Solid-State Luminescence with a Large Stokes Shift in Starch Functionalized with Low-Content ESIPT Dye
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Methods
2.2. Synthesis
2.3. Preparation of Fluorescent Starch
2.4. Fluorescent Films Based on Starch
3. Results and Discussion
3.1. Characterization
3.2. Photophysics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Moshood, T.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.; AbdulGhani, A. Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Curr. Res. Green Sustain. Chem. 2022, 5, 100273. [Google Scholar] [CrossRef]
- Chen, G.; Patel, M. Plastics derived from biological sources: Present and Future: A technical and environmental review. Chem. Rev. 2012, 112, 2082–2099. [Google Scholar] [CrossRef] [PubMed]
- Samir, A.; Ashour, F.; Hakim, A.; Bassyouni, M. Recent advances in biodegradable polymers for sustainable applications. NPJ Mater. Degrad. 2022, 6, 68. [Google Scholar] [CrossRef]
- Rai, P.; Mehrotra, S.; Priya, S.; Gnansounou, E.; Sharma, S.K. Recent advances in the sustainable design and applications of biodegradable polymers. Bioresour. Technol. 2021, 325, 124739. [Google Scholar] [CrossRef] [PubMed]
- Falua, K.; Pokharel, A.; Babaei-Ghazvin, A.; Ai, Y.; Acharya, B. Valorization of starch to biobased materials: A review. Polymers 2022, 14, 2215. [Google Scholar] [CrossRef] [PubMed]
- Villwock, K.; BeMiller, J. The architecture, nature, and mystery of starch granules. Part 2. Starch-Stärke 2022, 74, 2100184. [Google Scholar] [CrossRef]
- Pérez, S.; Bertoft, E. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch-Stärke 2010, 62, 389–420. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, J.; Liu, X.; Yu, J.; Copeland, L.; Wang, S. Methods for characterizing the structure of starch in relation to its applications: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2023, 63, 4799–4816. [Google Scholar] [CrossRef]
- Nafchi, A.; Moradpour, M.; Saeidi, M.; Alias, A. Thermoplastic starches: Properties, challenges, and prospects. Starch-Stärke 2013, 65, 61–72. [Google Scholar] [CrossRef]
- Bangar, S.; Whiteside, W.; Ashogbon, A.; Kumar, M. Recent advances in thermoplastic starches for food packaging: A review. Food Packag. Shelf Life 2021, 30, 100743. [Google Scholar] [CrossRef]
- Chen, Y.; Shull, K. Controlling the properties of thermoplastic starch films with hydrogen bonding plasticizers. Carbohydr. Polym. Technol. Appl. 2023, 5, 100291. [Google Scholar] [CrossRef]
- Montilla-Buitrag, C.; Gómez-López, R.; Solanilla-Duque, J.; Serna-Cock, L.; Villada-Castill, H. Effect of plasticizers on properties, retrogradation, and processing of extrusion obtained thermoplastic starch: A review. Starch-Stärke 2021, 73, 2100060. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Z.; Ren, J.; Lin, X.; Zhao, J.; Jiang, X.; Chen, Y. Molecular dynamics simulation and properties of thermoplastic starch-effect of water content on starch plasticization. Polymer 2024, 290, 126571. [Google Scholar] [CrossRef]
- Leroy, L.; Stoclet, G.; Lefebvre, J.; Gaucher, V. Mechanical behavior of thermoplastic starch: Rationale for the temperature-relative humidity equivalence. Polymers 2022, 14, 253. [Google Scholar] [CrossRef] [PubMed]
