# Fluid–Structure Interaction Analyses of Biological Systems Using Smoothed-Particle Hydrodynamics

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## Simple Summary

## Abstract

## 1. Introduction

#### 1.1. Fluid–Structure Interaction Analyses

#### 1.2. Biomedical FSI Applications

## 2. Smoothed-Particle Hydrodynamics

## 3. Applications

#### 3.1. Blood Flow in Arteries

#### 3.2. Blood Flow’s Interaction with Heart

#### 3.3. Cerebrospinal Fluid’s Interaction with the Brain

#### 3.4. Other Applications

## 4. Validation

## 5. Discussion

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

FSI | Fluid–structure interaction |

SPH | Smoothed-particle hydrodynamics |

FDA | U.S. Food and Drug Administration |

PIV | particle image velocimetry |

ALE | Artitrary Lagrangian–Euletian |

CT | Computed tomography |

IB | Immersed boundary |

GPU | Graphics processing unit |

CPU | Central processing unit |

LBFS | Lattice Boltzman flux solver |

CFD | Computational fluid dynamics |

MMD | Moyamoya disease |

FPM | Finite particle method |

CSPM | Corrective particle method |

KGF-SPH | Kernel gradient-free SPH |

DFPM | Decoupled finite element method |

## References

- Trusty, P.; Slesnick, T.; Wei, Z.; Rossignac, J.; Kanter, K.; Fogel, M.; Yoganathan, A. Fontan Surgical Planning: Previous Accomplishments, Current Challenges, and Future Directions. J. Cardiovasc. Trans. Res.
**2018**, 11, 133–144. [Google Scholar] [CrossRef] - Shi, W.; Zheng, M.; Liu, P. Virtual surgical bleeding simulation with navier-stokes equation and modified smooth particle hydrodynamics method. In Proceedings of the 2017 IEEE International Conference on Information and Automation (ICIA), Macao, China, 18–20 July 2017; pp. 276–281. [Google Scholar] [CrossRef]
- Fernandez, J.W.; Das, R.; Cleary, P.W.; Hunter, P.J.; Thomas, C.D.L.; Clement, J.G. Using smooth particle hydrodynamics to investigate femoral cortical bone remodelling at the Haversian level. Int. J. Numer. Methods Biomed. Eng.
**2013**, 29, 129–143. [Google Scholar] [CrossRef] - Toma, M.; Dehesa-Baeza, A.; Chan-Akeley, R.; Nguyen, P.; Zwibel, H. Cerebrospinal Fluid Interaction with Cerebral Cortex during Pediatric Abusive Head Trauma. J. Pediatr. Neurol.
**2020**, 18, 223–230. [Google Scholar] [CrossRef] - Toma, M.; Lu, Y.; Zhou, H.; Garcia, J. Thresholding Segmentation Errors and Uncertainty with Patient-Specific Geometries. J. Biomed. Phys. Eng.
**2021**, 11, 115–122. [Google Scholar] [CrossRef] - Toma, M.; Oshima, M.; Takagi, S. Decomposition and parallelization of strongly coupled fluid-structure interaction linear subsystems based on the Q1/P0 discretization. J. Comput. Struct.
**2016**, 173, 84–94. [Google Scholar] [CrossRef] - Manenti, S.; Panizzo, A.; Ruol, P.; Martinelli, L. SPH simulation of a floating body forced by regular waves. In Proceedings of the 3rd SPHERIC Workshop, Lausanne, Switzerland, 4–6 June 2008; pp. 38–41. [Google Scholar]
- Peskin, C. Flow patterns around heart valves: A numerical method. J. Comput. Phys.
