Intracellular ATP Concentration and Implication for Cellular Evolution
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greiner, J.V.; Kopp, S.J.; Sanders, D.R.; Glonek, T. Organophosphates of the crystalline lens: A nuclear magnetic resonance spectroscopic study. Investig. Ophthalmol. Vis. Sci. 1981, 21, 700–713. [Google Scholar]
- Kopp, S.J.; Glonek, T.; Greiner, J.V. Interspecies variations in mammalian lens metabolites as detected by P-31 NMR. Science 1982, 215, 1622–1625. [Google Scholar] [CrossRef] [PubMed]
- Bárány, M.; Glonek, T. Phosphorus 31 nuclear magnetic resonance of contractile systems. In Methods in Enzymology; Frederiksen, D.L., Cunningham, L.W., Eds.; Academic Press, Inc.: New York, NY, USA, 1982; Volume 85, pp. 624–676. ISBN 978-0-12-181985-9. [Google Scholar]
- Burt, C.T.; Glonek, T.; Bárány, M. Analysis of phosphate metabolites, the intracellular pH, and the state of adenosine triphosphate in intact muscle by phosphorus nuclear magnetic resonance. J. Biol. Chem. 1976, 251, 2584–2591. [Google Scholar] [CrossRef]
- Patel, A.; Malinovska, L.; Saha, S.; Wang, J.; Aberti, S.; Krishnan, Y.; Hyman, A.A. ATP as a biological hydrotrope. Science 2017, 356, 753–756. [Google Scholar] [CrossRef]
- Greiner, J.V.; Glonek, T. Hydrotropic function of ATP in the crystalline lens. Exp. Eye Res. 2020, 190, 1–6. [Google Scholar] [CrossRef]
- Schwarzkopf, T.M.; Koch, K.; Klein, J. Reduced severity of ischemic stroke and improvement of mitochondrial function after dietary treatment with the anaplerotic substance triheptanoin. Neuroscience 2015, 300, 201–209. [Google Scholar] [CrossRef]
- Schwarzkopf, T.M.; Koch, K.A.; Klein, J. Neurodegeneration after transient brain ischemia in aged mice. Beneficial effects of bilobalide. Brain Res. 2013, 1529, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Shibayama, J.; Taylor, T.G.; Venable, P.W.; Rhodes, N.L.; Gil, R.B.; Warren, M.; Wende, A.R.; Abel, E.D.; Cox, J.; Spitzer, K.W.; et al. Metabolic determinants of electrical failure in ex-vivo canine model of cardiac arrest: Evidence for the protective role of inorganic pyrophosphate. PLoS ONE 2013, 8, e57821. [Google Scholar]
- Lygate, C.A.; Bohlten, S.; Hove, M.; Faller, K.M.E.; Ostrowski, P.J.; Zervou, S.; Medway, D.J.; Aksentijevic, D.; Sebag-Montefiore, L.; Wallis, J.; et al. Moderate elevation of intracellular creatine by targeting the creatine transporter protects mice from acute myocardial infarction. Cardiovasc. Res. 2012, 96, 466–475. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, J.A.; Ziemba, E.A.; Colbert, R.; Anderson, L.B.; Sluiter, W.; Duncker, D.J.; Butterick, T.A.; Sikora, J.; Ward, H.B.; Kelly, R.F.; et al. Altered expression of mitochondrial electron transport chain proteins and improved myocardial energetic state during late ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H1974–H1982. [Google Scholar] [CrossRef]