- Diyana, Z.; Jumaidin, R.; Selamat, M.; Ghazali, I.; Julmohammad, N.; Huda, N.; Ilyas, R. Physical properties of thermoplastic starch derived from natural resources and its blends: A review. Polymers 2021, 13, 1396. [Google Scholar] [CrossRef] [PubMed]
- Surendren, A.; Mohanty, A.; Liu, Q.; Misra, M. A review of biodegradable thermoplastic starches, their blends and composites: Recent developments and opportunities for single-use plastic packaging alternatives. Green. Chem. 2022, 24, 8606–8636. [Google Scholar] [CrossRef]
- Bulatović, V.; Mandić, V.; Grgić, D.; Ivančić, A. Biodegradable polymer blends based on thermoplastic starch. J. Polym. Environ. 2021, 29, 492–508. [Google Scholar] [CrossRef]
- Li, Y.; Tan, Y.; Ning, Z.; Sun, S.; Gao, Y.; Wang, P. Design and fabrication of fluorescein-labeled starch-based nanospheres. Carbohydr. Polym. 2011, 86, 291–295. [Google Scholar] [CrossRef]
- Li, H.; Guo, X.; Liu, J.; Li, F. A synthesis of fluorescent starch based on carbon nanoparticles for fingerprints detection. Opt. Mater. 2016, 50, 404–410. [Google Scholar] [CrossRef]
- Li, H.; Zhang, B.; Lü, S.; Ma, H.; Liu, M. Synthesis and characterization of a nano fluorescent starch. Int. J. Biol. Macromol. 2018, 120, 1225–1231. [Google Scholar] [CrossRef]
- Cai, C.; Wei, B.; Jin, Z.; Tian, Y. Facile method for fluorescent labeling of starch nanocrystal. ACS Sustain. Chem. Eng. 2017, 5, 3751–3761. [Google Scholar] [CrossRef]
- Javanbakht, S.; Namazi, H. Solid state photoluminescence thermoplastic starch film containing graphene quantum dots. Carbohydr. Polym. 2017, 176, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Barros, H.L.; Stefani, V. Synthesis and photophysical behavior of fluorescent benzazole dyes and fluorescent microparticles: Their use as fingerprint developer. J. Photochem. Photobiol. A Chem. 2021, 420, 113494. [Google Scholar] [CrossRef]
- Barros, H.L.; Tavares, L.; Stefani, V. Dye-doped starch microparticles as a novel fluorescent agent for the visualization of latent fingermarks on porous and non-porous substrates. Forensic Chem. 2020, 20, 100264. [Google Scholar] [CrossRef]
- Weller, A. Über die fluoreszenz der salizylsäure und verwandter verbindungen. Sci. Nat. 1955, 42, 175–176. [Google Scholar] [CrossRef]
- Kwon, J.E.; Park, S.Y. Advanced organic optoelectronic materials: Harnessing excited-state intramolecular proton transfer (ESIPT) process. Adv. Mater. 2011, 23, 3615–3642. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Dahal, D.; Abeywickrama, C.S.; Pang, Y. Progress in tuning emission of the excited-state intramolecular proton transfer (ESIPT)-based fluorescent probes. ACS Omega 2021, 6, 6547–6553. [Google Scholar] [CrossRef] [PubMed]
- Padalkar, V.S.; Seki, S. Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters. Chem. Soc. Rev. 2015, 45, 169–202. [Google Scholar] [CrossRef]
- Santos, F.S.; Ramasamy, E.; Ramamurthy, V.; Rodembusch, F.S. Excited state behaviour of benzoxazole derivatives in a confined environment afforded by a water soluble octaacid capsule. J. Photochem. Photobiol. A Chem. 2016, 317, 175–185. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, S.; Chen, Y.; Guo, H.; Yang, P. Excited state intramolecular proton transfer (ESIPT): From principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials. Phys. Chem. Chem. Phys. 2012, 14, 8803–8817. [Google Scholar] [CrossRef]
