Analysis of Cadmium, Mercury, and Lead Concentrations in Erythrocytes of Renal Transplant Recipients from Northwestern Poland
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Elements Assay
2.3. Statistical Analysis
3. Results
3.1. Cd, Hg, and Pb Concentrations in All Patients
3.2. Cd, Hg and Pb Concentrations in All Patients in Aspect of Immunosuppressive Regimen
3.3. Cd and Pb Concentrations in all Patients in Aspect of Smoking
3.4. Correlations between Cd, Hg, and Pb Concentration and Age, Gender, and Biochemical Parameters in Erythrocytes of Renal Transplant Recipients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Cd | Cadmium |
Hg | Mercury |
Pb | Lead |
ID | Immunosuppressive drug |
RTR | Renal Transplant Recipient |
References
- Kim, J.; Garcia-Esquinas, E.; Navas-Acien, A.; Choi, Y.H. Blood and urine cadmium concentrations and walking speed in middle-aged and older U.S. adults. Environ. Pollut. 2018, 232, 97–104. [Google Scholar] [CrossRef]
- Grau-Perez, M.; Pichler, G.; Galan-Chilet, I.; Briongos-Figuero, L.S.; Rentero-Garrido, P.; Lopez-Izquierdo, R.; Navas-Acien, A.; Weaver, V.; Garcia-Barrera, T.; Gomez-Ariza, J.L.; et al. Urine cadmium levels and albuminuria in a general population from Spain: A gene-environment interaction analysis. Environ. Int. 2017, 106, 27–36. [Google Scholar] [CrossRef]
- Hwangbo, Y.; Weaver, V.M.; Tellez-Plaza, M.; Guallar, E.; Lee, B.K.; Navas-Acien, A. Blood cadmium and estimated glomerular filtration rate in Korean adults. Environ. Health Perspect. 2011, 119, 1800–1805. [Google Scholar] [CrossRef] [Green Version]
- Navas-Acien, A.; Tellez-Plaza, M.; Guallar, E.; Muntner, P.; Silbergeld, E.; Jaar, B.; Weaver, V. Blood cadmium and lead and chronic kidney disease in US adults: A joint analysis. Am. J. Epidemiol. 2009, 170, 1156–1164. [Google Scholar] [CrossRef] [Green Version]
- Almeida Lopes, A.; Silbergeld, E.K.; Navas-Acien, A.; Zamoiski, R.; da Cunha Martins, A., Jr.; Camargo, A.E.I.; Urbano, M.R.; Mesas, A.E.; Paoliello, M.M.B. Association between blood lead and blood pressure: A population-based study in Brazilian adults. Environ. Health 2017, 16, 27. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.Y.; Bae, O.N.; Noh, J.Y.; Kim, K.; Kang, S.; Shin, Y.J.; Lim, K.M.; Chung, J.H. Erythrophagocytosis of Lead-Exposed Erythrocytes by Renal Tubular Cells: Possible Role in Lead-Induced Nephrotoxicity. Environ. Health Perspect. 2015, 123, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Weaver, V.M.; Jaar, B.G.; Schwartz, B.S.; Todd, A.C.; Ahn, K.D.; Lee, S.S.; Wen, J.; Parsons, P.J.; Lee, B.K. Associations among Lead Dose Biomarkers, Uric Acid, and Renal Function in Korean Lead Workers. Environ. Health Perspect. 2005, 113, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Esquinas, E.; Perez-Gomez, B.; Fernandez-Navarro, P.; Fernandez, M.A.; de Paz, C.; Perez-Meixeira, A.M.; Gil, E.; Iriso, A.; Sanz, J.C.; Astray, J.; et al. Lead, mercury and cadmium in umbilical cord blood and its association with parental epidemiological variables and birth factors. BMC Public Health 2013, 13, 841. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.R.; Lim, Y.H.; Lee, B.E.; Hong, Y.C. Blood mercury concentrations are associated with decline in liver function in an elderly population: A panel study. Environ. Health 2017, 16, 17. [Google Scholar] [CrossRef] [Green Version]
