Effect of Elevated CO2 on Seed Yield, Essential Oil Metabolism, Nutritive Value, and Biological Activity of Pimpinella anisum L. Accessions at Different Seed Maturity Stages
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Experimental Setup, Growth Conditions, and Plant Harvests
2.2. Nutrient Analyses
2.3. Determination of Essential Oil Levels and Metabolism
2.4. Seed Preparation for Biological Activity Assay
2.5. Hypocholesterolemic Activity
2.5.1. Inhibition of Micellar Solubility of Cholesterol
2.5.2. Pancreatic α-Amylase Inhibition Assay
2.5.3. Pancreatic Lipase Inhibition Assay
2.6. Antioxidant Capacity
2.7. Anti-Lipid Peroxidation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Seed Maturation Increasing Dry Biomass, Seed Yield, and Nutrient Accumulation
3.2. eCO2 Improved the Nutritive Values of Seeds, Particularly at the Mature Stage of Aniseed
3.3. Reduced Essential Oil Content and Metabolism by Maturation, as Mitigated by eCO2
3.4. eCO2-Treated Mature Aniseeds Showed the Highest Biological Activity
3.5. Accession and Developmental Stage-Specific Effect on Seed Chemical Composition and Biological Activity of eCO2-Treated Aniseeds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Omidbaigi, R.; Hassani, A.; Sefidkon, F. Essential oil content and composition of sweet basil (Ocimum basilicum) at different irrigation regimes. J. Essent. Oil Bear. Plants 2003, 6, 104–108. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. Anise (Pimpinella anisum L.), a dominant spice and traditional medicinal herb for both food and medicinal purposes. Cogent Biol. 2019, 5, 1673688. [Google Scholar] [CrossRef]
- Askari, F.; Sefidkon, F.; Mirza, M. Quantitative and Qualitative of Essential oil Pimpinella anisum. Res. Reconstr. 1998, 38, 70–73. [Google Scholar]
- Kosalec, I.; Pepeljnjak, S.; Kuštrak, D. Antifungal activity of fluid extract and essential oil from anise fruits (Pimpinella anisum L., Apiaceae). Acta Pharm. 2005, 55, 377–385. [Google Scholar]
- Bettaieb Rebey, I.; Wannes, W.A.; Kaab, S.B.; Bourgou, S.; Tounsi, M.S.; Ksouri, R.; Fauconnier, M.L. Bioactive compounds and antioxidant activity of Pimpinella anisum L. accessions at different ripening stages. Sci. Hortic. 2019, 246, 453–461. [Google Scholar] [CrossRef]
- Bettaieb Rebey, I.; Bourgou, S.; Aidi Wannes, W.; Hamrouni Selami, I.; Saidani Tounsi, M.; Marzouk, B.; Fauconnier, M.-L.; Ksouri, R. Comparative assessment of phytochemical profiles and antioxidant properties of Tunisian and Egyptian anise (Pimpinella anisum L.) seeds. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2018, 152, 971–978. [Google Scholar] [CrossRef] [Green Version]
- Acimovic, M.G.; Korac, J.; Jacimovic, G.; Oljaca, S.; Djukanovic, L.; Vesna, V.-J. Influence of ecological conditions on seeds traits and essential oil contents in anise (Pimpinella anisum L.). Not. Bot. Horti Agrobot. Cluj-Napoca 2014, 42, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Hozzein, W.N.; Saleh, A.M.; Habeeb, T.H.; Wadaan, M.A.; AbdElgawad, H. CO2 treatment improves the hypocholesterolemic and antioxidant properties of fenugreek seeds. Food Chem. 2020, 308, 125661. [Google Scholar] [CrossRef]
