Assessing Scientific Soundness and Translational Value of Animal Studies on DPP4 Inhibitors for Treating Type 2 Diabetes Mellitus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Comparing Preclinical and Clinical Results on the Effect of DPP4 Inhibitors
3.2. Methodology and Reporting Standards of the T2DM Preclinical Studies
3.2.1. Level of Detail Reported on Animal Models and Methods
3.2.2. Reported Measures for Minimizing Risk of Bias
3.2.3. Mapping Self-Reported Compliance with Animal Welfare Regulations and Reported Refinement
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kleinert, M.; Clemmensen, C.; Hofmann, S.M.; Moore, M.C.; Renner, S.; Woods, S.C.; Huypens, P.; Beckers, J.; de Angelis, M.H.; Schürmann, A.; et al. Animal models of obesity and diabetes mellitus. Nat. Rev. Endocrinol. 2018, 14, 140–162. [Google Scholar] [CrossRef] [Green Version]
- King, A.J.F. The use of animal models in diabetes research. Br. J. Pharmacol. 2012, 166, 877–894. [Google Scholar] [CrossRef] [Green Version]
- Brito-Casillas, Y.; Melián, C.; Wägner, A.M. Study of the pathogenesis and treatment of diabetes mellitus through animal models. Endocrinol. Nutr. Engl. Ed. 2016, 63, 345–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karamanou, M.; Protogerou, A.; Tsoucalas, G.; Androutsos, G.; Poulakou-Rebelakou, E. Milestones in the history of diabetes mellitus: The main contributors. World J. Diabetes 2016, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Haluzik, M.; Reitman, M.L. Animal models of diabetes. In Principles of Diabetes Mellitus; Springer: Berlin/Heidelberg, Germany, 2004; pp. 139–151. [Google Scholar]
- Kumar, S.; Singh, R.; Vasudeva, N.; Sharma, S. Acute and chronic animal models for the evaluation of anti-diabetic agents. Cardiovasc. Diabetol. 2012, 11, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denayer, T.; Stöhr, T.; Van Roy, M. Animal models in translational medicine: Validation and prediction. New Horiz. Transl. Med. 2014, 2, 5–11. [Google Scholar] [CrossRef] [Green Version]
- van der Worp, H.B.; Howells, D.W.; Sena, E.S.; Porritt, M.J.; Rewell, S.; O’Collins, V.; Macleod, M.R. Can Animal Models of Disease Reliably Inform Human Studies? PLoS Med. 2010, 7, e1000245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varga, O.; Harangi, M.; Olsson, I.A.; Hansen, A.K. Contribution of animal models to the understanding of the metabolic syndrome: A systematic overview. Obes. Rev. 2010, 11, 792–807. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Chandrasekera, P.C.; Pippin, J.J. Leptin- and leptin receptor-deficient rodent models: Relevance for human type 2 diabetes. Curr. Diabetes Rev. 2014, 10, 131–145. [Google Scholar] [CrossRef] [Green Version]
- Koopmans, S.J.; Schuurman, T. Considerations on pig models for appetite, metabolic syndrome and obese type 2 diabetes: From food intake to metabolic disease. Eur. J. Pharmacol. 2015, 759, 231–239. [Google Scholar] [CrossRef]
- Srinivasan, K.; Ramarao, P. Animal models in type 2 diabetes research: An overview. Indian J. Med Res. 2007, 125, 451–472. [Google Scholar]
- Garner, J.P.; Gaskill, B.N.; Weber, E.M.; Ahloy-Dallaire, J.; Pritchett-Corning, K.R. Introducing Therioepistemology: The study of how knowledge is gained from animal research. Lab Anim. 2017, 46, 103–113. [Google Scholar] [CrossRef]