**1972**, 10, 252–271. [Google Scholar] [CrossRef] - Griffith, B.; Xiaoyu, L. Hybrid finite difference/finite element immersed boundary method. Int. J. Numer. Methods Biomed. Eng.
**2017**, 33, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Mittal, R.; Iaccarino, G. Immersed Boundary Method. Annu. Rev. Fluid Mech.
**2004**, 37, 239–261. [Google Scholar] [CrossRef] [Green Version] - Bandringa, H. Immersed Boundary Methods. Master’s Thesis, University of Gronigen, Gronigen, The Netherlands, 2010. [Google Scholar]
- Tian, F.; Young, J.; Lai, J. Immersed Boundary Method and its Applications in a Variety of Complex Flow Problems. In Proceedings of the 19th Australasian Fluid Mechanics Conference, Melbourne, Australia, 8–11 December 2014. [Google Scholar]
- Harikrishnan, B.; Chen, Z.; Shu, C. A New Explicit Immersed Boundary Method for Simulation of Fluid-Solid Interactions. Adv. Appl. Math. Mech.
**2020**, 13, 261–284. [Google Scholar] [CrossRef] - Peskin, C.; Lai, M. An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J. Comput. Phys.
**2000**, 160, 705–719. [Google Scholar] [CrossRef] - De Rosis, A.; Ubertini, S.; Ubertini, F. A partitioned approach for two-dimensional fluid–structure interaction problems by a coupled lattice Boltzmann-finite element method with immersed boundary. J. Fluid Struct.
**2014**, 45, 202–215. [Google Scholar] [CrossRef] - Chen, Y.; Cai, Q.; Xia, Z.; Wang, M.; Chen, S. Momentum-exchange method in lattice Boltzmann simulations of particle-fluid interactions. Phys. Rev. E
**2013**, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Peskin, C. Numerical Analysis of Blood Flow in the Heart. J. Comput. Phys.
**1977**, 25, 220–252. [Google Scholar] [CrossRef] - Tang, D.; Yang, C.; Kobayashi, S.; Zheng, J.; Vito, R. Effect of stenosis asymmetry on blood flow and artery compression: A three-dimensional fluid-structure interaction model. Ann. Biomed. Eng.
**2003**, 31, 1182–1193. [Google Scholar] [CrossRef] [PubMed] - Wong, K.; Fong, F.; Wang, D. Computational evaluation of smoothed particle hydrodynamics for implementing blood flow modelling through CT reconstructed arteries. J.-Ray Sci. Technol.
**2017**, 25, 213–232. [Google Scholar] [CrossRef] - Nasar, A. Eulerian and Lagrangian Smoothed Particle Hydrodynamics as Models for the Interaction of Fluids and Flexible Structures in Biomedical Flows. Ph.D. Thesis, The University of Manchester (United Kingdom), PQDT-UK & Ireland, Manchester, UK, 2016. [Google Scholar]
- Hron, J.; Madlik, M. Fluid-structure interaction with applications in biomechanics. Nonlinear Anal. Real World Appl.
**2007**, 8, 1431–1458. [Google Scholar] [CrossRef] - Al-Saad, M.; Suarez, C.; Obeidat, A.; Bordas, S.; Kulasegaram, S. Application of Smooth Particle Hydrodynamics Method for Modelling Blood Flow with Thrombus Formation. Comput. Model. Eng. Sci.
**2020**, 122, 831–862. [Google Scholar] [CrossRef] - Frissane, H.; Taddei, L.; Lebaal, N.; Roth, S. SPH modeling of high velocity impact into ballistic gelatin. Development of an axis-symmetrical formulation. Mech. Adv. Mater. Struct.
**2019**, 26, 1881–1888. [Google Scholar] [CrossRef] - Lucy, L. A numerical approach to the testing of the fission hypothesis. Astron. J.
**1977**, 82, 1013–1024. [Google Scholar] [CrossRef] - Gingold, R.; Monaghan, J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mon. Not. R. Astron. Soc.