- Saleh, A.M.; Selim, S.; Al Jaouni, S.; AbdElgawad, H. CO2 enrichment can enhance the nutritional and health benefits of parsley (Petroselinum crispum L.) and dill (Anethum graveolens L.). Food Chem. 2018, 269, 519–526. [Google Scholar] [CrossRef]
- Bettaieb Rebey, I.; Kefi, S.; Limam, F.; Marzouk, B. Variations in fatty acid composition during maturation of cumin (Cuminum cyminum L.) seeds. Afr. J. Biotechnol. 2013, 12, 5303–5307. [Google Scholar]
- Oezel, A. Anise (Pimpinella anisum): Changes in yields and component composition on harvesting at different stages of plant maturity. Exp. Agric. 2009, 45, 117. [Google Scholar] [CrossRef]
- Salami, M.; Rahimmalek, M.; Ehtemam, M.H. Comprehensive research on essential oil and phenolic variation in different Foeniculum vulgare populations during transition from vegetative to reproductive stage. Chem. Biodivers. 2017, 14, e1600246. [Google Scholar] [CrossRef]
- Rebey, I.B.; Bourgou, S.; Detry, P.; Wannes, W.A.; Kenny, T.; Ksouri, R.; Sellami, I.H.; Fauconnier, M.-L. Green extraction of fennel and anise edible oils using bio-based solvent and supercritical fluid: Assessment of chemical composition, antioxidant property, and oxidative stability. Food Bioprocess Technol. 2019, 12, 1798–1807. [Google Scholar] [CrossRef]
- Hatanaka, C.; Kobara, Y. Determination of glucose by a modification of Somogyi-Nelson method. Agric. Biol. Chem. 1980, 44, 2943–2949. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AOAC. Association of official analytical chemists. In Official Methods of Analysis; AOAC: Arlington, VA, USA, 1990. [Google Scholar]
- Okla, M.K.; El-Tayeb, M.A.; Qahtan, A.A.; Abdel-Maksoud, M.A.; Elbadawi, Y.B.; Alaskary, M.K.; Balkhyour, M.A.; Hassan, A.H.; AbdElgawad, H. Laser Light Treatment of Seeds for Improving the Biomass Photosynthesis, Chemical Composition and Biological Activities of Lemongrass Sprouts. Agronomy 2021, 11, 478. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, S.; Wang, Y.; Liu, J.; Ma, H.; Wang, Y.; Tian, Y.; Hou, W. Effects of light irradiation on essential oil biosynthesis in the medicinal plant Asarum heterotropoides Fr. Schmidt var. mandshuricum (Maxim) Kitag. PLoS ONE 2020, 15, e0237952. [Google Scholar] [CrossRef]
- Sugiyama, H.; Akazome, Y.; Shoji, T.; Yamaguchi, A.; Yasue, M.; Kanda, T.; Ohtake, Y. Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption. J. Agric. food Chem. 2007, 55, 4604–4609. [Google Scholar] [CrossRef]
- Madany, M.M.; Saleh, A.M.; Habeeb, T.H.; Hozzein, W.N.; AbdElgawad, H. Silicon dioxide nanoparticles alleviate the threats of broomrape infection in tomato by inducing cell wall fortification and modulating ROS homeostasis. Environ. Sci. Nano 2020, 7, 1415–1430. [Google Scholar] [CrossRef]