- Silva-Platas, C.; Villegas, C.A.; Oropeza-Almazán, Y.; Carrancá, M.; Torres-Quintanilla, A.; Lozano, O.; Valero-Elizondo, J.; Castillo, E.C.; Bernal-Ramírez, J.; Fernández-Sada, E.; et al. Ex vivo cardiotoxicity of antineoplastic casiopeinas is mediated through energetic dysfunction and triggered mitochondrial-dependent apoptosis. Oxid. Med. Cell. Longev. 2018, 25, 8949450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopp, S.J.; Glonek, T.; Erlanger, M.; Perry, E.F.; Perry, H.M., Jr. Cadmium and lead effects on myocardial function and metabolism. J. Environ. Pathol. Toxicol. 1980, 4, 205–227. [Google Scholar] [PubMed]
- Mavropoulos, S.A.; Khan, N.S.; Levy, A.C.J.; Faliks, B.T.; Sison, C.P.; Pavlov, V.A.; Zhang, Y.; Ojamaa, K. Nicotinic acetylcholine receptor–mediated protection of the rat heart exposed to ischemia reperfusion. Mol. Med. 2017, 23, 120–133. [Google Scholar] [CrossRef] [PubMed]
- Disatnik, M.-H.; Ferreira, J.C.B.; Campos, J.C.; Gomes, K.S.; Dourado, P.M.M.; Qi, X.; Mochly-Rosen, D. Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long-term cardiac dysfunction. J. Am. Heart Assoc. 2013, 2, e000461. [Google Scholar] [CrossRef] [Green Version]
- Wong, H.S.; Chen, N.; Leong, P.K.; Ko, K.M. β-Sitosterol enhances cellular glutathione redox cycling by reactive oxygen species generated from mitochondrial respiration: Protection against oxidant injury in H9c2 cells and rat hearts. Phytother. Res. 2014, 28, 999–1006. [Google Scholar] [CrossRef]
- Opie, L.H.; Mansford, K.R.L.; Owen, P. Effects of increased heart work on glycolysis and adenine nucleotides in the perfused heart of normal and diabetic rats. Biochem. J. 1971, 124, 475–490. [Google Scholar] [CrossRef] [Green Version]
- Churchill, E.N.; Ferreira, J.C.; Brum, P.C.; Szweda, L.I.; Mochly-Rosen, D. Ischaemic preconditioning improves proteasomal activity and increases the degradation of dPKC during reperfusion. Cardiovasc. Res. 2010, 85, 385–394. [Google Scholar] [CrossRef]
- Sharma, V.; Dhillon, P.; Wambolt, R.; Parsons, H.; Brownsey, R.; Allard, M.F.; McNeill, J.H. Metoprolol improves cardiac function and modulates cardiac metabolism in the streptozotocin-diabetic rat. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H1609–H1620. [Google Scholar] [CrossRef] [Green Version]
- Peltz, M.; He, T.-T.; Adams, G.A., IV; Koshy, S.; Burgess, S.C.; Chao, R.Y.; Meyer, D.M.; Jessen, M.E. Perfusion preservation maintains myocardial ATP levels and reduces apoptosis in an ex vivo rat heart transplantation model. Surgery 2005, 138, 795–805. [Google Scholar] [CrossRef]
- Grover, G.J.; Atwal, K.S.; Sleph, P.G.; Wang, F.-L.; Monshizadegan, H.; Monticello, T.; Green, D.W. Excessive ATP hydrolysis in ischemic myocardium by mitochondrial F1F0-ATPase: Effect of selective pharmacological inhibition of mitochondrial ATPase hydrolase activity. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H1747–H1755. [Google Scholar] [CrossRef] [Green Version]
- Green, D.W.; Murray, H.N.; Sleph, P.G.; Wang, F.-L.; Baird, A.J.; Rogers, W.L.; Grover, G.J. Preconditioning in rat hearts is independent of mitochondrial F1F0 ATPase inhibition. Am. J. Physiol. Heart Circ. Physiol. 1998, 274, H90–H97. [Google Scholar] [CrossRef] [PubMed]
- Grover, G.J.; Newburger, J.; Sleph, P.G.; Dzwonczyk, S.; Taylor, S.C.; Ahmed, S.Z.; Atwal, K.S. Cardioprotective effects of the potassium channel opener cromakalim: Stereoselectivity and effects on myocardial adenine nucleotides. J. Pharmacol. Exp. Ther. 1991, 257, 156–162. [Google Scholar] [PubMed]