**1977**, 181, 375–389. [Google Scholar] [CrossRef] - Ye, T.; Pan, D.; Huang, C.; Liu, M. Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications. Phys. Fluids
**2019**, 31, 011301. [Google Scholar] [CrossRef] - Zhang, L.; Ademiloye, A.; Liew, K. Meshfree and Particle Methods in Biomechanics: Prospects and Challenges. Arch. Comput. Methods Eng.
**2019**, 26, 1547–1576. [Google Scholar] [CrossRef] - Toma, M. The Emerging Use of SPH in Biomedical Applications. Signif. Bioeng. Biosci.
**2017**, 1, SBB.000502. [Google Scholar] [CrossRef] - Durrwachter, J. Hemodynamics of the Left Ventricle: Validation of a Smoothed—Particle Hydrodynamics Fluid-Structure Interaction Model. Master’s Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2016. [Google Scholar]
- Toma, M.; Einstein, D.; Bloodworth, C.; Cochran, R.; Yoganathan, A.; Kunzelman, K. Fluid-Structure Interaction and Structural Analyses using a Comprehensive Mitral Valve Model with 3D Chordal Structure. Int. J. Numer. Methods Biomed. Eng.
**2017**, 33, e2815. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Zhang, C.; Rezavand, M.; Hu, X. A Multi-Resolution SPH Method for Fluid-Structure Interactions. J. Comput. Phys.
**2021**, 429. [Google Scholar] [CrossRef] - Tang, D.; Yang, C.; Kobayashi, S.; Ku, D. Steady flow and wall compression in stenotic arteries: A three-dimensional thick-wall model with fluid–wall interactions. J. Biomech. Eng.
**2001**, 123, 548–557. [Google Scholar] [CrossRef] - Downing, J.M.; Ku, D.N. Effects of Frictional Losses and Pulsatile Flow on the Collapse of Stenotic Arteries. J. Biomech. Eng.
**1997**, 119, 317–324. [Google Scholar] [CrossRef] - Yamaguchi, T.; Kobayashi, T.; Liu, H. Fluid-wall interactions in the collapse and ablation of an atheromatous plaque in coronary arteries. In Proceedings of the Third World Congress of Biomechanics, Sapporo, Japan, 2–8 August 1998; p. 20b. [Google Scholar]
- Yamaguchi, T.; Furuta, N.; Nakayama, T.; Kobayashi, T. Computations of the fluid and wall mechanical interactions in arterial diseases. In Proceedings of the 1995 ASME International Mechanical Congress and Exposition, San Francisco, CA, USA, 12–17 November 1995; pp. 197–198. [Google Scholar]
- Yamaguchi, T.; Nakayama, T.; Kobayashi, T. Computations of the wall mechanical response under unsteady flows in arterial diseases. Adv. Bioeng.
**1996**, 33, 369–370. [Google Scholar] - Bathe, M.; Kamm, R. A fluid-structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic artery. J. Biomech. Eng.
**1999**, 121, 361–369. [Google Scholar] [CrossRef] [Green Version] - Yang, C.; Tang, D.; Atluri, S. Patient-specific carotid plaque progression simulation using 3D meshless generalized finite difference models with fluid–structure interactions based on serial in vivo MRI data. Comput. Model. Eng. Sci.
**2011**, 72, 53–77. [Google Scholar] [CrossRef] [PubMed] - Chui, Y.P.; Heng, P.A. A meshless rheological model for blood-vessel interaction in endovascular simulation. Prog. Biophys. Mol. Biol.
**2010**, 103, 252–261. [Google Scholar] [CrossRef] - Toma, M.; Bloodworth, C.; Einstein, D.; Pierce, E.; Cochran, R.; Yoganathan, A.; Kunzelman, K. High-resolution subject-specific mitral valve imaging and modeling: Experimental and computational methods. Biomech. Model. Mechanobiol.