- Bettaieb Rebey, I.; Kefi, S.; Bourgou, S.; Ouerghemmi, I.; Ksouri, R.; Tounsi, M.S.; Marzouk, B. Ripening stage and extraction method effects on physical properties, polyphenol composition and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Plant Foods Hum. Nutr. 2014, 69, 358–364. [Google Scholar] [CrossRef]
- Masella, R.; Di Benedetto, R.; Varì, R.; Filesi, C.; Giovannini, C. Novel mechanisms of natural antioxidant compounds in biological systems: Involvement of glutathione and glutathione-related enzymes. J. Nutr. Biochem. 2005, 16, 577–586. [Google Scholar] [CrossRef]
- Bettaieb Rebey, I.; Bourgou, S.; Debez, I.B.S.; Karoui, I.J.; Sellami, I.H.; Msaada, K.; Limam, F.; Marzouk, B. Effects of extraction solvents and provenances on phenolic contents and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Food Bioprocess Technol. 2012, 5, 2827–2836. [Google Scholar] [CrossRef]
- Almuhayawi, M.S.; AbdElgawad, H.; Al Jaouni, S.K.; Selim, S.; Hassan, A.H.A.; Khamis, G. Elevated CO2 improves glucosinolate metabolism and stimulates anticancer and anti-inflammatory properties of broccoli sprouts. Food Chem. 2020, 328, 127102. [Google Scholar] [CrossRef] [PubMed]
- Almuhayawi, M.S.; Hassan, A.H.A.; Al Jaouni, S.K.; Alkhalifah, D.H.M.; Hozzein, W.N.; Selim, S.; AbdElgawad, H.; Khamis, G. Influence of elevated CO2 on nutritive value and health-promoting prospective of three genotypes of Alfalfa sprouts (Medicago Sativa). Food Chem. 2021, 340, 128147. [Google Scholar] [CrossRef] [PubMed]
- Azam, A.; Khan, I.; Mahmood, A.; Hameed, A. Yield, chemical composition and nutritional quality responses of carrot, radish and turnip to elevated atmospheric carbon dioxide. J. Sci. Food Agric. 2013, 93, 3237–3244. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Li, S.; Zhu, Y.; Zhao, Q.; Zhu, D.; Yu, J. ZmDof3, a maize endosperm-specific Dof protein gene, regulates starch accumulation and aleurone development in maize endosperm. Plant Mol. Biol. 2017, 93, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, K.; Watanabe, C.K.; Terashima, I. Effects of elevated atmospheric CO2 on primary metabolite levels in Arabidopsis thaliana Col-0 leaves: An examination of metabolome data. Plant Cell Physiol. 2015, 56, 2069–2078. [Google Scholar]
- Christaki, E.; Bonos, E.; Florou-Paneri, P. Use of anise seed and/or α-tocopheryl acetate in laying Japanese quail diets. S. Afr. J. Anim. Sci. 2011, 41, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Topčagić, A.; Ćavar Zeljković, S.; Kezić, M.; Sofić, E. Fatty acids and phenolic compounds composition of anise seed. J. Food Process. Preserv. 2021, e15872. [Google Scholar] [CrossRef]
- Bengana, M.; Bakhouche, A.; Lozano-Sánchez, J.; Amir, Y.; Youyou, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Influence of olive ripeness on chemical properties and phenolic composition of Chemlal extra-virgin olive oil. Food Res. Int. 2013, 54, 1868–1875. [Google Scholar] [CrossRef]