- Prabhakar, G.; Vona-Davis, L.; Murray, D.; Lakhani, P.; Murray, G. Phosphocreatine restores high-energy phosphates in ischemic myocardium: Implication for off pump cardiac revascularization. J. Am. Coll. Surg. 2003, 197, 786–791. [Google Scholar] [CrossRef] [PubMed]
- Fürst, W.; Hallström, S. Simultaneous determination of myocardial nucleotides, nucleosides, purine bases and creatine phosphate by ion-pair high-performance liquid chromatography. J. Chromatogr. 1992, 578, 39–44. [Google Scholar] [CrossRef]
- Beis, I.; Newsholme, E.A. The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates. Biochem. J. 1975, 152, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Dawson, M.J.; Gadian, D.G.; Wilkie, D.R. Contraction and recovery of living muscles studied by 31P nuclear magnetic resonance. J. Physiol. 1977, 267, 703–735. [Google Scholar] [PubMed]
- Ren, J.-M.; Hultman, E. Regulation of glycogenolysis in human skeletal muscle. J. Appl. Physiol. 1989, 67, 2243–2248. [Google Scholar] [CrossRef]
- Harris, R.C.; Hultman, E.; Nordesjö, L.-O. Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand. J. Clin. Lab. Investig. 1974, 33, 109–120. [Google Scholar] [CrossRef]
- Kushmerick, M.J.; Moerland, T.S.; Wiseman, R.W. Mammalian skeletal muscle fibers distinguished by contents of phosphocreatine, ATP, and Pi. Proc. Natl. Acad. Sci. USA 1992, 89, 7521–7525. [Google Scholar] [CrossRef] [Green Version]
- Siegel, M.P.; Kruse, S.E.; Knowels, G.; Salmon, A.; Beyer, R.; Xie, H.; Van Remmen, H.; Smith, S.R.; Marcinek, D.J. Reduced coupling of oxidative phosphorylation in vivo precedes electron transport chain defects due to mild oxidative stress in mice. PLoS ONE 2011, 6, e26963. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Shan Wong, H.; Ming Ko, K. Mitochondrial reactive oxygen species production mediates ursolic acid-induced mitochondrial uncoupling and glutathione redox cycling, with protection against oxidant injury in H9c2 cells. Food Funct. 2015, 6, 549–557. [Google Scholar] [CrossRef]
- Okamoto, K.; Wang, W.; Rounds, J.; Chambers, E.; Jacobs, D.O. Sublytic complement attack increases intracellular sodium in rat skeletal muscle. J. Surg. Res. 2000, 90, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Meyer, R.A.; Terjung, R.L. AMP deamination and IMP reamination in working skeletal muscle. Am. J. Physiol. 1980, 239, C32–C38. [Google Scholar] [CrossRef] [PubMed]
- Ruderman, N.B.; Houghton, C.R.S.; Hems, R. Evaluation of the isolated perfused rat hindquarter for the study of muscle metabolism. Biochem. J. 1971, 124, 639–651. [Google Scholar] [CrossRef] [Green Version]
- Berger, M.; Hagg, S.; Ruderman, N.B. Glucose metabolism in perfused skeletal muscle. Interaction of insulin and exercise on glucose uptake. Biochem. J. 1975, 146, 231–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kushmerick, M.J.; Meyer, R.A. Chemical changes in rat leg muscle by phosphorus nuclear magnetic resonance. Am. J. Physiol. 1985, 248, C542–C549. [Google Scholar] [CrossRef]
- Campbell, M.D.; Marcinek, D.J. Evaluation of in vivo mitochondrial bioenergetics in skeletal muscle using NMR and optical methods. Biochim. Biophys. Acta 2016, 1862, 716–724. [Google Scholar] [CrossRef]