- Sedgwick, A.C.; Wu, L.; Han, H.H.; Bull, S.D.; He, X.P.; James, T.D.; Sessler, J.L.; Tang, B.Z.; Tian, H.; Yoon, J. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem. Soc. Rev. 2018, 47, 8842–8880. [Google Scholar] [CrossRef] [PubMed]
- Nehra, N.; Kaushik, R. ESIPT-based probes for cations, anions and neutral species: Recent progress, multidisciplinary applications and future perspectives. Anal. Methods 2023, 15, 5268–5285. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, R.; Lin, R.; Xu, X.; Zhang, X.; Alsalman, O.; Qiu, Y.; Uddin, A.; Ouyang, X. Excited-state intramolecular proton transfer emitter for efficient violet-blue organic light-emitting diodes with hybridized local/charge transfer channel. Chem. Eng. J. 2023, 465, 142929. [Google Scholar] [CrossRef]
- Trannoy, V.; Léaustic, A.; Gadan, S.; Guillot, R.; Allain, C.; Clavier, G.; Mazerat, S.; Geffroy, B.; Yu, P. A highly efficient solution and solid state ESIPT fluorophore and its OLED application. New J. Chem. 2021, 45, 3014–3022. [Google Scholar] [CrossRef]
- Singh, A.K.; Nair, A.V.; Shah, S.S.; Ray, S.; Singh, N.D.P. ESIPT-, AIE-, and AIE + ESIPT-based light-activated drug delivery systems and bioactive donors for targeted disease treatment. J. Med. Chem. 2023, 66, 3732–3745. [Google Scholar] [CrossRef]
- Bhosle, A.A.; Banerjee, M.; Barooah, N.; Bhasikuttan, A.C.; Kadu, K.; Ramanan, S.R.; Chatterjee, A. ESIPT-active hydroxybenzothiazole-picolinium@CB[7]-HAp NPs based supramolecular sensing assembly for spermine, spermidine and cadaverine: Application in monitoring cancer biomarkers and food spoilage. J. Photochem. Photobiol. A Chem. 2022, 426, 113770. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, M.; Jiang, E.; Hua, R.; Na, R.; Li, Q.X. A Simple and rapid turn on ESIPT fluorescent probe for colorimetric and ratiometric detection of biothiols in living cells. Sci. Rep. 2017, 7, 4377. [Google Scholar] [CrossRef] [PubMed]
- Mamada, M.; Inada, K.; Komino, T.; Potscavage, W.J., Jr.; Nakanotani, H.; Adachi, C. Highly efficient thermally activated delayed fluorescence from an excited-state intramolecular proton transfer system. ACS Cent. Sci. 2017, 3, 769–777. [Google Scholar] [CrossRef]
- Gu, H.; Wang, W.; Wu, W.; Wang, M.; Liu, Y.; Jiao, Y.; Wang, F.; Wang, F.; Chen, X. Excited-state intramolecular proton transfer (ESIPT)-based fluorescent probes for biomarker detection: Design, mechanism, and application. Chem. Commun. 2023, 59, 2056–2071. [Google Scholar] [CrossRef]
- Li, J.; Wu, Y.; Xu, Z.; Liao, Q.; Zhang, H.; Zhang, Y.; Xiao, L.; Yao, J.; Fu, H. Tuning the organic microcrystal laser wavelength of ESIPT-active compounds via controlling the excited enol* and keto* emissions. J. Mater. Chem. C 2017, 5, 12235–12240. [Google Scholar] [CrossRef]
- Guo, L.; Tian, M.; Zhang, Z.; Lu, Q.; Liu, Z.; Niu, G.; Yu, X. Simultaneous two-color visualization of lipid droplets andendoplasmic reticulum and their interplay by single fluorescent probes in lambda mode. J. Am. Chem. Soc. 2021, 143, 3169–3179. [Google Scholar] [CrossRef] [PubMed]