- Sotomayor, C.G.; Gomes-Neto, A.W.; Gans, R.O.B.; de Borst, M.H.; Berger, S.P.; Rodrigo, R.; Navis, G.J.; Touw, D.J.; Bakker, S.J.L. Fish Intake, Circulating Mercury and Mortality in Renal Transplant Recipients. Nutrients 2018, 10, 1419. [Google Scholar] [CrossRef] [Green Version]
- Filippini, T.; Malagoli, C.; Wise, L.A.; Malavolti, M.; Pellacani, G.; Vinceti, M. Dietary cadmium intake and risk of cutaneous melanoma: An Italian population-based case-control study. J. Trace Elem. Med. Biol. 2019, 56, 100–106. [Google Scholar] [CrossRef]
- McElroy, J.A.; Kruse, R.L.; Guthrie, J.; Gangnon, R.E.; Robertson, J.D. Cadmium exposure and endometrial cancer risk: A large midwestern U.S. population-based case-control study. PLoS ONE 2017, 12, e0179360. [Google Scholar] [CrossRef] [Green Version]
- Vu, V.; Navalkar, N.; Wei, Y. Endocrine-disrupting metals in ambient air and female breast cancer incidence in US. Gynecol. Endocrinol. 2019, 35, 1099–1102. [Google Scholar] [CrossRef]
- Xia, H.; Lin, P.; Xijin, X.; Liangkai, Z.; Bo, Q.; Zzongli, Q.; Bao, Z.; Dai, H.; Zhongxian, P. Elevated blood lead levels of children in Guiyu, an electronic waste recycling town in China. Environ. Health Perspect. 2007, 115, 1113–1117. [Google Scholar]
- Olsson, I.M.; Bensryd, I.; Lundh, T.; Ottosson, H.; Skerfving, S.; Oskarsson, A. Cadmium in blood and urine—Impact of sex, age, dietary intake, iron status, and former smoking—Association of renal effects. Environ. Health Perspect. 2002, 110, 1185–1190. [Google Scholar] [CrossRef]
- Janicka, M.; Binkowski, L.J.; Blaszczyk, M.; Paluch, J.; Wojtas, W.; Massanyi, P.; Stawarz, R. Cadmium, lead and mercury concentrations and their influence on morphological parameters in blood donors from different age groups from southern Poland. J. Trace Elem. Med. Biol. 2015, 29, 342–346. [Google Scholar] [CrossRef]
- Shangxia, P.; Lifeng, L.; Fan, Z.; Jianpeng, Z.; Guanghui, D.; Boyi, Y.; You, J.; Shejun, C.; Gan, Z.; Zhigiang, Y.; et al. Effects of lead, cadmium, arsenic, and mercury co-exposure on children’s intelligence quotient in an industrialized area of southern China. Environ. Pollut. 2018, 235, 47–54. [Google Scholar]
- Pawlas, N.; Stromberg, U.; Carlberg, L.; Cerna, M.; Harari, F.; Harari, R.; Horvat, M.; Hruba, F.; Koppova, K.; Krskova, A.; et al. Cadmium, mercury and lead in the blood of urban women in Croatia, the Czech Republic, Poland, Slovakia, Slovenia, Sweden, China, Ecuador and Morocco. Int. J. Occup. Med. Environ. Health 2013, 26, 58–72. [Google Scholar] [CrossRef]
- Bridges, C.C.; Zalups, R.K. Molecular and ionic mimicry and the transport of toxic metals. Toxicol. Appl. Pharmacol. 2005, 204, 274–308. [Google Scholar] [CrossRef] [Green Version]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.A.C.; Calocci, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef]
- Alli, L.A. Blood level of cadmium and lead in occupationally exposed persons in Gwagwalada, Abuja, Nigeria. Interdiscip. Toxicol. 2015, 8, 146–150. [Google Scholar] [CrossRef] [Green Version]
- Ye, B.; Kim, B.G.; Jeon, M.-J.; Kim, S.-Y.; Kim, H.-C.; Jang, T.-W.; Chae, H.-J.; Choi, W.-J.; Ha, M.; Hong, Y.-S. Evaluation of mercury exposure level, clinical diagnosis and treatment for mercury intoxication. Ann. Occup. Environ. Med. 2016, 28, 5. [Google Scholar] [CrossRef] [Green Version]
