); F (3) | A 51 | >6 months | A free T: 1.2 ng/dL ↑ vs. bTx T: 788 ng/dL ↑ vs. bTx E2: 45 ng/mL ↑ vs. bTx LH: 4.1 mIU/mL ↓ vs. bTx | B ↓ albumin level (100%); deaths on average 84 days post-transplant (80%) | [38] |
B Tac + PRE (5) | B M (3); F (2) | B 53 | B T: 350 ng/dL ↔ vs. bTx | |||
A CsA + Basiliximab + PRE | M (1) | 55 | A 6 months | A LH: 11.8 mU/mL below normal range T: 2.5 ng/mL below normal range | A gynecomastia | [35] |
B Tac + Basiliximab + PRE | B 15 months | B LH: 6.9 mU/mL within normal range T: 3.8 ng/mL within normal range | ||||
A CsA + Basiliximab + PRE | M (1) | 64 | A 13 months | A PRL: 778 mUI/L elevated above norm | A gynecomastia | [35] |
B Tac + Basiliximab + PRE | B 14 months | B PRL: 226 mUI/L within normal range | ||||
lack of information | M (41) | 53.86 | 1 month 3 months 6 months | T: 3.11 pg/mL Free T: 16.75 pg/mL | erectile dysfunctions (100%); ↓ level of SHBG (100%) | [30] |
lack of information | F (13) | 46–55 | 3 months | E2: 49.12 pg/mL ↓ vs. C & bTx FSH: 38.25 mlU/mL ↔ vs. C & bTx LH: 26.12 mlU/mL ↔ vs. C & bTx PRL: 19.65 ng/mL ↔ vs. C & bTx P: 15.05 nmol/L ↔ vs. C & bTx T: 0.36 ng/mL ↔ vs. C & bTx DHEAS: 66.58 μg/dL ↓ vs. C; ↑ vs. bTx | secondary amenorrhea (46%); irregular cycles (8%); | [37] |
Tac | M (28) | 55.3 | 6 months | P: ↔ vs. bTx; PRL: ↓ vs. bTx T: ↔ vs. bTx Free T: ↔ vs. bTx TSH: ↔ vs. bTx E2: ↓ vs. bTx | ↓ free T vs. reference range | [34] |
Tac | M (28) | 55.3 | 1 month | P: ↔ vs. bTx PRL: ↔ vs. bTx T: ↔ vs. bTx Free T: ↔ vs. bTx TSH: ↑ vs. bTx E2: ↓ vs. bTx | ↓ erectile dysfunction vs. bTx | [34] |
Conditioning (Number of Patients) | Sex (Number of Patients) | Age (Years) | Time after Tx | Hormonal Changes | Post-Tx Complications | Literature |
---|---|---|---|---|---|---|
BSP + CPA + CsA + PRE CRM + ETO + CRB + MPL + CsA + PRE | F (22) | 21–45 | 12–24 months | FSH: ↑ vs. C; LH: ↑ vs. C; E2: ↓ vs. C; T: ↓ vs. C A: ↓ vs. C; DHEAS: ↓ vs. C PRL: vs. C ↔ | ↓ ovarian volume; ↓ uterine volume; ↓ number of follicles per ovary; ↓ endometrial thickness | [19] |
BSP + CPA/CRM + ETO + CRB + MPL | F (23) | 21–45 | 12–24 months | FSH: ↑ vs. C; LH: ↑ vs. C; E2: ↓ vs. C; T: ↔ vs. C; A: ↔ vs. C; DHEAS: ↔vs. C PRL: ↔ vs. C | ↓ ovarian volume; ↓ uterine volume; ↓ number of follicles per ovary; ↓ endometrial thickness | [19] |
BSP + CPA + PRE (31%) BSP + CRM + ETO + MPL + PRE (59%) BSP + MPL + PRE (11%) | A M (47) | 17–55 | 3 months 12 months | A 3 months FSH: 22 U/L elevated above norm LH: 7.5 U/L normal range PRL: 6.9 ng/mL normal range T: 3 pg/mL normal range A 12 months FSH: 16.4 U/L elevated above norm LH: 6.2 U/L normal range PRL: 7 ng/mL normal range T: 4.8 pg/mL normal range | A&B 3 months hyperthyroidism (16%); hypothyroidism (9%); “low T3 syndrome” (29%); antibodies to thyroid (12%); chronic thyroiditis (4.2%) | [19] |