- Rolleston, F.S.; Newsholme, E.A. Control of glycolysis in cerebral cortex slices. Biochem. J. 1967, 104, 524–533. [Google Scholar] [CrossRef] [Green Version]
- Lowry, O.H.; Passonneau, J.V.; Hasselberger, F.X.; Schultz, D.W. Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J. Biol. Chem. 1964, 239, 18–30. [Google Scholar] [CrossRef]
- Manfredi, G.; Yang, L.; Gajewski, C.D.; Mattiazzi, M. Measurements of ATP in mammalian cells. Methods 2002, 26, 317–326. [Google Scholar] [CrossRef]
- Hisanaga, K.; Onodera, H.; Kogure, K. Changes in levels of purine and pyrimidine nucleotides during acute hypoxia and recovery in neonatal rat brain. J. Neurochem. 1986, 47, 1344–1350. [Google Scholar] [CrossRef] [PubMed]
- Starokozhko, V.; Vatakuti, S.; Schievink, B.; Merema, M.T.; Asplund, A.; Synnergren, J.; Aspegren, A.; Groothuis, G.M.M. Maintenance of drug metabolism and transport functions in human precision cut liver slices during prolonged incubation for 5 days. Arch. Toxicol. 2017, 91, 2079–2092. [Google Scholar] [CrossRef] [Green Version]
- Vickers, A.E.M.; Ulyanov, A.V.; Fisher, R.L. Liver effects of clinical drugs differentiated in human liver slices. Int. J. Mol. Sci. 2017, 18, 574. [Google Scholar] [CrossRef] [Green Version]
- Vickers, A.E.M.; Fisher, R.; Olinga, P.; Dial, S. Repair pathways evident in human liver organ slices. Toxicol. In Vitro 2011, 25, 1485–1492. [Google Scholar] [CrossRef] [PubMed]
- Hems, D.A.; Brosnan, J.T. Effects of ischaemia on content of metabolites in rat liver and kidney in vivo. Biochem. J. 1970, 120, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Palombo, J.D.; Pomposilli, J.J.; Fechner, K.D.; Blackburn, G.L.; Bistrian, B.R. Enhanced restoration of adenine nucleotides in rat liver following extended preservation in UW solution by provision of adenosine during reperfusion. Transplantation 1991, 51, 867–873. [Google Scholar] [CrossRef]
- Palombo, J.D.; Hirschberg, Y.; Pomposelli, J.J.; Blackburn, G.L.; Zeisel, S.H.; Bistrian, B.R. Decreased loss of liver adenosine triphosphate during hypothermic preservation in rats pretreated with glucose: Implications for organ donor management. Gastroenterology 1988, 95, 1043–1049. [Google Scholar] [CrossRef]
- Faupel, R.P.; Seitz, H.J.; Tarnowski, W. The problem of tissue sampling from experimental animals with respect to freezing technique, anoxia, stress and narcosis. Arch. Biochem. Biophys. 1972, 148, 509–522. [Google Scholar] [CrossRef]
- Jackson, R.C.; Lui, M.S.; Boritzki, T.J.; Morris, H.P.; Weber, G. Purine and pyridine nucleotide patterns of normal, differentiating, and regenerating liver and of hepatomas in rats. Cancer Res. 1980, 40, 1286–1291. [Google Scholar]
- Weber, G.; Lui, M.S.; Jayaram, H.N.; Pillwein, K.; Natsumeda, Y.; Faderan, M.A.; Reardon, M.A. Regulation of purine and pyrimidine metabolism by insulin and by resistance to tiazofurin. Adv. Enzyme Regul. 1985, 23, 81–99. [Google Scholar] [CrossRef]
- Zaouali, M.A.; Panisello-Roselló, A.; Lopez, A.; Benítez, C.C.; Folch-Puy, E.; García-Gil, A.; Carbonell, T.; Adam, R.; Roselló-Catafau, J. Relevance of proteolysis and proteasome activation in fatty liver graft preservation: An Institut Georges Lopez-1 vs. University of Wisconsin appraisal. World J. Gastroenterol. 2017, 23, 4211–4221. [Google Scholar] [CrossRef] [PubMed]