- Prabhakar, S. Translational research challenges: Finding the right animal models. J. Investig. Med. 2012, 60, 1141–1146. [Google Scholar] [CrossRef]
- Varga, O.E.; Zsiros, N.; Olsson, I.A. Estimating the predictive validity of diabetic animal models in rosiglitazone studies. Obes. Rev. 2015, 16, 498–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, J.G.; Franco, N.H.; Grierson, A.J.; Hultgren, J.; Furley, A.J.W.; Olsson, I.A.S. Methodological standards, quality of reporting and regulatory compliance in animal research on amyotrophic lateral sclerosis: A systematic review. BMJ Open Sci. 2019, 3, e000016. [Google Scholar] [CrossRef]
- Landis, S.C.; Amara, S.G.; Asadullah, K.; Austin, C.P.; Blumenstein, R.; Bradley, E.W.; Crystal, R.G.; Darnell, R.B.; Ferrante, R.J.; Fillit, H.; et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature 2012, 490, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilkenny, C.; Parsons, N.; Kadyszewski, E.; Festing, M.F.W.; Cuthill, I.C.; Fry, D.; Hutton, J.; Altman, D.G. Survey of the Quality of Experimental Design, Statistical Analysis and Reporting of Research Using Animals. PLoS ONE 2009, 4, e7824. [Google Scholar] [CrossRef] [PubMed]
- Macleod, M.R.; Lawson McLean, A.; Kyriakopoulou, A.; Serghiou, S.; de Wilde, A.; Sherratt, N.; Hirst, T.; Hemblade, R.; Bahor, Z.; Nunes-Fonseca, C.; et al. Risk of Bias in Reports of In Vivo Research: A Focus for Improvement. PLoS Biol. 2015, 13, e1002273. [Google Scholar] [CrossRef]
- Sena, E.S.; Currie, G.L. How our approaches to assessing benefits and harms can be improved. Anim. Welf. 2019, 28, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Wurbel, H. More than 3Rs: The importance of scientific validity for harm-benefit analysis of animal research. Lab Anim. NY 2017, 46, 164–166. [Google Scholar] [CrossRef]
- Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; et al. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front. Endocrinol. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44, S111–S124. [Google Scholar] [CrossRef] [PubMed]
- Gallwitz, B. Clinical Use of DPP-4 Inhibitors. Front. Endocrinol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Paldánius, P.M.; Proot, P.; Chiang, Y.; Stumvoll, M.; Del Prato, S. Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): A 5-year, multicentre, randomised, double-blind trial. Lancet 2019, 394, 1519–1529. [Google Scholar] [CrossRef]
- de Vries, R.B.; Wever, K.E.; Avey, M.T.; Stephens, M.L.; Sena, E.S.; Leenaars, M. The usefulness of systematic reviews of animal experiments for the design of preclinical and clinical studies. ILAR J. 2014, 55, 427–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritskes-Hoitinga, M.; van Luijk, J. How Can Systematic Reviews Teach Us More about the Implementation of the 3Rs and Animal Welfare? Animals 2019, 9, 1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avey, M.T.; Moher, D.; Sullivan, K.J.; Fergusson, D.; Griffin, G.; Grimshaw, J.M.; Hutton, B.; Lalu, M.M.; Macleod, M.; Marshall, J.; et al. The Devil Is in the Details: Incomplete Reporting in Preclinical Animal Research. PLoS ONE 2016, 11, e0166733. [Google Scholar] [CrossRef] [Green Version]
