Static Body Balance in Children and Expert Adults Ballroom Dancers: Insights from Spectral Analysis of Shifts
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.3. Procedures
2.4. Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teixeira-Machado, L.; Arida, R.M.; de Jesus Mari, J. Dance for neuroplasticity: A descriptive systematic review. Neurosci. Biobehav. Rev. 2019, 96, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.; Techawachirakul, P.; Haggard, P. Frontal eye field stimulation modulates the balance of salience between target and distractors. Brain Res. 2009, 1270, 54–63. [Google Scholar] [CrossRef]
- Condon, C.; Cremin, K. Static balance norms in children. Physiother. Res. Int. 2014, 19, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Goetz, M.; Schwabova, J.P.; Hlavka, Z.; Ptacek, R.; Surman, C.B. Dynamic balance in children with attention-deficit hyperactivity disorder and its relationship with cognitive functions and cerebellum. Neuropsychiatr. Dis. Treat. 2017, 13, 873–880. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Ma, H.; Liu, Z.; Smith, D.M.; Wang, X. The effects of a 10-week neuromuscular training on postural control in elite youth competitive ballroom dancers: A randomized controlled trial. Front. Physiol. 2021, 12, 636209. [Google Scholar] [CrossRef] [PubMed]
- Zech, A.; Hubscher, M.; Vogt, L.; Bazer, W.; Hansel, F.; Pfeifer, K. Balance training for neuromuscular control and performance enhancement: A systematic reivew. J. Athl. Train. 2010, 45, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Marinkovic, D.; Belic, A.; Marijanac, A.; Martin-Wylie, E.; Madic, D.; Obradovic, B. Static and dynamic postural stability of children girls engaged in modern dance. Eur. J. Sport Sci. 2021, 1–6. [Google Scholar] [CrossRef]
- Liiv, H.; Jurimae, T.; Klonova, A.; Cicchella, A. Performance and recovery: Stress profiles in professional ballroom dancers. Med. Probl. Perform. Artist. 2013, 28, 65–69. [Google Scholar] [CrossRef]
- DeOreo, K.; Keogh, J. Performance in fundamental motor tasks. In A Textbook of Motor Development; Corbin, C.B., Ed.; Brown: Dubuque, IA, USA, 1980. [Google Scholar]
- Haubenstricker, J.; Seefeldt, V. Acquisition of motor skills during childhood. In Phisical Activity and Well-Being; Seefeldt, V., Ed.; American Alliance for Health, Physical Education, Recreation and Dance: Reston, VA, USA, 1986. [Google Scholar]
- Raudsepp, L.; Paasuke, M. Gender differences in fundamental movement patterns, motor performances and strenght measurements of prepuberal children. Pediatr. Exerc. Sci. 1995, 7, 294–304. [Google Scholar] [CrossRef]
- Demura, S.; Kitabashi, T.; Uchiyama, M. Body sway characteristics during static upright posture in young children. Sport Sci. Health 2006, 1, 158–161. [Google Scholar] [CrossRef]
- Cratty, B.J. Perceptual and Motor Development in Children; Macmillan: New York, NY, USA, 1970. [Google Scholar]
- Mickle, K.J.; Munro, B.J.; Steele, J.R. Gender and age affect balance performance in primary school-aged children. J. Sci. Med. Sport 2011, 14, 243–248. [Google Scholar] [CrossRef]
- Cabedo, J.; Unnithan, V.; Guerra, M.; Roca, J. Differences between males and females in static and dynamic balance from 4 to 74 years of age. Med. Sci. Sports Exerc. 2008, 40, S345. [Google Scholar] [CrossRef]
- Tiemeier, H.; Lenroot, R.K.; Greenstein, D.K.; Tran, L.; Pierson, R.; Giedd, J.N. Cerebellum development during childhood and adolescence: A longitudinal morphometric MRI study. Neuroimage 2010, 49, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forssberg, H.; Nashner, L.M. Ontogenetic development of postural control in man: Adaptation to altered support and visual conditions during stance. J. Neurosci. 1982, 2, 545–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirasawa, K.; Starkes, J.; Takahashi, T. The influence of age on variability of postural sway. Jpn. J. Hum. Posture 1972, 11, 137–146. [Google Scholar]
- Rangel, J.G.; Dos Santos WD, N.; Viana, R.B.; Silva, M.S.; Vieira, C.A.; Campos, M.H. Studies of classical ballet dancers’ equilibrium at different levels of development and versus non-dancers: A systematic review. J. Danc. Med. Sci. 2020, 24, 33–43. [Google Scholar] [CrossRef]