- Tlili, N.; Mejri, H.; Yahia, Y.; Saadaoui, E.; Rejeb, S.; Khaldi, A.; Nasri, N. Phytochemicals and antioxidant activities of Rhus tripartitum (Ucria) fruits depending on locality and different stages of maturity. Food Chem. 2014, 160, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.H.; Okla, M.K.; Al-amri, S.S.; El-Tayeb, M.A.; Moussa, I.M.; Elbadawi, Y.B.; Adel-Maksoud, M.A.; Ali, F.H.; Almaary, K.S.; Selim, S. Exploratory Assessment to Evaluate Seed Sprouting under Elevated CO2 Revealed Improved Biomass, Physiology, and Nutritional Value of Trachyspermum ammi. Agronomy 2021, 11, 830. [Google Scholar] [CrossRef]
- Maeda, H.; Dudareva, N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. plant Biol. 2012, 63, 73–105. [Google Scholar] [CrossRef] [PubMed]
- Sangwan, N.; Farooqi, A.; Shabih, F.; Sangwan, R. Regulation of essential oil production in plants. Plant Growth Regul. 2001, 34, 3–21. [Google Scholar] [CrossRef]
- Vialart, G.; Hehn, A.; Olry, A.; Ito, K.; Krieger, C.; Larbat, R.; Paris, C.; Shimizu, B.i.; Sugimoto, Y.; Mizutani, M. A 2-oxoglutarate-dependent dioxygenase from Ruta graveolens L. exhibits p-coumaroyl CoA 2′-hydroxylase activity (C2′ H): A missing step in the synthesis of umbelliferone in plants. Plant J. 2012, 70, 460–470. [Google Scholar] [CrossRef]
- Shojaii, A.; Abdollahi Fard, M. Review of pharmacological properties and chemical constituents of Pimpinella anisum. Int. Sch. Res. Not. 2012, 2012, 8. [Google Scholar] [CrossRef] [Green Version]
- Birari, R.B.; Bhutani, K.K. Pancreatic lipase inhibitors from natural sources: Unexplored potential. Drug Discov. Today 2007, 12, 879–889. [Google Scholar] [CrossRef]
- Furune, T.; Ikuta, N.; Ishida, Y.; Okamoto, H.; Nakata, D.; Terao, K.; Sakamoto, N. A study on the inhibitory mechanism for cholesterol absorption by α-cyclodextrin administration. Beilstein J. Org. Chem. 2014, 10, 2827–2835. [Google Scholar] [CrossRef] [Green Version]
- Suciu, C.F.; Prete, M.; Ruscitti, P.; Favoino, E.; Giacomelli, R.; Perosa, F. Oxidized low density lipoproteins: The bridge between atherosclerosis and autoimmunity. Possible implications in accelerated atherosclerosis and for immune intervention in autoimmune rheumatic disorders. Autoimmun. Rev. 2018, 17, 366–375. [Google Scholar] [CrossRef]
- Khalil, R.; Yusuf, M.; Bassuony, F.; Gamal, A.; Madany, M. Phytotoxic effect of Alhagi maurorum on the growth and physiological activities of Pisum sativum L. S. Afr. J. Bot. 2020, 131, 250–258. [Google Scholar] [CrossRef]
- Al-Mashhadani, E.H.; Farah, K.; Al-Jaff, Y.; Farhan, Y. Effect of anise, thyme essential oils and their mixture (EOM) on broiler performance and some physiological traits. Egypt. Poult. Sci. 2011, 31, 481–489. [Google Scholar]
- Sosnowska, D.; Podsędek, A.; Redzynia, M.; Kucharska, A.Z. Inhibitory effect of black chokeberry fruit polyphenols on pancreatic lipase–Searching for most active inhibitors. J. Funct. Foods 2018, 49, 196–204. [Google Scholar] [CrossRef]