- Leung, V.; Rousseau-Blass, F.; Beauchamp, G.; Pang, D.S.J. ARRIVE has not ARRIVEd: Support for the ARRIVE (Animal Research: Reporting of in vivo Experiments) guidelines does not improve the reporting quality of papers in animal welfare, analgesia or anesthesia. PLoS ONE 2018, 13, e0197882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef]
- Varga, O.E.; Hansen, A.K.; Sandoe, P.; Olsson, I.A. Validating animal models for preclinical research: A scientific and ethical discussion. Altern. Lab. Anim. 2010, 38, 245–248. [Google Scholar] [CrossRef]
- Ferreira, G.S.; Veening-Griffioen, D.H.; Boon, W.P.C.; Moors, E.H.M.; Gispen-de Wied, C.C.; Schellekens, H.; van Meer, P.J.K. A standardised framework to identify optimal animal models for efficacy assessment in drug development. PLoS ONE 2019, 14, e0218014. [Google Scholar] [CrossRef] [Green Version]
- Taneja, A.; Di Iorio, V.L.; Danhof, M.; Della Pasqua, O. Translation of drug effects from experimental models of neuropathic pain and analgesia to humans. Drug Discov. Today 2012, 17, 837–849. [Google Scholar] [CrossRef]
- Veening-Griffioen, D.H.; Ferreira, G.S.; van Meer, P.J.K.; Boon, W.P.C.; Gispen-de Wied, C.C.; Moors, E.H.M.; Schellekens, H. Are some animal models more equal than others? A case study on the translational value of animal models of efficacy for Alzheimer’s disease. Eur. J. Pharmacol. 2019, 859, 172524. [Google Scholar] [CrossRef]
- Whiteside, G.T.; Adedoyin, A.; Leventhal, L. Predictive validity of animal pain models? A comparison of the pharmacokinetic-pharmacodynamic relationship for pain drugs in rats and humans. Neuropharmacology 2008, 54, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Franco, N.H.; Miranda, S.F.B.; Kovacs, N.; Nagy, A.; Akinsolu, F.T.; Olsson, I.A.S.; Varga, O. Trends in animal model preference for preclinical drug testing for type-2 diabetes and future directions. bioRxiv 2020. [Google Scholar] [CrossRef]
- Nader, M.A.; El-Awady, M.S.; Shalaby, A.A.; El-Agamy, D.S. Sitagliptin exerts anti-inflammatory and anti-allergic effects in ovalbumin-induced murine model of allergic airway disease. Naunyn Schmiedebergs Arch. Pharmacol. 2012, 385, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Nath, S.; Ghosh, S.K.; Choudhury, Y. A murine model of type 2 diabetes mellitus developed using a combination of high fat diet and multiple low doses of streptozotocin treatment mimics the metabolic characteristics of type 2 diabetes mellitus in humans. J. Pharmacol. Toxicol. Methods 2017, 84, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Reuter, T.Y. Diet-induced models for obesity and type 2 diabetes. Drug Discov. Today Dis. Model. 2007, 4, 3–8. [Google Scholar] [CrossRef]
- Morris, J.L.; Bridson, T.L.; Alim, M.A.; Rush, C.M.; Rudd, D.M.; Govan, B.L.; Ketheesan, N. Development of a diet-induced murine model of diabetes featuring cardinal metabolic and pathophysiological abnormalities of type 2 diabetes. Biol. Open 2016, 5, 1149–1162. [Google Scholar] [CrossRef] [Green Version]
- Goyal, S.N.; Reddy, N.M.; Patil, K.R.; Nakhate, K.T.; Ojha, S.; Patil, C.R.; Agrawal, Y.O. Challenges and issues with streptozotocin-induced diabetes—A clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem. Biol. Interact. 2016, 244, 49–63. [Google Scholar] [CrossRef]