- Golomer, E.; Dupui, P. Spectral analysis of adult dancers’ sways: Sex and interaction vision–proprioception. Int. J. Neurosci. 2000, 105, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Michalska, J.; Kamieniarz, A.; Fredyk, A.; Bacik, B.; Juras, G.; Słomka, K.J. Effect of expertise in ballet dance on static and functional balance. Gait Posture 2018, 64, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Janura, M.; Procházková, M.; Svoboda, Z.; Bizovská, L.; Jandová, S.; Konečný, P. Standing balance of professional ballet dancers and non-dancers under different conditions. PLoS ONE 2019, 14, e0224145. [Google Scholar] [CrossRef]
- Alonso, A.C.; Luna, N.M.; Mochizuki, L.; Barbieri, F.; Santos, S.; Greve, J.M. The influence of anthropometric factors on postural balance: The relationship between body composition and posturographic measurements in young adults. Clinics 2012, 67, 1433–1441. [Google Scholar] [CrossRef]
- Chiari, L.; Rocchi, L.; Cappello, A. Stabilometric parameters are affected by anthropometry and foot placement. Clin. Biomech. 2002, 17, 666–677. [Google Scholar] [CrossRef]
- Golomer, E.; Dupui, P.; Monod, H. The effects of maturation on self-induced dynamic body sway frequencies of girls performing acrobatics or classical dance. Eur. J. Appl. Physiol Ophthalmol. 1997, 76, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Bruyneel, A.V.; Mesure, S.; Paré, J.C.; Bertrand, M. Organization of postural equilibrium in several planes in ballet dancers. Neurosci. Lett. 2010, 485, 228–232. [Google Scholar] [CrossRef]
- Crotts, D.; Thompson, B.; Nahom, M.; Ryan, S.; Newton, R.A. Balance abilities of professional dancers on selected balance tests. J. Orthop. Sport Phys. 1996, 23, 12–17. [Google Scholar] [CrossRef]
- Hugel, F.; Cadopi, M.; Kohler, F.; Perrin, P. Postural control of ballet dancers: A specific use of visual input for artistic purposes. Int. J. Sports Med. 1999, 20, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Golomer, E.; Crémieux, J.; Dupui, P.; Isableu, B.; Ohlmann, T. Visual contribution to self-induced body sway frequencies and visual perception of male professional dancers. Neurosci. Lett. 1999, 267, 189–192. [Google Scholar] [CrossRef]
- Rein, S.; Fabian, T.; Zwipp, H.; Rammelt, S.; Weindel, S. Postural control and functional ankle stabilty in professional and amateur dancers. Clin. Neurophysiol. 2011, 122, 1602–1610. [Google Scholar] [CrossRef]
- Nashner, L.M. Organisation and programming in motor activity during postural control. Progr. Brain Res. 1979, 50, 177–184. [Google Scholar] [CrossRef]
- Cheng, H.S.; Law, C.L.; Pan, H.F.; Hsiao, Y.P.; Hu, J.H.; Chuang, F.K.; Huang, M.H. Preliminary results of dancing exercise on postural stability in adolescent females. Kaohsiung J. Med. Sci. 2011, 27, 566–572. [Google Scholar] [CrossRef] [Green Version]
- Raymakers, J.A.; Samson, M.M.; Verhaar, H.J.J. The assessment of body sway and the choice of the stability parameter(s). Gait Posture 2005, 21, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Blaszczyk, J. Sway ratio—A new measure for quantifying postural stability. Acta Neurobiol. Exp. 2008, 68, 51–57. [Google Scholar]
- Panjan, A.; Sarabon, N. Review of methods for the evaluation of human body balance. Sport Sci. Rev. 2010, 19, 31. [Google Scholar] [CrossRef] [Green Version]
- LeClair, K.; Riach, C. Postural stability measures: What to measure and for how long. Clin. Biomech. 1996, 11, 176–178. [Google Scholar] [CrossRef]
- Akkaya, N.; Doğanlar, N.; Çelik, E.; Aysşe, S.E.; Akkaya, S.; Güngör, H.R.; Şahin, F. Test-retest reliability of TETRAX® static posturography system in young adults with low physical activity level. Int. J. Sports Phys. Ther. 2015, 10, 893–900. [Google Scholar]
- Cheng, R.J.; Lee, H.Y.F.; Su, F.C. Frequency spectral characteristics of standing balance in children and young adults. Med. Eng. Phys. 2003, 25, 509–515. [Google Scholar] [CrossRef]
- Sunlight Medical Systems. Tetrax: Fourier Transformation of Postural Sway. Available online: http://postureetmesure.free.fr/docs/TetraxFourierTransformation.pdf (accessed on 5 May 2021).