- Habeeb, T.H.; Abdel-Mawgoud, M.; Yehia, R.S.; Khalil, A.M.A.; Saleh, A.M.; AbdElgawad, H. Interactive Impact of Arbuscular Mycorrhizal Fungi and Elevated CO2 on Growth and Functional Food Value of Thymus vulgare. J. Fungi 2020, 6, 168. [Google Scholar] [CrossRef] [PubMed]
- Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.-H.; Khalel, K.I. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind. Crop. Prod. 2013, 43, 827–831. [Google Scholar] [CrossRef]
- Alignan, M.; Roche, J.; Bouniols, A.; Cerny, M.; Mouloungui, Z.; Merah, O. Effects of genotype and sowing date on phytostanol–phytosterol content and agronomic traits in wheat under organic agriculture. Food Chem. 2009, 117, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Laribi, B.; Kouki, K.; Bettaieb, T.; Mougou, A.; Marzouk, B. Essential oils and fatty acids composition of Tunisian, German and Egyptian caraway (Carum carvi L.) seed ecotypes: A comparative study. Ind. Crop. Prod. 2013, 41, 312–318. [Google Scholar] [CrossRef]
- Orav, A.; Raal, A.; Arak, E. Essential oil composition of Pimpinella anisum L. fruits from various European countries. Nat. Prod. Res. 2008, 22, 227–232. [Google Scholar] [CrossRef]
Plant Source | Maturity Stage | |||||
---|---|---|---|---|---|---|
Mature | Premature | Immature | ||||
Control | eCO2 | Control | eCO2 | Control | eCO2 | |
Dry weight (%) | ||||||
Egypt | 82.8 ± 0.97 e | 84.8 ± 0.79 e | 56.2 ± 1.13 c | 63.4 ± 1.18 d | 14.1 ± 0.49 a | 17.2 ± 0.2 b |
Tunisia | 67.1 ± 0.65 d | 81 ± 2.56 e | 47.8 ± 0.03 c | 54.2 ± 0.59 c | 12.6 ± 0.11 a | 14.5 ± 0.07 b |
Syria | 76.2 ± 0.74 d | 69 ± 0.64 bc | 54.3 ± 0.03 b | 50.5 ± 0.55 b | 14.3 ± 0.13 a | 13.5 ± 0.06 a |
Turkey | 67.3 ± 1.4 c | 72.7 ± 2.07 d | 46.4 ± 0.2 b | 49.4 ± 0.2 b | 12.3 ± 0.04 a | 13.1 ± 0.05 a |
Yemen | 66 ± 0.62 d | 79.3 ± 1.1 e | 45.9 ± 4.03 c | 44.1 ± 0.37 c | 19.9±0.07 b | 11.7 ± 0.03 a |
Morocco | 82.3 ± 1.6 e | 80.1 ± 1.6 e | 43.5 ± 0.3 d | 26.5 ± 0.7 c | 11.5 ± 0 a | 16.5 ± 0.1 b |
Fruit yield per plant (g) | ||||||
Egypt | 0.12 ± 0.05 a | 0.19 ± 0.02 b | 0.10 ± 0.02 a | 0.14 ± 0.07 b | 0.08 ± 0.01 a | 0.10 ± 0.04 a |
Tunisia | 0.17 ± 0.05 bc | 0.23 ± 0.06 c | 0.12 ± 0.03 a | 0.20 ± 0.05 c | 0.10 ± 0.03 a | 0.14 ± 0.06 b |
Syria | 0.23 ± 0.04 ab | 0.34 ± 0.04 c | 0.20 ± 0.01 a | 0.31 ± 0.01 c | 0.17 ± 0.01 a | 0.21 ± 0.01 ab |
Turkey | 0.18 ± 0.04 b | 0.27 ± 0.07 d | 0.16 ± 0.04 ab | 0.21 ± 0.04 c | 0.11 ± 0.04 a | 0.18 ± 0.01 b |
Yemen | 0.15 ± 0.02 b | 0.29 ± 0.01 d | 0.15 ± 0.02 b | 0.20 ± 0.01 c | 0.08 ± 0.02 a | 0.11 ± 0.02 ab |
Morocco | 0.13 ± 0.01 ab | 0.29 ± 0.06 c | 0.10 ± 0.01 a | 0.14 ± 0.06 b | 0.08 ± 0.01 a | 0.12 ± 0.01 ab |
Parameters (mg/gFW) | Plant Source | Maturity Stages | |||||
---|---|---|---|---|---|---|---|
Mature | Premature | Immature | |||||
Control | eCO2 | Control | eCO2 | Control | eCO2 | ||
Phenylalanine | Egypt | 3.3 ± 0.26 a | 4.3 ± 0.1 b | 3.9 ± 0.14 a | 4.9 ± 0.03 b | 4.4 ± 0.06 b | 5.4 ± 0.02 c |