- Lokwani, P.; Nagori, B.P.; Batra, N.; Goyal, A.; Gupta, S.; Singh, N. Benzoxazole: The molecule of diverse biological activities. J. Chem. Pharm. Res. 2011, 3, 302–311. [Google Scholar]
- Angajala, G.; Subashini, R. Synthesis, molecular modeling, and pharmacological evaluation of new 2-substituted benzoxazole derivatives as potent anti-inflammatory agents. Struct. Chem. 2020, 31, 263–273. [Google Scholar] [CrossRef]
- Barcin, T.; Yucel, M.A.; Ersan, R.H.; Alagoz, M.A.; Dogen, A.; Burmaoglu, S.; Algul, O. Deep learning approach to the discovery of novel bisbenzazole derivatives for antimicrobial effect. J. Mol. Struct. 2024, 1295, 136668. [Google Scholar] [CrossRef]
- Sattar, R.; Mukhtar, R.; Atif, M.; Hasnain, M.; Irfan, A. Synthetic transformations and biological screening of benzoxazole derivatives: A review. J. Heterocycl. Chem. 2020, 57, 2079–2107. [Google Scholar] [CrossRef]
- Kakkar, S.; Kumar, S.; Narasimhan, B.; Lim, S.M.; Ramasamy, K.; Mani, V.; Shah, S.A.A. Design, synthesis and biological potential of heterocyclic benzoxazole scaffolds as promising antimicrobial and anticancer agents. Chem. Cent. J. 2018, 12, 96–107. [Google Scholar] [CrossRef]
- Campo, L.F.; Rodembusch, F.S.; Stefani, V. New fluorescent monomers and polymers displaying an intramolecular proton-transfer mechanism in the electronically excited state (ESIPT). IV. Synthesis of acryloylamide and diallylamino benzazole dyes and its copolymerization with MMA. J. Appl. Polym. Sci. 2006, 99, 2109–2116. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.; Seo, J.; Park, S.Y. Application of excited-state intramolecular proton transfer (ESIPT) principle to functional polymeric materials. Macromol. Res. 2008, 16, 385–395. [Google Scholar] [CrossRef]
- Wakita, J.; Inoue, S.; Kawanishi, N.; Ando, S. Excited-state intramolecular proton transfer in imide compounds and its application to control the emission colors of highly fluorescent polyimides. Macromolecules 2010, 43, 3594–3605. [Google Scholar] [CrossRef]
- Liang, N.; Kuwata, S.; Ishige, R.; Ando, S. Large-Stokes-shifted yellow photoluminescence emission from an imide and polyimides forming multiple intramolecular hydrogen bonds. Mater. Chem. Front. 2022, 6, 24–32. [Google Scholar] [CrossRef]
- Berbigier, J.F.; Duarte, L.G.T.A.; Perez, J.M.; Mendes, R.A.; Zapp, E.; Atvars, T.D.Z.; Dal-Bó, A.G.; Rodembusch, F.S. Excited state intramolecular proton transfer process in benzazole fluorophores tailored by polymeric matrix: A combined theoretical and experimental study. J. Mol. Liq. 2019, 295, 111710. [Google Scholar] [CrossRef]
- Hwang, S.H.; Kim, H.; Ryu, H.; Serdiuk, I.E.; Lee, D.; Choi, T.L. Powerful direct C–H amidation polymerization affords single- fluorophore-based white-light-emitting polysulfonamides by fine-tuning hydrogen bonds. J. Am. Chem. Soc. 2022, 144, 1778–1785. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.L.; Chen, Y.T.; Demchenko, A.P.; Chou, P.T. Amino proton donors in excited-state intramolecular proton-transfer reactions. Nat. Rev. Chem. 2018, 2, 131–143. [Google Scholar] [CrossRef]