- O’Malley, M.J. Normalization of temporal-distance parameters in pediatric gait. J. Biomech. 1996, 29, 619–625. [Google Scholar] [CrossRef]
- Christensen, I.K.; Deilami, S.S.; Amiri, S.; Nissen, M.H.; Devantier, L.; Ovesen, T. Validation of posturographic measurements in adolescents. Otol. Neurotol. 2018, 39, e568–e574. [Google Scholar] [CrossRef]
- Nardin, R.A.; Patel, M.R.; Gudas, T.F.; Rutkove, S.B.; Raynor, E.M. Electromyography and magnetic resonance imaging in the evaluation of radiculopathy. Muscle Nerve 1999, 22, 151–155. [Google Scholar] [CrossRef]
- Nykvist, F.; Hurme, M.; Alaranta, H.; Kaitsaari, M. Severe sciatica: A 13-year follow-up of 342 patients. Eur. Spine J. 1995, 4, 335–338. [Google Scholar] [CrossRef]
- DeWit, G. Optic versus vestibular and properoceptive impulses, measured by posturography. Agressologie 1972, 13, 79–82. [Google Scholar]
- Gagey, P.M.; Toupet, M. L’amplitude Des Oscillations Posturales Dans la Bande de Frequence 0.2 Hertz. Etude Chez le Sujet Normal; Publications de l’Institut de Posturologie: Paris, France, 1998. [Google Scholar]
- Ferdjallah, M.; Harris, G.F.; Wertsch, J.J. Instantaneous spectral characteristics of postural stability, using time-frequency analysis. In Proceedings of the 19th Annual Conference of the IEEE Engineering in Medicine and Biology, Chicago, IL, USA, 30 October–2 November 1997; Volume 19, pp. 1675–1678. [Google Scholar] [CrossRef]
- Laughlin, P.J.; Redfern, M.S. Spectral analysis of visually induced postural sway in healthy elderly young subjects. IEEE Trans. Rehabil. Eng. 2001, 9, 24–30. [Google Scholar] [CrossRef]
- Nashner, L.M. Computerized dynamic posturography. In Handbook of Balance Function Testing; Gary, P., Jacobson, G.P., Newman, C.W., Kartush, J.M., Eds.; Singular Publishing Group: San Diego, CA, USA; London, UK, 1997. [Google Scholar]
- Azimi, P.; Yazdanian, T.; Benzel, E.C.; Hai, Y.; Montazeri, A. Sagittal balance of the cervical spine: A systematic review and meta-analysis. Eur. Spine J. 2021, 30, 1411–1439. [Google Scholar] [CrossRef] [PubMed]
- Kollmitzer, J.; Ebenbichler, G.R.; Sabo, A.; Kerschan, K.; Bochdansky, T. Effects of back extensor training versus balance training on postural control. Med. Sci. Sport Exer. 2000, 32, 1770–1776. [Google Scholar] [CrossRef]
- Kozinc, Z.; Šarabon, N. Transient body sway characteristics during single-leg quiet stance in ballet dancers and young adults. J. Biomech. 2021, 115, 110195. [Google Scholar] [CrossRef]
- Martin-Sanz, E.; Crespo, I.O.; Esteban-Sanchez, J.; Sanz, R. Postural stability in a population of dancers, healthy non-dancers, and vestibular neuritis patients. Acta Oto-Laryngol. 2017, 137, 952–956. [Google Scholar] [CrossRef] [PubMed]
- Gebel, A.; Lesinski, M.; Behm, D.G.; Granacher, U. Effects and dose–response relationship of balance training on balance performance in youth: A systematic review and meta-analysis. Sports Med. 2018, 48, 2067–2089. [Google Scholar] [CrossRef] [PubMed]