Tunisia | 3 ± 0.1 a | 3.6 ± 0.34 a | 3.4 ± 0.1 a | 4 ± 0.1 ab | 3.8 ± 0 a | 4.4 ± 0.09 b | |
Syria | 3.1 ± 0.08 a | 3 ± 0.1 a | 3.5 ± 0.03 a | 3.3 ± 0.05 a | 3.9 ± 0.01 b | 3.7 ± 0.03 ab | |
Turkey | 2.8 ± 0.18 a | 2.6 ± 0.12 a | 3.2 ± 0.12 b | 2.8 ± 0.08 a | 3.6 ± 0.07 b | 3.1 ± 0.04 c | |
Yemen | 4.9 ± 0.08 b | 2 ± 0.08 a | 5.5 ± 0.02 b | 2.2 ± 0.05 a | 6.1 ± 0.01 b | 2.5 ± 0.03 a | |
Morocco | 1.6 ± 0.2 a | 1.47 ± 0.1 a | 1.8 ± 0.1 a | 1.57 ± 0.1 a | 2.0 ± 0.1 ab | 1.9 ± 0 a | |
L-phenylalanine aminolyase | Egypt | 20.3 ± 0.39 a | 32.7 ± 1.3 b | 48.9 ± 2.3 c | 74.5 ± 4.8 d | 51.9 ± 0.97 c | 82.3 ± 1.9 e |
Tunisia | 19.4 ± 0.5 a | 25.9 ± 1.8 b | 39.9 ± 2.3 b | 47.1 ± 4.4 d | 33.3 ± 1.2 b | 45.2 ± 5.41 c | |
Syria | 21.6 ± 0.79 a | 31.2 ± 2.2 b | 58.6 ± 2.7 d | 87.7 ± 11 f | 44.9 ± 3 c | 62.3 ± 0.19 e | |
Turkey | 20.6 ± 0.2 a | 22.4 ± 1.6 a | 62.4 ± 2.9 c | 68.1 ± 4 c | 36.6 ± 1.9 b | 39.6 ± 3.6 b | |
Yemen | 35.2 ± 0.7 a | 31 ± 0.52 a | 98.2 ± 6.6 d | 103.3 ± 1.5 d | 60.8 ± 3.3 c | 55.6 ± 1.01 c | |
Morocco | 25.6 ± 0.2 a | 20.5 ± 0.2 a | 60.9 ± 1.3 b | 71.7 ± 1.2 c | 60.8 ± 2.1 b | 66.6 ± 0.4 c | |
* DAHPS | Egypt | 0.2 ± 0.01 a | 0.5 ± 0.03 b | 0.3 ± 0.03 a | 1.2 ± 0.06 c | 0.5 ± 0.02 b | 1.5 ± 0.06 c |
Tunisia | 0.2 ± 0.01 a | 0.3 ± 0.02 ab | 0.4 ± 0 b | 0.45 ± 0.02 b | 0.61 ± 0 c | 0.8 ± 0.05 d | |
Syria | 0.3 ± 0.01 a | 0.3 ± 0.02 a | 0.6 ± 0.03 b | 0.6 ± 0.03 b | 0.9 ± 0.03 c | 0.9 ± 0.04 c | |
Turkey | 0.2±0.01 a | 0.2±0.02 a | 0.4±0.01 b | 0.5±0.02 b | 0.7±0.02 c | 0.7±0.06 c | |
Yemen | 0.4 ± 0.01 a | 0.4 ± 0.01 a | 0.8 ± 0 b | 1.2 ± 0.03 b | 1.3 ± 0.05 v | 0.9 ± 0.02 b | |
Morocco | 0.3 ± 0 a | 0.2 ± 0 a | 0.5 ± 0 b | 0.6 ± 0 b | 0.9 ± 0 c | 0.5 ± 0 b | |
Cinnamic acid | Egypt | 3.1 ± 0.52 b | 5.8 ± 0.23 c | 1.4 ± 0.03 a | 3.4 ± 0.14 b | 3.2 ± 0.1 b | 1.3 ± 0.05 a |
Tunisia | 2.9 ± 0.2 ab | 3.8 ± 0.5 b | 1.6 ± 0 a | 2 ± 0.15 a | 3.9 ± 0.1 b | 5 ± 0.19 c | |
Syria | 3.6 ± 0.33 b | 3.3 ± 0.17 b | 2.1 ± 0.08 a | 2.3 ± 0.05 a | 2.8 ± 0.02 a | 4.5 ± 0.09 c | |
Turkey | 3 ± 0.34 d | 3.3 ± 0.4 d | 1.5 ± 0.02 c | 1.7 ± 0.09 c | 0.55 ± 0.01 a | 0.74 ± 0.03 b | |
Yemen | 5.8 ± 0.57 c | 3.5 ± 0.3 b | 3 ± 0.01 b | 4.9 ± 0.13 c | 1.2 ± 0 a | 1 ± 0.02 a | |
Morocco | 3.4 ± 0.2 d | 2.3 ± 0.2 c | 1.7 ± 0.1 b | 2.5 ± 0 c | 1.9 ± 0.1 b | 0.5 ± 0 a | |
Shikimic acid | Egypt | 75.9 ± 3.4 c | 96.3 ± 5.72 d | 48.7 ± 1 a | 56.8 ± 2.74 b | 59.7 ± 1.35 a | 68.7 ± 0.26 c |
Tunisia | 76.1 ± 2.7 c | 77.3 ± 6 c | 44.8 ± 1.1 a | 54.4 ± 5.6 b | 57.1 ± 1.7 b | 66.7 ± 4.5 bc | |
Syria | 72.3 ± 2.9 b | 74.3 ± 5.3 b | 48.2 ± 1.06 a | 48.8 ± 1.6 a | 44.2 ± 0.36 a | 57 ± 1.6 ab | |
Turkey | 55.5 ± 1.9 d | 53.9 ± 1.8 d | 38.3 ± 0.8 b | 44 ± 1.6 c | 20.5 ± 0.2 a | 20.4 ± 0.4 a | |
Yemen | 103.6 ± 6.8 d | 72.8 ± 3.16 c | 67 ± 2.19 c | 77.6 ± 0.92 c | 33.3 ± 3.3 a | 26.7 ± 4.2 a | |
Morocco | 59±5 c | 38±2.1 b | 36.9±1.8 b | 41.7±0.7 b | 42.6±1.2 b | 14.2±0.2 a | |