**2016**, 15, 1619–1630. [Google Scholar] [CrossRef] - Toma, M.; Jensen, M.; Einstein, D.; Yoganathan, A.; Cochran, R.; Kunzelman, K. Fluid-Structure Interaction Analysis of Papillary Muscle Forces Using a Comprehensive Mitral Valve Model with 3D Chordal Structure. Ann. Biomed. Eng.
**2016**, 44, 942–953. [Google Scholar] [CrossRef] [Green Version] - Mao, W.; Caballero, A.; Kodali, S.; Sun, W. Fully-coupled fluid-structure interaction simulation of the aortic and mitral valves in a realistic 3D left ventricle model. PLoS ONE
**2017**, 12, e0184729. [Google Scholar] [CrossRef] [Green Version] - Caballero, A.; Mao, W.; McKay, R.; Primiano, C.; Hashim, S.; Wei, S. New insights into mitral heart valve prolapse after chordae rupture through fluid—Structure interaction computational modeling. Sci. Rep.
**2018**, 8, 17306. [Google Scholar] [CrossRef] [PubMed] - Mao, W.; Caballero, A.; Hahn, R.; Sun, W. Comparative quantification of primary mitral regurgitation by computer modeling and simulated echocardiography. Am. J. Physiol. Heart Circ. Physiol.
**2020**, 318, H547–H557. [Google Scholar] [CrossRef] - Toma, M.; Bloodworth, C.; Pierce, E.; Einstein, D.; Cochran, R.; Yoganathan, A.; Kunzelman, K. Fluid-Structure Interaction Analysis of Ruptured Mitral Chordae Tendineae. Ann. Biomed. Eng.
**2017**, 45, 619–631. [Google Scholar] [CrossRef] - Biffi, B.; Gritti, M.; Grasso, A.; Milano, E.; Fontana, M.; Alkareef, H.; Davar, J.; Jeetley, P.; Whelan, C.; Anderson, S.; et al. A workflow for patient-specific fluid–structure interaction analysis of the mitral valve: A proof of concept on a mitral regurgitation case. Med. Eng. Phys.
**2019**, 74, 153–161. [Google Scholar] [CrossRef] [PubMed] - Toma, M.; Einstein, D.; Kohli, K.; Caroll, S.; Bloodworth, C.; Cochran, R.; Kunzelman, K.; Yoganathan, A. Effect of Edge-to-Edge Mitral Valve Repair on Chordal Strain: Fluid-Structure Interaction Simulations. Biology
**2020**, 9, 173. [Google Scholar] [CrossRef] [PubMed] - Toma, M.; Einstein, D.; Bloodworth, C.; Kohli, K.; Cochran, R.; Kunzelman, K.; Yoganathan, A. Fluid-Structure Interaction Analysis of Subject-Specific Mitral Valve Regurgitation Treatment with an Intra-valvular Spacer. Prosthesis
**2020**, 2, 7. [Google Scholar] [CrossRef] - Caballero, A.; Mao, W.; McKay, R.; Hahn, R.; Sun, W. A Comprehensive Engineering Analysis of Left Heart Dynamics After MitraClip in a Functional Mitral Regurgitation Patient. Front. Physiol.
**2020**, 11, 432. [Google Scholar] [CrossRef] [PubMed] - Caballero, A.; Mao, W.; McKay, R.; Wei, S. Transapical mitral valve repair with neochordae implantation: FSI analysis of neochordae number and complexity of leaflet prolapse. Int. J. Numer. Methods Biomed. Eng.
**2019**, 36, e3297. [Google Scholar] [CrossRef] [PubMed] - Singh-Gryzbon, S.; Sadri, V.; Toma, M.; Pierce, E.; Wei, Z.; Yoganathan, A. Development of a Computational Method for Simulating Tricuspid Valve Dynamics. Ann. Biomed. Eng.
**2019**, 47, 1422–1434. [Google Scholar] [CrossRef] - Mao, W.; Li, K.; Sun, W. Fluid—Structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics. Cardiovasc. Eng. Technol.