- Kirkbright, G.F.; Spillane, D.E.M.; Anthony, K.; Brown, R.G.; Hepworth, J.D.; Hodgson, K.W.; West, M.A. Determination of the fluorescence quantum yields of some 2-substituted benzothiazoles. Anal. Chem. 1984, 56, 1644–1647. [Google Scholar] [CrossRef]
- Anthony, K.; Brown, R.G.; Hepworth, J.D.; Hodgson, K.W.; May, B.; West, M.A. Solid-state fluorescent photophysics of some 2-substituted benzothiazoles. J. Chem. Soc. Perkin Trans. 2 1984, 2111–2117. [Google Scholar] [CrossRef]
- Rodembusch, F.S.; Leusin, F.P.; Medina, L.F.C.; Brandelli, A.; Stefani, V. Synthesis and spectroscopic characterization of new ESIPT fluorescent protein probes. Photochem. Photobiol. Sci. 2005, 4, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Holler, M.G.; Campo, L.F.; Brandelli, A.; Stefani, V. Synthesis and spectroscopic characterisation of 2-(2′-hydroxyphenyl)benzazole isothiocyanates as new fluorescent probes for proteins. J. Photochem. Photobiol. A Chem. 2002, 149, 217–225. [Google Scholar] [CrossRef]
- Barni, E.; Savarino, P.; Marzona, M.; Piva, M. 2-(4-Alkylamido-2-hydroxyphenyl) benz-X-azoles as intermediates for the synthesis of dyes. J. Heterocyclic. Chem. 1983, 20, 1517–1521. [Google Scholar] [CrossRef]
- Orlandini, L.F.; Rodembusch, F.S.; De Luca, M.A.; Jacobi, M.A.M.; Stefani, V. New fluorescent elastomeric materials based on synthetic and natural epoxidized rubbers. J. Appl. Polym. Sci. 2008, 109, 282–287. [Google Scholar] [CrossRef]
- Isoppo, V.G.; Rodrigues, M.O.; Rodembusch, F.S.; Moro, A.V. 2,1,3-Benzothiadiazole-based bis-silylated compounds: Synthesis and use in the preparation of highly fluorescent low-contend organic-inorganic hybrid materials. J. Photochem. Photobiol. A Chem. 2023, 435, 114277. [Google Scholar] [CrossRef]
- Chi, H.; Xu, K.; Wu, X.; Chen, Q.; Xue, D.; Song, C.; Zhang, W.; Wang, P. Effect of acetylation on the properties of corn starch. Food Chem. 2008, 106, 923–928. [Google Scholar] [CrossRef]
- Diop, C.I.K.; Li, H.L.; Xie, B.J.; Shi, J. Effects of acetic acid/acetic anhydride ratios on the properties of corn starch acetates. Food Chem. 2011, 126, 1662–1669. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xie, W.; Zhao, X.; Liu, Y.; Gao, W. Study on the morphology, crystalline structure and thermal properties of yellow ginger starch acetates with different degrees of substitution. Thermochim. Acta 2009, 495, 57–62. [Google Scholar] [CrossRef]
- van Soest, J.J.G.; Vliegenthart, J.F.G. Crystallinity in starch plastics: Consequences for material properties. Trends Biotechnol. 1997, 15, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Bogracheva, T.Y.; Wang, Y.L.; Wang, T.L.; Hedley, C.L. Structural studies of starches with different water contents. Biopolymers 2002, 64, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Bogracheva, T.Y.; Meares, C.; Hedley, C.L. The effect of heating on the thermodynamic characteristics of potato starch. Carbohydr. Polym. 2006, 63, 323–330. [Google Scholar] [CrossRef]
- Cooke, D.; Gidley, M.J. Loss of crystalline and molecular order during starch gelatinisation: Origin of the enthalpic transition. Carbohydr. Res. 1992, 227, 103–112. [Google Scholar] [CrossRef]