- Lamprecht, W.; Trautschold, I. Adenosine triphosphate. Determination with hexokinase and glucose-6-phosphate dehydrogenase. In Methods of Enzymatic Analysis; Bergmeyer, H.U., Ed.; Academic Press, Inc.: New York, NY, USA, 1963; pp. 543–551. [Google Scholar]
- Jackson, R.C.; Boritzki, T.J.; Morris, H.P.; Weber, G. Purine and pyrimidine ribonucleotide contents of rat liver and hepatoma 3924A and the effect of ischemia. Life Sci. 1976, 19, 1531–1536. [Google Scholar] [CrossRef]
- Keppler, D.O.; Pausch, J.; Decker, K. Selective uridine triphosphate deficiency induced by D-galactosamine in liver and reversed by pyrimidine nucleotide precursors. J. Biol. Chem. 1974, 249, 211–216. [Google Scholar] [CrossRef]
- Beal, E.W.; Kim, J.-L.; Reader, B.F.; Akateh, C.; Maynard, K.; Washburn, W.K.; Zweier, J.L.; Whitson, B.A.; Black, S.M. [D-Ala2, D-Leu5] enkephalin improves liver preservation during normothermic ex vivo perfusion. J. Surg. Res. 2019, 241, 323–335. [Google Scholar] [CrossRef]
- Gardner, T.W.; Abcouwer, S.F.; Losiewicz, M.K.; Fort, P.E. Phosphatase control of 4E-BP1 phosphorylation state is central for glycolytic regulation of retinal protein synthesis. Am. J. Physiol. Endocrinol. Metab. 2015, 309, E546–E556. [Google Scholar] [CrossRef] [Green Version]
- Osorio-Paz, I.; Uribe-Carvajal, S.; Salceda, R. In the early stages of diabetes, rat retinal mitochondria undergo mild uncoupling due to UCP2 activity. PLoS ONE 2015, 10, e0122727. [Google Scholar]
- Winkler, B.S.; Arnold, M.J.; Brassell, M.A.; Sliter, D.R. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats. Investig. Ophthalmol. Vis. Sci. 1997, 38, 62–71. [Google Scholar]
- Winkler, B.S. Glycolytic and oxidative metabolism in relation to retinal function. J. Gen. Physiol. 1981, 77, 667–692. [Google Scholar] [CrossRef] [Green Version]
- Lolley, R.N. Light-induced alterations in retinal pyruvate and high-energy phosphates in vivo. J. Neurochem. 1969, 16, 1469–1476. [Google Scholar] [CrossRef]
- Bishop, C.; Rankine, D.M.; Talbott, J.H. The nucleotides in normal human blood. J. Biol. Chem. 1959, 234, 1233–1237. [Google Scholar] [CrossRef]
- Torrance, J.D.; Whittaker, D. Distribution of erythrocyte nucleotides in pyrimidine 5′-nucleotidase deficiency. Brit. J. Haematol. 1979, 43, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Werner, A.; Siems, W.; Schmidt, H.; Rapoport, I.; Gerber, G. Determination of nucleotides, nucleosides and nucleobases in cells of different complexity by reversed-phase and ion-pair high-performance liquid chromatography. J. Chromatogr. 1987, 421, 257–265. [Google Scholar] [CrossRef]
- Pilzz, R.B.; Willis, R.C.; Boss, G.R. The influence of ribose 5-phosphate availability on purine synthesis of cultured human lymphoblasts and mitogen-stimulated lymphoblasts. J. Biol. Chem. 1984, 259, 2927–2935. [Google Scholar] [CrossRef]
- Healy, D.A.; Watson, R.W.G.; Newsholme, P. Glucose, but not glutamine, protects against spontaneous and anti-Fas antibody-induced apoptosis in human neutrophils. Clin. Sci. 2002, 103, 179–189. [Google Scholar] [CrossRef]