**2016**, 7, 374–388. [Google Scholar] [CrossRef] [Green Version] - Caballero, A.; Mao, W.; McKay, R.; Wei, S. The impact of balloon-expandable transcatheter aortic valve replacement on concomitant mitral regurgitation: A comprehensive computational analysis. J. R. Soc. Interface
**2019**, 16, 20190355. [Google Scholar] [CrossRef] [Green Version] - Caballero, A.; Mao, W.; McKay, R.; Sun, W. The Impact of Self-Expandable Transcatheter Aortic Valve Replacement on Concomitant Functional Mitral Regurgitation: A Comprehensive Engineering Analysis. Struct. Heart
**2020**, 4, 179–191. [Google Scholar] [CrossRef] - Dabiri, Y.; Yao, Y.; Sack, K.; Kassab, G.; Guccione, J. Tricuspid valve regurgitation decreases after mitraclip implantation: Fluid structure interaction simulation. Mech. Res. Commun.
**2019**, 97, 96–100. [Google Scholar] [CrossRef] - Yuan, Q.; Ye, X. A New Way to Simulate the Fluid Structure Interaction between the Bioprosthetic Heart Valve and Blood: FE-SPH Method; Mechanical Science and Engineering IV; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2014; Volume 472, pp. 125–130. [Google Scholar] [CrossRef]
- Marom, G. Numerical Methods for Fluid–Structure Interaction Models of Aortic Valves. Arch. Comput. Methods Eng.
**2015**, 22, 595–620. [Google Scholar] [CrossRef] - Toma, M.; Nguyen, P. Fluid-structure interaction analysis of cerebrospinal fluid with a comprehensive head model subject to a rapid acceleration and deceleration. Brain Inj.
**2018**, 32, 1576–1584. [Google Scholar] [CrossRef] - Duckworth, H.; Ghajari, M. Modelling Brain Biomechanics Using a Hybrid Smoothed Particle Hydrodynamics and Finite Element Model; Ohio State University Injury Biomechanics Symposium: Columbus, OH, USA, 2019. [Google Scholar]
- Wilhelm, J.; Ptak, M.; Fernandes, F.; Kubicki, K.; Kwiatkowski, A.; Ratajczak, M.; Sawicki, M.; Szarek, D. Injury Biomechanics of a Child’s Head: Problems, Challenges and Possibilities with a New aHEAD Finite Element Model. Appl. Sci.
**2020**, 10, 4467. [Google Scholar] [CrossRef] - Toma, M.; Chan-Akeley, R.; Lipari, C.; Kuo, S.H. Mechanism of Coup and Contrecoup Injuries Induced by a Knock-Out Punch. J. Math. Comput. Appl.
**2020**, 25, 22. [Google Scholar] [CrossRef] [Green Version] - Toma, M.; Nguyen, P. Coup-contrecoup brain injury: Fluid-structure interaction simulations. Int. J. Crashworth.
**2020**, 25, 175–182. [Google Scholar] [CrossRef] - Toma, M. Predicting Concussion Symptoms Using Computer Simulations. Adv. Intell. Syst. Comput.
**2019**, 880, 557–568. [Google Scholar] [CrossRef] - Toma, M.; Kuo, S. Computational Assessment of Risk of Subdural Hematoma Associated with Ventriculoperitoneal Shunt Placement. Lect. Notes Comput. Vis. Biomech.
**2020**, 36, 36–47. [Google Scholar] [CrossRef] - Kwon, E.; Singh, M.; Vallabh, R.; Das, R.; Taylor, M.; Fernandez, J. Modelling ballistic cranial injury and backspatter using smoothed particle hydrodynamics. Comput. Methods Biomech. Biomed. Eng. Imaging Vis.
**2018**. [Google Scholar] [CrossRef] - Ho, A.; Tsou, L.; Green, S.; Fels, S. A 3D swallowing simulation using smoothed particle hydrodynamics. Comput. Methods Biomech. Biomed. Eng. Imaging Vis.