- Kaminska, J.; Sobiak, J.; Suliburska, J.M.; Duda, G.; Glyda, M.; Krejpcio, Z.; Chrzanowska, M. Effect of mycophenolate mofetil on plasma bioelements in renal transplant recipients. Biol. Trace Elem. Res. 2012, 145, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Malyszko, J.; Levin-Iaina, N.; Mysliwiec, M.; Przybylowski, P.; Durlik, M. Iron metabolism in solidorgan transplantation: How far are we from solving the mystery? Pol. Arch. Med. Wewn. 2012, 122, 504–511. [Google Scholar]
- Wilk, A.; Szypulska-Koziarska, D.; Marchelek-Mysliwiec, M.; Glazek, W.; Wiszniewska, B. Serum Selenium, Iron, Zinc, and Copper Concentrations in Renal Transplant Recipients Treated with Mycophenolate Mofetil. Biol. Trace Elem. Res. 2020, 198, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Wilk, A.; Wiszniewska, B. Arsenic and Selenium Profile in Erythrocytes of Renal Transplant Recipients. Biol. Trace Elem. Res. 2020, 197, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Lubinski, J.; Marciniak, W.; Muszynska, M.; Huzarski, T.; Gronwald, J.; Cybulski, C.; Jakubowska, A.; Debniak, T.; Falco, M.; Kladny, J.; et al. Serum selenium levels predict survival after breast cancer. Breast Cancer Res. Treat. 2018, 167, 591–598. [Google Scholar] [CrossRef]
- Personnel CoPHRfRLEoD-R; Toxicology Co; Toxicology BoESa; Studies DoEaL; Council NR. Occupational Standards and Guidelines for Lead; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Olszowski, T.; Baranowska-Bosiacka, I.; Rebacz-Maron, E.; Gutowska, I.; Jamiol, D.; Prokopowicz, A.; Goschorska, M.; Chlubek, D. Cadmium Concentration in Mother’s Blood, Milk, and Newborn’s Blood and Its Correlation with Fatty Acids, Anthropometric Characteristics, and Mother’s Smoking Status. Biol. Trace Elem. Res. 2016, 174, 8–20. [Google Scholar] [CrossRef]
- La-Llave-Leon, O.; Lugo-Soto, R.; Aguilar-Duran, M.; Estrada-Martinez, S.; Salas-Pacheco, J.M.; Sandoval-Carrillo, A.; Castellanos-Juarez, F.X.; Barraza-Salas, M.; Vazquez-Alanis, F.; Garcia-Vargas, G. Relationship between blood lead levels and hematological indices in pregnant women. Women Health 2015, 55, 90–102. [Google Scholar] [CrossRef]
- Liu, C.; Huo, X.; Lin, P.; Zhang, Y.; Li, W.; Xu, X. Association between blood erythrocyte lead concentrations and hemoglobin levels in preschool children. Environ. Sci. Pollut. Res. Int. 2015, 22, 9233–9240. [Google Scholar] [CrossRef]
- Wilk, A.; Kalisinska, E.; Kosik-Bogacka, D.I.; Romanowski, M.; Rozanski, J.; Ciechanowski, K.; Slojewski, M.; Lanocha-Arendarczyk, N. Cadmium, lead and mercury concentrations in pathologically altered human kidneys. Environ. Geochem. Health 2017, 39, 889–899. [Google Scholar] [CrossRef]
- Kedzierska, K.; Domanski, M.; Sporniak-Tutak, K.; Dolegowska, B.; Ciechanowski, K. Oxidative stress and renal interstitial fibrosis in patients after renal transplantation: Current state of knowledge. Transplant. Proc. 2011, 43, 3577–3583. [Google Scholar] [CrossRef]
- Wilk, A.; Szypulska-Koziarska, D.; Kedzierska-Kapuza, K.; Sienko, J.; Kolasa-Wolosiuk, A.; Ciechanowski, K.; Wiszniewska, B. The Comparison of Parameters of Oxidative Stress in Native Rat Livers Between Different Immunosuppressive Regimens. Med. Sci. Monit. 2019, 25, 8242–8247. [Google Scholar] [CrossRef]