- Singh, L.; Arora, S.K.; Bakshi, D.K.; Majumdar, S.; Wig, L.D. Potential role of CXCL10 in the induction of cell injury and mitochondrial dysfunction. Int. J. Exp. Pathol. 2010, 91, 210–223. [Google Scholar] [CrossRef] [PubMed]
- Greiner, J.V.; Kopp, S.J.; Mercola, J.M.; Glonek, T. Organophosphate metabolites of the human and rabbit crystalline lens: A phosphorus-31 nuclear magnetic resonance spectroscopic analysis. Exp. Eye Res. 1982, 345, 45–552. [Google Scholar] [CrossRef]
- Keller, A.S.; Diederich, L.; Panknin, C.; DeLalio, L.J.; Drake, J.C.; Sherman, R.; Jackson, E.K.; Yan, Z.; Kelm, M.; Cortese-Krott, M.M.; et al. Possible roles for ATP release from RBCs exclude the cAMP-mediated Panx1 pathway. Am. J. Physiol. Cell Physiol. 2017, 313, C593–C603. [Google Scholar] [CrossRef] [Green Version]
- Quiniou, C.; Sennlaub, F.; Beauchamp, M.H.; Checchin, D.; Lahaie, I.; Brault, S.; Gobeil, F., Jr.; Sirinyan, M.; Kooli, A.; Hardy, P.; et al. Dominant role for valpain in thromboxane-induced neuromicrovascular endothelial cytotoxicity. J. Pharmacol. Exp. Ther. 2005, 316, 618–627. [Google Scholar] [CrossRef] [Green Version]
- Saggerson, E.D.; Greenbaum, A.L. The regulation of triglyceride synthesis and fatty acid synthesis in rat epididymal adipose tissue. Effects of insulin, adrenaline and some metabolites in vitro. Biochem. J. 1970, 119, 193–219. [Google Scholar] [CrossRef] [Green Version]
- Fukuse, T.; Hirata, T.; Ishikawa, S.; Shoji, T.; Yoshimura, T.; Chen, Q.; Matsukura, T.; Hanaoka, N.; Wada, H. Optimal alveolar oxygen concentration for cold storage of the lung. Transplantation 2001, 72, 300–304. [Google Scholar] [CrossRef]
- Palikaras, K.; Tavernarakis, N. Intracellular assessment of ATP levels in Caenorhabditis elegans. Bio. Protoc. 2017, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, D.S.; Horowitz, S.B. Intracellular compartmentalization of adenosine triphosphatre. J. Biol. Chem. 1986, 261, 12911–13915. [Google Scholar] [CrossRef]
- Nitschmann, W.H.; Peschek, G.A. Oxidative phosphorylation and energy buffering in cyanobacteria. J. Bacteriol. 1986, 168, 1205–1211. [Google Scholar] [CrossRef] [Green Version]
- Bornefeld, T.; Weis, U. Adenylate energy charge and phosphorylation potential in the blue-green bacterium Anacystis nidulans. Biochem. Physiol. Pflanz. 1981, 176, 71–82. [Google Scholar] [CrossRef]
- Larsson, C.-M.; Olsson, T. Firefly assay of adenine nucleotides from algae: Comparison of extraction methods. Plant Cell Physiol. 1979, 20, 145–155. [Google Scholar]
- Linkerhägner, K.; Oelze, J. Nitrogenase activity and regeneration of the cellular ATP pool in Azotobacter vinelandii adapted to different oxygen concentrations. J. Bacteriol. 1997, 179, 1362–1367. [Google Scholar] [CrossRef] [Green Version]
- Linkerhägner, K.; Oelze, J. Cellular ATP levels and nitrogenase switchoff upon oxygen stress in chemostat cultures of Azotobacter vinelandii. J. Bacteriol. 1995, 177, 5289–5293. [Google Scholar]
- Yaginuma, H.; Kawai, S.; Tabata, K.; Tomiyama, K.; Kakizuka, A.; Komatsuzaki, T.; Noji, H.; Imamura, H. Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging. Sci. Rep. 2015, 4, 6522. [Google Scholar]