- Flórez-Vargas, O.; Brass, A.; Karystianis, G.; Bramhall, M.; Stevens, R.; Cruickshank, S.; Nenadic, G. Bias in the reporting of sex and age in biomedical research on mouse models. eLife 2016, 5, e13615. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.-Y.; Lin, C.-H.; Huang, T.-H.; Chuang, S.-Y. In Vivo Rodent Models of Type 2 Diabetes and Their Usefulness for Evaluating Flavonoid Bioactivity. Nutrients 2019, 11, 530. [Google Scholar] [CrossRef] [Green Version]
- Mauvais-Jarvis, F.; Arnold, A.P.; Reue, K. A Guide for the Design of Pre-clinical Studies on Sex Differences in Metabolism. Cell Metab. 2017, 25, 1216–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kautzky-Willer, A.; Harreiter, J.; Pacini, G. Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus. Endocr. Rev. 2016, 37, 278–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Jensen, V.S.; Porsgaard, T.; Lykkesfeldt, J.; Hvid, H. Rodent model choice has major impact on variability of standard preclinical readouts associated with diabetes and obesity research. Am. J. Transl. Res. 2016, 8, 3574–3584. [Google Scholar] [PubMed]
- Kozlovski, P.; Bhosekar, V.; Foley, J.E. DPP-4 inhibitor treatment: β-cell response but not HbA(1c) reduction is dependent on the duration of diabetes. Vasc. Health Risk Manag. 2017, 13, 123–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godinho, R.; Mega, C.; Teixeira-de-Lemos, E.; Carvalho, E.; Teixeira, F.; Fernandes, R.; Reis, F. The Place of Dipeptidyl Peptidase-4 Inhibitors in Type 2 Diabetes Therapeutics: A “Me Too” or “the Special One” Antidiabetic Class? J. Diabetes Res. 2015, 2015, 1–28. [Google Scholar] [CrossRef]
- Mueller, K.F.; Briel, M.; Strech, D.; Meerpohl, J.J.; Lang, B.; Motschall, E.; Gloy, V.; Lamontagne, F.; Bassler, D. Dissemination bias in systematic reviews of animal research: A systematic review. PLoS ONE 2014, 9, e116016. [Google Scholar] [CrossRef] [Green Version]
- Holman, C.; Piper, S.K.; Grittner, U.; Diamantaras, A.A.; Kimmelman, J.; Siegerink, B.; Dirnagl, U. Where Have All the Rodents Gone? The Effects of Attrition in Experimental Research on Cancer and Stroke. PLoS Biol. 2016, 14, e1002331. [Google Scholar] [CrossRef]
- Franco, N.H.; Olsson, I. How sick must your mouse be?—An analysis of the use of animal models in Huntington’s disease research. ATLA Altern. Lab. Anim. 2012, 40, 271–283. [Google Scholar] [CrossRef]
- Franco, N.H.; Correia-Neves, M.; Olsson, I.A.S. Animal welfare in studies on murine tuberculosis: Assessing progress over a 12-year period and the need for further improvement. PLoS ONE 2012, 7, e47723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, N.H.; Olsson, I. Is the ethical appraisal of protocols enough to ensure best practice in animal research? ATLA Altern. Lab. Anim. 2013, 41, P5–P7. [Google Scholar] [CrossRef]
- Festing, M.F.W.; Nevalainen, T. The Design and Statistical Analysis of Animal Experiments: Introduction to this Issue. ILAR J. 2014, 55, 379–382. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Wang, F.; Sun, R.; Wang, Z.; Yu, X.; Wang, L.; Gao, H.; Zhao, W.; Yan, S.; Wang, Y. Effect of combined therapy of human Wharton’s jelly-derived mesenchymal stem cells from umbilical cord with sitagliptin in type 2 diabetic rats. Endocrine 2014, 45, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Seidel, J.; Bockhop, F.; Mitkovski, M.; Martin, S.; Ronnenberg, A.; Krueger-Burg, D.; Schneider, K.; Röhse, H.; Wüstefeld, L.; Cosi, F.; et al. Vascular response to social cognitive performance measured by infrared thermography: A translational study from mouse to man. FASEB BioAdv. 2020, 2, 18–32. [Google Scholar] [CrossRef]