**2014**, 2, 237–244. [Google Scholar] [CrossRef] - Harrison, S.; Eyres, G.; Cleary, P.; Sinnott, M.; Delahunty, C.; Lundin, L. Computational Modeling of Food Oral Breakdown Using Smoothed Particle Hydrodynamics. J. Texture Stud.
**2014**, 45, 97–109. [Google Scholar] [CrossRef] - Brandstaeter, S.; Fuchs, S.; Aydin, R.; Cyron, C. Mechanics of the stomach: A review of an emerging field of biomechanics. GAMM-Mitteilungen
**2019**, 42, e201900001. [Google Scholar] [CrossRef] [Green Version] - Sinnott, M.; Cleary, P.; Harrison, S. Peristaltic transport of a particulate suspension in the small intestine. Appl. Math. Model.
**2017**, 44, 143–159. [Google Scholar] [CrossRef] - Harrison, S.; Cohen, R.; Cleary, P.; Barris, S.; Rose, G. A coupled biomechanical-Smoothed Particle Hydrodynamics model for predicting the loading on the body during elite platform diving. Appl. Math. Model.
**2016**, 40, 3812–3831. [Google Scholar] [CrossRef] - Harrison, S.; Cleary, P.; Cohen, R. Dynamic simulation of flat water kayaking using a coupled biomechanical-smoothed particle hydrodynamics model. Hum. Mov. Sci.
**2019**, 64, 252–273. [Google Scholar] [CrossRef] - Stewart, S.; Paterson, E.; Burgreen, G.; Hariharan, P.; Giarra, M.; Reddy, V.; Day, S.; Manning, K.; Deutsch, S.; Berman, M.; et al. Assessment of CFD performance in simulations of an idealized medical device: Results of FDA’s first computational interlaboratory study. Cardiovasc. Eng. Technol.
**2012**, 3, 139–160. [Google Scholar] [CrossRef] - Stewart, S.; Hariharan, P.; Paterson, E.; Burgreen, G.; Reddy, V.; Day, S.; Giarra, M.; Manning, K.; Deutsch, S.; Berman, M.; et al. Results of FDA’s first interlaboratory computational study of a nozzle with a sudden contraction and conical diffuser. Cardiovasc. Eng. Technol.
**2013**, 4, 374–391. [Google Scholar] [CrossRef] - Toma, M. Computational Fluid Dynamics Simulations Using FDA’s Idealized Medical Device Demonstrating the Importance of Model Validation. Biomed. Res. Rev.
**2018**, 1, 1. [Google Scholar] [CrossRef] - Stewart, S.; Day, S.; Burgreen, G.; Paterson, E.; Manning, K.; Hariharan, P.; Deutsch, S.; Giarra, M.; Cheek, C.; Reddy, V.; et al. Preliminary results of FDA’s “Critical Path” project to validate computational fluid dynamic methods used in medical device evaluation. ASAIO J.
**2009**, 55, 173. [Google Scholar] - Erdemir, A.; Mulugeta, L.; Ku, J.; Drach, A.; Horner, M.; Morrison, T.; Peng, G.; Vadigepalli, R.; Lytton, W.; Myers, J., Jr. Credible practice of modeling and simulation in healthcare: Ten rules from a multidisciplinary perspective. J. Transl. Med.
**2020**, 18, 369. [Google Scholar] [CrossRef] [PubMed] - Bloodworth, C.; Pierce, E.; Easley, T.; Drach, A.; Khalighi, A.; Toma, M.; Jensen, M.; Sacks, M.; Yoganathan, A. Ex Vivo Methods for Informing and Validating Computational Models of the Mitral Valve. Ann. Biomed. Eng.
**2017**, 45, 496–507. [Google Scholar] [CrossRef] [Green Version] - Wei, Z.; Sonntag, S.; Toma, M.; Singh-Gryzbon, S.; Sun, W. Computational Fluid Dynamics Assessment Associated with Transcatheter Heart Valve Prostheses: A Position Paper of the ISO Working Group. Cardiovasc. Eng. Technol.