B F (48) | B 3 months FSH: 65 U/L elevated above norm LH: 28 U/L elevated above norm PRL: 11 ng/mL normal range E2: 15 pg/mL below normal range B 12 months FSH: 49.5 U/L elevated above norm LH: 17 U/L elevated above norm PRL: 12.5 ng/mL normal range E2: 29.2 pg/mL below normal range | |||||
lack of information | F (24) | 4–19 | mean 9 years | FSH: ↑ above norm (95%) T: ↓ below norm (43%) A: ↓ below norm (63%) DHEAS: ↓ below norm (34%) | ovarian dysfunction; irregular menstrual bleeding; irregular menstruation; lack of axillary & pubic hair | [38] |
Conditioning (Number of Patients) | Sex (Number of Patients) | Age (Years) | Time after Tx | Hormonal Changes | Post-Tx Complications | Literature |
---|---|---|---|---|---|---|
A Rapa + MMF/Rapa + Tac (66) | M (132) | A 49.8 | A mean 2.6 years | T: ↓ A vs. B LH: ↑ A vs. B FSH: ↑ A vs. B T/LH ratio: ↓ A vs. B | lack of information | [42] |
B Tac + MMF (47) CsA + MMF (8) Tac + AZA (4) CsA + AZA (5) Tac (2) | B 49.7 | B mean 2.9 years | ||||
A Rapa + MMF (23) | M (132) | 49.75 | mean 2.7 | T: ↔ A vs. B ↓ A&B vs. C LH: ↑ A vs. B ↑ A&B vs. C FSH: ↑ A vs. B ↑ A&B vs. C T/LH ratio: ↓ A vs. B; ↓ A&B vs. C | lack of information | [42] |
B Rapa + Tac (43) | ||||||
C Tac + MMF (47) CsA + MMF (8) Tac + AZA (4) CsA + AZA (5) Tac (2) | ||||||
CNIs + PRE | M (108) | 18–70 | A: 1 month B: 6 months C: 24 months | A T: 257 ng/dL free T: 6.2 ng/dL LH: 4.5 mIU/mL FSH: 4.2 mIU/mL E2: 27 pg/mL Free E2: 2% | increased BMI (B&C vs. A) | [41] |
B T: 378 ng/dL ↑ vs. A Free T: 9.3 ng/dL ↑ vs. A LH:6.3 mIU/mL ↑ vs. A FSH: 7.3 mIU/mL ↑ vs. A E2: 38 pg/mL ↑ vs. A Free E2: 1.8% ↓ vs. A | ||||||
C T: 383 ng/dL ↑ vs. A Free T: 9.4 ng/dL ↑ vs. A LH: 5.2 mIU/mL ↔ vs. A FSH: 5.2 mIU/mL ↔ vs. A E2: 37 pg/mL ↑ vs. A Free E2: 1.7% ↓ vs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szypulska-Koziarska, D.; Misiakiewicz-Has, K.; Wiszniewska, B. Hormonal (Im)Balance and Reproductive System’s Disorders in Transplant Recipients—A Review. Biology 2021, 10, 271. https://doi.org/10.3390/biology10040271
Szypulska-Koziarska D, Misiakiewicz-Has K, Wiszniewska B. Hormonal (Im)Balance and Reproductive System’s Disorders in Transplant Recipients—A Review. Biology. 2021; 10(4):271. https://doi.org/10.3390/biology10040271
Chicago/Turabian StyleSzypulska-Koziarska, Dagmara, Kamila Misiakiewicz-Has, and Barbara Wiszniewska. 2021. "Hormonal (Im)Balance and Reproductive System’s Disorders in Transplant Recipients—A Review" Biology 10, no. 4: 271. https://doi.org/10.3390/biology10040271
APA StyleSzypulska-Koziarska, D., Misiakiewicz-Has, K., & Wiszniewska, B. (2021). Hormonal (Im)Balance and Reproductive System’s Disorders in Transplant Recipients—A Review. Biology, 10(4), 271. https://doi.org/10.3390/biology10040271