- Bagnara, A.S.; Finch, L.R. The effects of bases and nucleosides on the intracellular contents of nucleotides and 5-phosphoribosyl 1-pyrophosphate in Escherichia coli. Eur. J. Biochem. 1974, 41, 421–430. [Google Scholar]
- Nazar, R.N.; Wong, J.T.F. Nucleotide changes and the regulation of ribonucleic acid accumulation during growth rate shifts in Escherichia coli. J. Biol. Chem. 1972, 247, 790–797. [Google Scholar]
- Harrison, D.E.F.; Maitra, P.K. Control of respiration and metabolism in growing Klebsiella aerogenes: The role of adenine nucleotides. Biochem. J. 1969, 112, 647–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naganuma, T.; Kimura, H.; Karimoto, R.; Pimenov, N.V. Abundance of planktonic thraustochytrids and bacteria and the concentration of particulate ATP in the Greenland and Norwegian Seas. Polar Biosci. 2006, 20, 37–45. [Google Scholar]
- Warthmann, R.; Cypionka, H. Characteristics of assimilatory sulfate transport in Rhodobacter sulfidophilus. FEMS Microbiol. Lett. 1996, 142, 243–246. [Google Scholar] [CrossRef]
- Blaut, M.; Gottschalk, G. Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri. Eur. J. Biochem. 1984, 141, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Lübben, M.; Schäfer, G. Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: Oxidative phosphorylation and the presence of an F0-related N,N’-dicyclohexylcarbodiimide-binding proteolipid. J. Bacteriol. 1989, 171, 6106–6116. [Google Scholar] [CrossRef] [Green Version]
- Swings, J.; de Ley, J. The biology of Zymomonas. Bacteriol. Rev. 1977, 41, 1–46. [Google Scholar] [CrossRef]
- Eddy, A.A.; Backen, K.; Watson, G. The concentration of amino acids by yeast cells depleted of adenosine triphosphate. Biochem. J. 1970, 120, 853–858. [Google Scholar] [CrossRef] [Green Version]
- Özalp, V.C.; Pedersen, T.R.; Nielsen, L.J.; Olsen, L.F. Time-resolved measurements of intracellular ATP in the yeast Saccharomyces cerevisiae using a new type of nanobiosensor. J. Biol. Chem. 2010, 285, 37579–37588. [Google Scholar] [CrossRef] [Green Version]
- Ytting, C.K.; Fuglsang, A.T.; Hiltunen, J.K.; Kastaniotis, A.J.; Özalp, V.C.; Nielsenc, L.J.; Olsen, L.F. Measurements of intracellular ATP provide new insight into the regulation of glycolysis in the yeast Saccharomyces cerevisiae. Integr. Biol. 2012, 4, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Richards, P.; Teusink, B.; Hemker, M.B.; Van Dam, K.; Westerhoff, H.V. Sustained oscillations in free-energy state and hexose phosphates in yeast. Yeast 1996, 12, 731–740. [Google Scholar] [CrossRef]
- Traut, T.W. Physiological concentration of purines and pyrimidines. Mol. Cell. Biochem. 1994, 140, 1–22. [Google Scholar] [CrossRef]
- Neuberg, C. Hydrotropische ersheinungen. Biochem. Z. 1916, 76, 107–176. [Google Scholar]
- Greiner, J.V.; Glonek, T. Implications of the hydrotropic function of intralenticular ATP in cataractogenesis and presbyopiogenesis. New Front. Ophthalmol. 2020, 6, 1–2. [Google Scholar] [CrossRef]
- Bottomleyed, P.J.; Stewart, W.D.P. ATP pools and transients in the blue-green alga, Anabaena cylindrica. Arch. Microbiol. 1976, 108, 249–258. [Google Scholar] [CrossRef]