- Szypulska-Koziarska, D.; Wilk, A.; Kabat-Koperska, J.; Kolasa-Wolosiuk, A.; Wolska, J.; Wiszniewska, B. The Effects of Short-Term Immunosuppressive Therapy on Redox Parameters in the Livers of Pregnant Wistar Rats. Int. J. Environ. Res. Public Health 2019, 16, 1370. [Google Scholar] [CrossRef] [Green Version]
- Cai, H.; Xu, X.; Zhang, Y.; Cong, X.; Lu, X.; Huo, X. Elevated lead levels from e-waste exposure are linked to sensory integration difficulties in preschool children. Neurotoxicology 2019, 71, 150–158. [Google Scholar] [CrossRef]
- Kira, C.S.; Sakuma, A.M.; De Capitani, E.M.; de Freitas, C.U.; Cardoso, M.R.A.; Gouveia, N. Associated factors for higher lead and cadmium blood levels, and reference values derived from general population of Sao Paulo, Brazil. Sci. Total Environ. 2016, 543 Pt A, 628–635. [Google Scholar] [CrossRef]
- Chung, C.J.; Chang, C.H.; Liou, S.H.; Liu, C.S.; Liu, H.J.; Hsu, L.C.; Chen, J.S.; Lee, H.L. Relationships among DNA hypomethylation, Cd, and Pb exposure and risk of cigarette smoking-related urothelial carcinoma. Toxicol. Appl. Pharmacol. 2017, 316, 107–113. [Google Scholar] [CrossRef]
- Pant, N.; Kumar, G.; Upadhyay, A.D.; Gupta, Y.K.; Chaturvedi, P.K. Correlation between lead and cadmium concentration and semen quality. Andrologia 2015, 47, 887–891. [Google Scholar] [CrossRef]
- Pinto, E.; Cruz, M.; Ramos, P.; Santos, A.; Almeida, A. Metals transfer from tobacco to cigarette smoke: Evidences in smokers’ lung tissue. J. Hazard. Mater. 2017, 325, 31–35. [Google Scholar] [CrossRef]
- Lee, S.H.; Choi, B.; Park, S.J.; Kim, Y.S.; Joo, N.S. The Cut-off Value of Blood Mercury Concentration in Relation to Insulin Resistance. J. Obes. Metab. Syndr. 2017, 26, 197–203. [Google Scholar] [CrossRef] [Green Version]
Renal Transplant Recipients (n = 115), Stable Function of Graft > 6 Months | |
---|---|
Parameter | Number of Patients (n) |
Age: | |
P1 < 50 | 43 |
P2 > 50 | 72 |
Gender: | |
Man | 61 |
Woman | 54 |
Smoking: | |
S | 16 |
EXS | 40 |
NS | 43 |
Number of IDs in regimen: | |
2 drugs | 61 |
3 drugs | 54 |
Biochemical parameters (AM ± SD) | |
GFR | 53 ± 22.41 mL/min/m2 |
ALT | 22.55 ± 13.51 IU/L |
HGB | 8.18 ± 1.16 mmol/L |
HCT | 43 ± 18.22% |
Parameters | Cd (µg/L) | Hg (µg/L) | Pb (µg/L) |
---|---|---|---|
Acceptable Norms in Blood: | 0.3–1.2 μg/L [21] | <10 μg/L [22] | <100 μg/L [28] |
All Patients (n = 115) | |||
AM ± SD | 1.91 ± 1.48 | 1.85 ± 1.38 | 48.36 ± 29.18 |
Median | 1.43 | 1.44 | 41.68 |
Min–Max | 0.36–11.93 | 0.32–8.7 | 17.28–189.81 |
CV | 77.31 | 74.95 | 60.35 |
Woman (n = 54) | |||
AM ± SD | 2.15 ± 1.86 | 1.91 ± 1.49 | 43.51 ± 29.71 |
Median | 1.43 | 1.61 | 35.18 * |
Min–Max | 0.38–11.93 | 0.32–8.76 | 17.28–189.81 |
CV | 59.03 | 52.11 | 54.12 |
Man (n = 61) | |||
AM ± SD | 1.71 ± 1.01 | 1.81 ± 1.3 | 52.66 ± 28.27 |
Median | 1.43 | 1.36 | 44.23 |
Min–Max | 0.36–4.78 | 0.41–8.23 | 19.36–163.56 |
CV | 58.88 | 71.92 | 53.69 |
P1 (n = 43) | |||
AM ± SD | 2.01 ± 1.47 | 1.55 ± 1.01 | 39.39 ± 28.96 |
Median | 1.43 | 1.25 | 31.37 ** |
Min–Max | 0.36–6.13 | 0.41–5.59 | 17.28–163.56 |
CV | 73.32 | 64.83 | 73.52 |
P2 (n = 72) | |||
AM ± SD | 1.86 ± 1.49 | 2.03 ± 1.55 | 53.71 ± 28.17 |
Median | 1.47 | 1.46 | 48.31 |
Min–Max | 0.62–11.93 | 0.32–8.76 | 18.11–189.81 |