- Hirtz, P.; Starosta, W. Sensitive and critical periods of motor co-ordination development and its relation to motor learning. J. Hum. Kinet. 2002, 7, 19–28. [Google Scholar]
Adults | Age(Years) | Height (cm) | Weight (kg) | BMI | Dance Experience (Years) |
---|---|---|---|---|---|
Males (nr. 7) | 26.5 ± 5 | 176.1 ± 9.2 | 66.3 ± 12 | 21.0 ± 1.4 | 10 ± 4 |
Females (nr. 8) | 26.4 ± 8.5 | 166.8 ± 8.3 | 54.0 ± 10 | 19.9 ± 1.1 | 12 ± 3 |
Children | |||||
Males (nr. 6) | 10.6 ± 2.1 | 140.6 ± 10.5 | 35.1 ± 6.2 | 18.7 ± 3.2 | 5 ± 2 |
Females (nr. 7) | 8.9 ± 2.3 | 135.9 ± 11 | 30.8 ± 4 | 16.6 ± 4 | 4 ± 2 |
Frequency Band (Hz) | Balance System |
---|---|
F1 = 0.01–0.1 | oculomotor vestibular otolythic |
F2 = 0.1–0.25 | vestibular |
F3 = 0.25–0.35 | vestibular |
F4 = 0.35–0.50 | vestibular |
F5 = 0.50–0.75 | somatosensory |
F6 = 0.75–1.00 | somatosensory |
F7 = 1.00–3.00 | central |
F8 = 3.00 and above | central |
Parameter | r | p |
---|---|---|
Shift range AP | −0.484 | 0.047 |
Equivalent Area | −0.484 | 0.047 |
AP oscillation frequency | −0.643 | 0.009 |
Max D power | −0.505 | 0.039 |
Shift Parameter | Children | Adults | F | Sig. | ||
---|---|---|---|---|---|---|
mean | sd | mean | sd | |||
Shift range (M-L) mm | 61.3 | 43.6 | 46.7 | 11 | ||
Shift range (A-P) (mm) | 88.6 | 55.3 | 35.6 | 12.2 | 13.07 | 0.001 |
Total length (mm) | 1815.5 | 836.9 | 1277.4 | 309 | 5.38 | |
Shift speed (mm/s) | 59.3 | 27.1 | 41.6 | 10 | 5.38 | |
Equivalent area (mm2) | 13,180.8 | 19,992.7 | 4357.59 | 1725.25 | ||
Max M-L power (mm2) | 5288.8 | 12,263.6 | 1632.4 | 1072.5 | ||
Frequency to max M-L power (Hz) | 0.08 | 0.03 | 0.04 | 0.02 | 11.03 | 0.003 |
Average M-L Power (mm2) | 55.5 | 105.4 | 18.1 | 9 | ||
Average M-L Frequency (Hz) | 0.5 | 0.2 | 0.10 | 0.1 | ||
Max A-P power (mm2) | 3642 | 9494.7 | 308.7 | 135.9 | ||
Frequency to max A-P power (Hz) | 0.04 | 0.02 | 0.04 | 0.02 | ||
Average A-P Power (mm2) | 58.2 | 122.5 | 8.8 | 3.6 | ||
Average A-P Frequency (Hz) | 0.7 | 0.1 | 0.6 | 0.1 | ||
Max D power (mm2) | 1288.1 | 3020.4 | 1093.7 | 2839.6 | ||
Frequency to max D power (Hz) | 0.1 | 0.08 | 0.2 | 0.1 | ||
Average D Power (mm2) | 23.9 | 38.4 | 6.1 | 3.4 | ||
Average D Frequency (Hz) | 0.7 | 0.1 | 0.8 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cicchella, A. Static Body Balance in Children and Expert Adults Ballroom Dancers: Insights from Spectral Analysis of Shifts. Biology 2021, 10, 1291. https://doi.org/10.3390/biology10121291
Cicchella A. Static Body Balance in Children and Expert Adults Ballroom Dancers: Insights from Spectral Analysis of Shifts. Biology. 2021; 10(12):1291. https://doi.org/10.3390/biology10121291
Chicago/Turabian StyleCicchella, Antonio. 2021. "Static Body Balance in Children and Expert Adults Ballroom Dancers: Insights from Spectral Analysis of Shifts" Biology 10, no. 12: 1291. https://doi.org/10.3390/biology10121291
APA StyleCicchella, A. (2021). Static Body Balance in Children and Expert Adults Ballroom Dancers: Insights from Spectral Analysis of Shifts. Biology, 10(12), 1291. https://doi.org/10.3390/biology10121291