**2018**, 9, 289–299. [Google Scholar] [CrossRef] [PubMed] - Vaca, F.; Bordoni, B. Anatomy, Thorax, Mitral Valve. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Schubert, S.; Mehaffey, J.; Charles, E.; Kron, I. Mitral Valve Repair: The French Correction Versus the American Correction. Surg. Clin. N. Am.
**2017**, 97, 867–888. [Google Scholar] [CrossRef] [PubMed] - Carpentier, A.; Lessana, A.; Relland, J.; Belli, E.; Mihaileanu, S.; Berrebi, A.; Palsky, E.; Loulmet, D. The “Physio-Ring”: An Advanced Concept in Mitral Valve Annuloplasty. Ann. Thorac. Surg.
**1995**, 60, 1177–1186. [Google Scholar] [CrossRef] - Dal-Bianco, J.; Levine, R. Anatomy of the Mitral Valve Apparatus: Role of 2D and 3D Echocardiography. Cardiol. Clin.
**2013**, 31, 151–164. [Google Scholar] [CrossRef] [Green Version] - Liu, X.; Wang, R.; Li, Y.; Song, D. Deformation of Soft Tissue and Force Feedback Using the Smoothed Particle Hydrodynamics. Comput. Math. Methods Med.
**2015**, 2015, 598415. [Google Scholar] [CrossRef] [PubMed] - Chang, Y.J.; Benharash, P.; Dutson, E.; Eldredge, J. Smoothed particle hydrodynamics simulation of biphasic soft tissue and its medical applications. Med. Biol. Eng. Comput.
**2020**, 59, 227–242. [Google Scholar] [CrossRef] [PubMed] - Zhu, F.; Qian, Y.; Xu, B.; Gu, Y.; Karunanithi, K.; Zhu, W.; Chen, L.; Mao, Y.; Morgan, M. Quantitative assessment of changes in hemodynamics of the internal carotid artery after bypass surgery for moyamoya disease. J. Neurosurg.
**2018**, 129, 677–683. [Google Scholar] [CrossRef] - Toma, M.; Chan-Akeley, R. Biofluid-Biostructure Interaction Analyses Using Comprehensive Patient-Specific Geometries. Adv. Intell. Syst. Comput.
**2021**, 1290, 1–16. [Google Scholar] [CrossRef] - Liu, C.; Zhang, Z. Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions. Sci. China Phys. Mech. Astron.
**2019**, 62. [Google Scholar] [CrossRef] - Winslow, R.; Trayanova, N.; Geman, D.; Miller, M. Computational medicine: Translating models to clinical care. Sci. Transl. Med.
**2012**, 4, 158rv11. [Google Scholar] [CrossRef] [PubMed] [Green Version]

**Figure 3.**Closed leaflets reconstructed from $\mu $CT images (

**a**) compared to the results of fluid–structure interaction (FSI) simulations (

**b**), after balancing all the structures involved [40]. The curves represent the coaptation line where the posterior and anterior leaflets are in contact.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Toma, M.; Chan-Akeley, R.; Arias, J.; Kurgansky, G.D.; Mao, W.
Fluid–Structure Interaction Analyses of Biological Systems Using Smoothed-Particle Hydrodynamics. *Biology* **2021**, *10*, 185.
https://doi.org/10.3390/biology10030185

**AMA Style**

Toma M, Chan-Akeley R, Arias J, Kurgansky GD, Mao W.
Fluid–Structure Interaction Analyses of Biological Systems Using Smoothed-Particle Hydrodynamics. *Biology*. 2021; 10(3):185.
https://doi.org/10.3390/biology10030185

**Chicago/Turabian Style**

Toma, Milan, Rosalyn Chan-Akeley, Jonathan Arias, Gregory D. Kurgansky, and Wenbin Mao.
2021. "Fluid–Structure Interaction Analyses of Biological Systems Using Smoothed-Particle Hydrodynamics" *Biology* 10, no. 3: 185.
https://doi.org/10.3390/biology10030185