- Matteucci, E.; Giampietro, O. Proposal open for discussion: Defining agreed diagnostic procedures in experimental diabetes research. J. Ethnopharmacol. 2008, 115, 163–172. [Google Scholar] [CrossRef]
- Martins, A.R.; Franco, N.H. A critical look at biomedical journals’ policies on animal research by use of a novel tool: The EXEMPLAR scale. Animals 2015, 5, 315–331. [Google Scholar] [CrossRef]
- Würbel, H. Publications should include an animal-welfare section. Nature 2007, 446, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborne, N.J.; Payne, D.; Newman, M.L. Journal editorial policies, animal welfare, and the 3Rs. Am. J. Bioeth. 2009, 9, 55–59. [Google Scholar] [CrossRef]
- Marusic, A. Can journal editors police animal welfare? Three Es for three Rs in scientific journals. Am. J. Bioeth. 2009, 9, 66–67. [Google Scholar] [CrossRef] [PubMed]
Species | Strain | Alogliptin | Linagliptin | Saxagliptin | Sitagliptin | Vildagliptin |
---|---|---|---|---|---|---|
rat | Fisher344 | 1 | 2 | |||
Goto-Kakizaki (GK) | 2 | 2 | 2 | |||
Non-diabetic GK | 1 | |||||
OLETF 1 | 2 | |||||
Sprague-Dawley | 1 | 1 | 14 | 6 | ||
UCD-T2DM 2 | 2 | |||||
Wistar | 1 | 2 | 30 | 30 | ||
Zucker | 2 | |||||
Zucker diabetic fat | 9 | 2 | ||||
Zucker lean | 1 | |||||
mice | Akita | 1 | ||||
apoE−/− 3 | 3 | 2 | 2 | |||
B6129SF1/J | 5 | |||||
C/EBPB TG of C57BL/6 | 2 | |||||
C57/DBA.hIAPP | 2 | |||||
C57B/KsJ-db/db | 5 | 5 | 1 | 2 | 5 | |
C57B/KsJ-ob/ob | 5 | 1 | 3 | |||
C57BL/6 | 1 | 6 | 17 | 5 | ||
CETP-apoB100 4 | 1 | |||||
eNOS knockout C57BL/6 5 | 1 | |||||
fatty liver Shionogi-ob/ob | 1 | |||||
ICR 6 | 6 | 5 | ||||
Irs2+/− | 1 | |||||
Irs2+/+ | 1 | |||||
Irs2−/− | 1 | |||||
KK-Ay mice | 1 | 1 | ||||
LDLR−/− 7 | 2 | |||||
NIH/OlaHsd | 1 | |||||
swiss albino | 2 |
Year | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Studies on rats | 1 | 0 | 0 | 2 | 2 | 2 | 5 | 13 | 13 | 8 | 15 | 8 |
Studies on mice | 1 | 1 | 1 | 3 | 2 | 8 | 7 | 7 | 7 | 8 | 8 | 3 |
Total | 2 | 1 | 1 | 5 | 4 | 10 | 12 | 20 | 20 | 16 | 23 | 11 |
Diet Type | Frequency | Percent |
---|---|---|
Not reported | 40 | 8.9 |
Normal chow | 213 | 47.4 |
High-fat | 166 | 37.0 |
Low-fat | 5 | 1.1 |
High fat and high sugar | 19 | 4.2 |
Other | 6 | 1.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco, N.H.; Miranda, S.B.; Kovács, N.; Nagy, A.; Thiện, B.Q.; Reis, F.; Varga, O. Assessing Scientific Soundness and Translational Value of Animal Studies on DPP4 Inhibitors for Treating Type 2 Diabetes Mellitus. Biology 2021, 10, 155. https://doi.org/10.3390/biology10020155
Franco NH, Miranda SB, Kovács N, Nagy A, Thiện BQ, Reis F, Varga O. Assessing Scientific Soundness and Translational Value of Animal Studies on DPP4 Inhibitors for Treating Type 2 Diabetes Mellitus. Biology. 2021; 10(2):155. https://doi.org/10.3390/biology10020155
Chicago/Turabian StyleFranco, Nuno Henrique, Sonia Batista Miranda, Nóra Kovács, Attila Nagy, Bùi Quốc Thiện, Flávio Reis, and Orsolya Varga. 2021. "Assessing Scientific Soundness and Translational Value of Animal Studies on DPP4 Inhibitors for Treating Type 2 Diabetes Mellitus" Biology 10, no. 2: 155. https://doi.org/10.3390/biology10020155