O-methyltransferase | Egypt | 7 ± 0.32 a | 7.7 ± 0.48 a | 20.1 ± 0.9 c | 22.3 ± 1.37 c | 13.4 ± 0.61 b | 16.8 ± 0.91 b |
Tunisia | 7.1 ± 0.3 a | 15.1 ± 0.6 b | 20.6 ± 0.9 c | 43.6 ± 1.81 | 13.7 ± 0.6 b | 29.1 ± 1.2 d | |
Syria | 6 ± 0.27 a | 12.5 ± 1.54 b | 17.4 ± 0.7 c | 36 ± 4.4 e | 11.6 ± 0.5 b | 24 ± 2.9 d | |
Turkey | 6.3 ± 0.29 a | 9.7 ± 0.6 b | 18.3 ± 0.8 d | 27.9 ± 1.7 e | 12.2 ± 0.5 c | 18.6 ± 1.1 d | |
Yemen | 10 ± 0.66 a | 15 ± 0.23 a | 28.9 ± 1.9 b | 37.3 ± 0.6 c | 19.3 ± 1.2 ab | 28.9 ± 0.4 b | |
Morocco | 8.7 ± 0.2 a | 10.3 ± 0.2 b | 25 ± 0.5 cd | 29.7 ± 0.5 d | 16.7 ± 0.3 b | 19.8 ± 0.3 c |
Parameters | Plant Source | Seed Maturity Stages | |||||
---|---|---|---|---|---|---|---|
Mature | Premature | Immature | |||||
Control | eCO2 | Control | eCO2 | Control | eCO2 | ||
Amylase activity IC50 (mg/mL) | Egypt | 23.7 ± 11.1 c | 11.1 ± 0.49 b | 11.6 ± 4.7 b | 7.4 ± 0.4 a | 19.4 ± 8.3 c | 6.2 ± 0.39 a |
Tunisia | 24.5 ± 0.3 d | 6.1 ± 0.4 b | 20.5 ± 0.1 c | 4.2 ± 0.3 a | 15.1 ± 0.2 c | 5.4 ± 0.18 ab | |
Syria | 15.9 ± 1.9 b | 25.5 ± 0.07 c | 8.8 ± 2.07 a | 13.1 ± 0.08 b | 12.9 ± 3.9 ab | 10 ± 0.07 a | |
Turkey | 20.7 ± 1 e | 8.2 ± 1.8 c | 11.1 ± 0.4 d | 5.9 ± 0.7 b | 8.4 ± 0.3 c | 4 ± 0.64 a | |
Yemen | 35.6 ± 0.8 c | 23.1 ± 1.5 b | 18.7 ± 0.4 ab | 13.1 ± 0.5 a | 14.3 ± 0.3 a | 15.8 ± 2.3 a | |
Morocco | 5.4 ± 0.2 ab | 8.4 ± 0.4 b | 4 ± 0.2 a | 5.4 ± 0.2 ab | 5.9 ± 0.1 ab | 8.1 ± 0.2 b | |
Lipase activity IC50 (mg/mL) | Egypt | 1.8 ± 0.11 b | 0.3 ± 0.29 a | 2.4 ± 0.2 d | 1.6 ± 0.18 c | 16.9 ± 6.5 f | 4.2 ± 0.05 e |
Tunisia | 2.1 ± 0 ab | 1.3 ± 0.4 a | 3.1 ± 0.1 b | 1.6 ± 0.2 a | 6.9 ± 0.9 d | 4.4 ± 0.45 c | |
Syria | 2.3 ± 0.1 a | 2.8 ± 0.07 a | 2.9 ± 0.08 a | 3.4 ± 0.11 b | 12 ± 2.97 c | 10.5 ± 0.08 c | |
Turkey | 2.6 ± 0.1 a | 2.6 ± 0.2 a | 3.3 ± 0.07 b | 3.3 ± 0.12 b | 9.3 ± 0.36 d | 4.8 ± 0.68 c | |
Yemen | 4 ± 0.34 a | 4 ± 0.34 a | 5.2 ± 0.17 ab | 4.6 ± 0.24 a | 15.9 ± 0.33 b | 15.5 ± 1.9 b | |
Morocco | 2 ± 0.2 a | 2.5 ± 0.2 a | 2.4 ± 0.1 a | 2.6 ± 0.1 a | 4 ± 0.2 b | 8.3 ± 0.1 c | |
Anti-Cholesterol (Inhibition of cholesterol micellar solubility) % | Egypt | 48 ± 2.11 a | 53.1 ± 2.4 b | 41.6 ± 1.4 a | 47 ± 1.99 b | 103 ± 34 d | 62.5 ± 2.6 c |
Tunisia | 47.9 ± 2.1 a | 88.8 ± 2.6 c | 42 ± 1.5 a | 69.7 ± 1.75 b | 118.1 ± 1.9 c | 60.2 ± 1.58 b | |
Syria | 42.8 ± 1.3 a | 74.3 ± 7.6 c | 38.3 ± 1.03 a | 58 ± 4.6 b | 74.2 ± 16 d | 97.2 ± 2 e | |
Turkey | 41.7 ± 1.2 b | 59.9 ± 3 d | 36.5 ± 0.8 a | 47.7 ± 6.1 b | 74.1 ± 2.7 e | 50.3 ± 4.8 c | |
Yemen | 67.3 ± 3.2 ab | 91.2 ± 1.09 b | 58.1 ± 2.33 a | 70.2 ± 0.7 ab | 124.8 ± 3.7 c | 109 ± 6.8 b | |
Morocco | 52.6 ± 0.8 ab | 59.9 ± 0.8 b | 41.5 ± 0.5 a | 44.1 ± 0.6 a | 47.8 ± 0.9 a | 55.4 ± 1.3 ab | |
DPPH (%) | Egypt | 49.2 ± 3.3 a | 58.7 ± 2.6 b | 71.6 ± 4.4 c | 79.4 ± 4.9 d | 84.4 ± 4.9 e | 96.7 ± 6.02 f |
Tunisia | 55.1 ± 3.4 b | 45 ± 5.09 a | 78.4 ± 4.4 c | 72.1 ± 7.01 c | 86.9 ± 4.8 d | 79.5 ± 9.12 c | |
Syria | 46.5 ± 2 a | 51.5 ± 3 a | 70.7 ± 4 b | 79.5 ± 7 c | 78.1 ± 4 c | 61.4 ± 5 b | |