- Schopf, J.W.; Kitajima, K.; Spicuzza, M.J.; Kudryavtsev, A.B.; Valley, J.W. SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions. Proc. Natl. Acad. Sci. USA 2018, 115, 53–58. [Google Scholar] [CrossRef] [Green Version]
A molecular carrier of intracellular energy |
The ultimate metabolic source of high-energy phosphate bonds |
The parent residue giving rise to vitamin dinucleotides and other cofactors |
An allosteric enzyme regulator for modulating protein activities |
The principal metabolite for cellular energy transduction mechanisms |
The transport of macromolecules, such as proteins, into and out of cells |
A phosphorylating agent in phosphate regulation of transmembrane proteins |
A source of the adenosine nucleotide, one of the 4 letters of the genetic code |
A hydrotropic functional molecule preventing intracellular protein aggregation [5] |
Cell/Tissue/Organ Group | mM Concentration (Mean ± SD) | N |
---|---|---|
Muscle (cardiac) | 7.47 ± 4.12 | 15 |
Muscle (skeletal) | 5.86 ± 1.91 | 46 |
Brain | 2.88 ± 1.33 | 8 |
Liver | 2.92 ± 1.98 | 16 |
Retina | 4.14 ± 2.06 | 5 |
Other | 1.92 ± 0.95 | 16 |
Microorganisms | 2.74 ± 2.55 | 21 |
Non-muscle Group | 2.71 ± 1.97 | 66 |
All Groups | 4.41 ± 2.93 | 127 |
Groups Compared | Total N | t-Statistic | p-Value | Significantly Different * |
---|---|---|---|---|
Cardiac vs. Skeletal | 61 | 2.0698 | 0.0429 | X |
Cardiac vs. Brain | 23 | 3.0396 | 0.0062 | X |
Cardiac vs. Liver | 31 | 3.9564 | 0.0005 | X |
Cardiac vs. Retina | 20 | 1.7153 | 0.1035 | |
Cardiac vs. Other | 31 | 5.2471 | 0.0001 | X |
Cardiac vs. Microorganisms | 36 | 4.2569 | 0.0002 | X |
Skeletal vs. Brain | 54 | 4.2239 | <0.0001 | X |
Skeletal vs. Liver | 62 | 5.2485 | <0.0001 | X |
Skeletal vs. Retina | 51 | 1.9027 | 0.0630 | |
Skeletal vs. Other | 62 | 7.8852 | <0.00001 | X |
Skeletal vs. Microorganisms | 67 | 5.5739 | <0.00001 | X |
Brain vs. Liver | 24 | 0.0594 | 0.9531 | |
Brain vs. Retina | 13 | −1.1867 | 0.2500 | |
Brain vs. Other | 24 | 2.0379 | 0.5376 | |
Brain vs. Microorganisms | 29 | 0.1450 | 0.8664 | |
Liver vs. Retina | 21 | −1.1867 | 0.2500 | |
Liver vs. Other | 32 | 1.8322 | 0.0769 | |
Liver vs. Microorganisms | 37 | 0.2396 | 0.8120 | |
Retina vs. Other | 21 | 3.4103 | 0.0029 | X |
Retina vs. Microorganisms | 26 | 1.1367 | 0.2669 | |
Other vs. Microorganisms | 37 | −1.2234 | 0.2293 | |
Non-muscle vs. Cardiac | 81 | −6.6829 | <0.00001 | X |
Non-muscle vs. Skeletal | 112 | −8.4348 | <0.00001 | X |
Non-muscle vs. Cardiac + Skeletal | 127 | −8.5444 | <0.00001 | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greiner, J.V.; Glonek, T. Intracellular ATP Concentration and Implication for Cellular Evolution. Biology 2021, 10, 1166. https://doi.org/10.3390/biology10111166
Greiner JV, Glonek T. Intracellular ATP Concentration and Implication for Cellular Evolution. Biology. 2021; 10(11):1166. https://doi.org/10.3390/biology10111166
Chicago/Turabian StyleGreiner, Jack V., and Thomas Glonek. 2021. "Intracellular ATP Concentration and Implication for Cellular Evolution" Biology 10, no. 11: 1166. https://doi.org/10.3390/biology10111166
APA StyleGreiner, J. V., & Glonek, T. (2021). Intracellular ATP Concentration and Implication for Cellular Evolution. Biology, 10(11), 1166. https://doi.org/10.3390/biology10111166