CV | 80.27 | 76.45 | 52.45 |
Parameters | Cd (µg/L) | Hg (µg/L) | Pb (µg/L) |
---|---|---|---|
2 Drugs Based Regimens | |||
MMF + CsA (n = 11) | |||
AM ± SD | 1.04 ± 0.80 | 1.95 ± 0.81 | 31.82 ± 13.41 |
Median | 1.61 | 1.61 | 28.61 * |
Min–Max | 0.36–3.01 | 0.52–2.65 | 17.28–77.38 |
CV | 54.24 | 43.21 | 52.84 |
MMF + Tac (n = 50) | |||
AM ± SD | 2.02 ± 1.61 | 1.79 ± 1.31 | 50.34 ± 27.75 |
Median | 1.43 | 1.44 | 46.93 |
Min–Max | 0.38–11.93 | 0.32–8.78 | 17.76–163.56 |
CV | 81.94 | 77.96 | 53.38 |
3 Drugs Based Regimens | |||
MMF+ CsA + G (n = 6) | |||
AM ± SD | 2.02 ± 0.37 | 0.89 ± 0.84 | 31.63 ± 24.44 |
Median | 1.81 | 1.2 | 24.06 |
Min–Max | 1.01–3.01 | 0.52–1.96 | 17.28–77.38 |
CV | 41.02 | 46.46 | 68.04 |
MMF + Tac + G (n = 48) | |||
AM ± SD | 2.26 ± 1.84 | 1.76 ± 1.49 | 51.93 ± 30.45 |
Median | 1.51 | 1.41 | 50.24 |
Min–Max | 0.38–11.93 | 0.32–8.76 | 17.76–163.56 |
CV | 87.47 | 86.01 | 55.08 |
Parameters | Cd (µg/L) | Pb (µg/L) |
---|---|---|
S (n = 16) | ||
AM ± SD | 3.55 ± 2.55 | 59.24 ± 68.94 |
Median | 3.25 * | 47.77 |
Min–Max | 0.89–11.9 | 19.52–163.56 |
CV | 71.83 | 68.94 |
EXS (n = 40) | ||
AM ± SD | 1.94 ± 1.1 | 51.98 ± 34.91 |
Median | 1.58 | 41.61 ** |
Min–Max | 0.69–6.13 | 18.81–189.81 |
CV | 56.79 | 67.14 |
NS (n = 45) | ||
AM ± SD | 1.29 ± 0.74 | 40.53 ± 17.86 |
Median | 1.08 | 38.77 |
Min–Max | 0.36–3.65 | 17.28–89.55 |
CV | 57.26 | 44.08 |
Country | Participants | n | Blood Concentration (µg/L) | References | |||
---|---|---|---|---|---|---|---|
Age (AM) | Gender | Cd | Hg | Pb | |||
Acceptable Norms: | 0.3–1.2 μg/L | <10 μg/L | <100 μg/L | ||||
Our Research: | 1.91 | 1.85 | 48.36 | ||||
Poland | 28 | F | 80 | 0.61 | Olszowski et al., 2016 [29] | ||
Poland | 20 | M | 30 | 0.56 | 4.28 | 2.48 | Janicka et al., 2015 [16] |
60 | 30 | 0.56 | 1.78 | 4.48 | |||
Korea | M | 2523 | 5.88 | Lee et al., 2017 [41] | |||
F | 2661 | 4.11 | |||||
Korea | 60 | F + M | 560 | 2.81 | Lee et al., 2017 [9] | ||
USA | 63 | F + M | 3226 | 0.5 | Kim et al., 2018 [1] | ||
Spain | newborns | 0.27 | 6.72 | 14.09 | Garcia-Esquinas et al., 2013 [8] | ||
F | 0.53 | 3.90 | 19.80 | ||||
M | 0.49 | 5.38 | 33.00 | ||||
Mexico | 14–41 | F | 292 | 2.79 | La-Llave Leon et al., 2015 [30] | ||
China | 5–6 | F + M | 855 | 19.30 | Liu et al., 2014 [31] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilk, A.; Romanowski, M.; Wiszniewska, B. Analysis of Cadmium, Mercury, and Lead Concentrations in Erythrocytes of Renal Transplant Recipients from Northwestern Poland. Biology 2021, 10, 62. https://doi.org/10.3390/biology10010062
Wilk A, Romanowski M, Wiszniewska B. Analysis of Cadmium, Mercury, and Lead Concentrations in Erythrocytes of Renal Transplant Recipients from Northwestern Poland. Biology. 2021; 10(1):62. https://doi.org/10.3390/biology10010062
Chicago/Turabian StyleWilk, Aleksandra, Maciej Romanowski, and Barbara Wiszniewska. 2021. "Analysis of Cadmium, Mercury, and Lead Concentrations in Erythrocytes of Renal Transplant Recipients from Northwestern Poland" Biology 10, no. 1: 62. https://doi.org/10.3390/biology10010062
APA StyleWilk, A., Romanowski, M., & Wiszniewska, B. (2021). Analysis of Cadmium, Mercury, and Lead Concentrations in Erythrocytes of Renal Transplant Recipients from Northwestern Poland. Biology, 10(1), 62. https://doi.org/10.3390/biology10010062