Turkey | 29.6 ± 1.3 a | 37.7 ± 3.6 b | 51.4 ± 3.3 d | 49.4 ± 2.5 d | 51.1 ± 3.5 d | 44.3 ± 3.5 cd | |
Yemen | 61.1 ± 2.51 a | 51 ± 3.1 a | 88.8 ± 6.9 c | 67.1 ± 3.9 ab | 86.5 ± 9.1 c | 58.5 ± 3.4 a | |
Morocco | 30.9 ± 2.1 a | 32.4 ± 2 a | 48.2 ± 4.4 c | 42.2 ± 2.9 b | 41.5 ± 3.7 b | 38.2 ± 2.6 ab | |
FRAP (nmol/g FW) | Egypt | 30.1 ± 4.65 a | 42.6 ± 3.2 b | 35.7 ± 4.75 a | 51.9 ± 3.1 c | 48.5 ± 4.1 b | 70.3 ± 5.0 d |
Tunisia | 31.2 ± 3.8 a | 36.9 ± 5.9 a | 37.3 ± 3.8 a | 43.8 ± 4.7 ab | 53.3 ± 3.5 b | 61.9 ± 4.4 c | |
Syria | 33 ± 3.61 a | 36.9 ± 4.7 ab | 40.2 ± 3.3 b | 42.2 ± 5.0 b | 68.7 ± 10.0 c | 87.5 ± 5.0 d | |
Turkey | 29.9 ± 4.52 a | 25.2 ± 1.4 a | 35.8 ± 3.8 b | 31.5 ± 1.5 a | 86.2 ± 20.6 d | 43.7 ± 2.4 c | |
Yemen | 53.6 ± 6.1 bc | 30.4 ± 2.8 a | 66.7 ± 6.9 c | 34 ± 2.9 a | 98.5 ± 3.47 d | 45.3 ± 3.3 b | |
Morocco | 26.5 ± 3.2 b | 20.1 ± 2.1 a | 28.9 ± 3.3 b | 22.3 ± 2.2 a | 33.1 ± 3.4 b | 23.5 ± 2.1 a | |
Anti-lipid peroxidation (TBARS) | Egypt | 5.9 ± 0.6 a | 7.8 ± 0.6 b | 6.7 ± 0.78 ab | 9.7 ± 0.6 c | 18.9 ± 2.0 d | 28.6 ± 2.5 e |
Tunisia | 6.7 ± 0.7 a | 7.3 ± 0.58 a | 7.6 ± 0.8 a | 9.4 ± 0.67 b | 20.9 ± 1.7 c | 28.4 ± 4.1 d | |
Syria | 6.4 ± 0.27 a | 10.9 ± 1.4 b | 7.6 ± 0.34 ab | 14.2 ± 1.8 c | 22.3 ± 1.9 d | 22.0 ± 1.7 d | |
Turkey | 6.1 ± 0.5 a | 5.2 ± 0.2 a | 11.2 ± 2.2 b | 6.8 ± 0.2 a | 24.7 ± 0.5 d | 18.9 ± 2.5 c | |
Yemen | 13.3 ± 0.6 b | 8.8 ± 0.6 a | 17.3 ± 1.1 c | 11.2 ± 0.8 ab | 38.6 ± 2.7 d | 12.3 ± 0.9 b | |
Morocco | 5.1 ± 0.4 a | 4.3 ± 0.3 a | 6.4 ± 0.5 b | 5.4 ± 0.4 a | 7.8 ± 0.5 c | 14.9 ± 0.9 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balkhyour, M.A.; Hassan, A.H.A.; Halawani, R.F.; Summan, A.S.; AbdElgawad, H. Effect of Elevated CO2 on Seed Yield, Essential Oil Metabolism, Nutritive Value, and Biological Activity of Pimpinella anisum L. Accessions at Different Seed Maturity Stages. Biology 2021, 10, 979. https://doi.org/10.3390/biology10100979
Balkhyour MA, Hassan AHA, Halawani RF, Summan AS, AbdElgawad H. Effect of Elevated CO2 on Seed Yield, Essential Oil Metabolism, Nutritive Value, and Biological Activity of Pimpinella anisum L. Accessions at Different Seed Maturity Stages. Biology. 2021; 10(10):979. https://doi.org/10.3390/biology10100979
Chicago/Turabian StyleBalkhyour, Mansour A., Abdelrahim H. A. Hassan, Riyadh F. Halawani, Ahmed Saleh Summan, and Hamada AbdElgawad. 2021. "Effect of Elevated CO2 on Seed Yield, Essential Oil Metabolism, Nutritive Value, and Biological Activity of Pimpinella anisum L. Accessions at Different Seed Maturity Stages" Biology 10, no. 10: 979. https://doi.org/10.3390/biology10100979
APA StyleBalkhyour, M. A., Hassan, A. H. A., Halawani, R. F., Summan, A. S., & AbdElgawad, H. (2021). Effect of Elevated CO2 on Seed Yield, Essential Oil Metabolism, Nutritive Value, and Biological Activity of Pimpinella anisum L. Accessions at Different Seed Maturity Stages. Biology, 10(10), 979. https://doi.org/10.3390/biology10100979