- Elomaa, M.; Asplund, T.; Soininen, P.; Laatikainen, P.; Peltonen, S.; Hyvarinen, S.; Urtti, A. Determination of the degree of substitution of acetylated starch by hydrolysis, 1H NMR and TGA/IR. Carbohydr. Polym. 2004, 57, 261–267. [Google Scholar] [CrossRef]
- Shi, R.; Bi, J.; Zhang, Z.; Zhu, A.; Chen, D.; Zhou, X.; Zhang, L.; Tian, W. The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperature. Carbohydr. Polym. 2008, 74, 763–770. [Google Scholar] [CrossRef]
- Becker, M.R.; Stefani, V.; Forte, M.M.C. Novel fluorescent copolymers of styrene with benzazole chromophores. React. Funct. Polym. 2001, 66, 1664–1669. [Google Scholar] [CrossRef]
- Xin, J.Y.; Wang, Y.; Liu, T.; Lin, K.; Chang, L.; Xia, C.G. Biosynthesis of corn starch palmitate by lipase Novozym 435. Int. J. Mol. Sci. 2012, 13, 7226–7236. [Google Scholar] [CrossRef] [PubMed]
- Bertolini, A.C.; Mestres, C.; Raffi, J.; Buléon, A.; Lerner, D.; Colonna, P. Photodegradation of cassava and corn starches. J. Agric. Food Chem. 2001, 49, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Berbigier, J.F.; Duarte, L.G.T.A.; Zawacki, M.; de Araújo, B.; Santos, C.; Atvars, T.D.Z.; Gonçalves, P.F.B.; Petzhold, C.L.; Rodembusch, F.S. ATRP initiators based on proton transfer benzazole dyes: Solid state photoactive polymer with very large Stokes shift. ACS Appl. Polym. Mater. 2020, 2, 1406–1416. [Google Scholar] [CrossRef]
- Rodembusch, F.S.; Campo, L.F.; Stefani, V.; Rigacci, A. The first silica aerogels fluorescent by excited state intramolecular proton transfer mechanism (ESIPT). J. Mater. Chem. 2005, 15, 1537–1541. [Google Scholar] [CrossRef]
- Chung, K.Y.; Chen, Y.H.; Chen, Y.T.; Hsu, Y.H.; Shen, J.Y.; Chen, C.L.; Chen, Y.A.; Chou, P.T. The excited-state triple proton transfer reaction of 2,6-diazaindoles and 2,6-diazatryptophan in aqueous solution. J. Am. Chem. Soc. 2017, 139, 6396–6402. [Google Scholar] [CrossRef]
- Lochbrunner, S.; Wurzer, A.J.; Riedle, E. Microscopic mechanism of ultrafast excited-state intramolecular proton transfer: A 30-fs study of 2-(2‘-hydroxyphenyl)benzothiazole. J. Phys. Chem. A 2003, 107, 10580–10590. [Google Scholar] [CrossRef]
Fluorophore | Starch (g) | Fluorophore Amount (w%) 1 | Nomenclature |
---|---|---|---|
4a | 2.0 | 0.1 | Starch@4a01 |
0.5 | Starch@4a05 | ||
1.0 | Starch@4a1 | ||
5.0 | Starch@4a5 | ||
4b | 0.1 | Starch@4b01 | |
0.5 | Starch@4b05 | ||
1.0 | Starch@4b1 | ||
5.0 | Starch@4b5 |
Component | Amount (w%) 1 | ||
Film Starch | Film Starch@4a | Film Starch@4b | |
Starch | 70 | - | - |
Glycerol | 30 | 30 | 30 |
Starch@4a5 | - | 70 | - |
Starch@4b5 | - | - | 70 |
Sample | λabs | λem | ΔλST (nm/cm−1) | QY (%) |
---|---|---|---|---|
Starch@4a01 | 333 | 514 | 181/10575 | 1.1 |
Starch@4a05 | 344 | 512 | 168/9539 | 3.4 |
Starch@4a1 | 350 | 511 | 161/9002 | 4.5 |
Starch@4a5 | 366 | 512 | 146/7791 | 7.6 |
Starch@4b01 | 334 | 501 | 167/9980 | 1.8 |
Starch@4b05 | 345 | 503 | 158/9105 | 3.3 |
Starch@4b1 | 366 | 503 | 137/7442 | 4.2 |
Starch@4b5 | 362 | 540 | 178/9106 | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colonetti, E.; da Luz, L.C.; Rodembusch, F.S. Solid-State Luminescence with a Large Stokes Shift in Starch Functionalized with Low-Content ESIPT Dye. Colorants 2024, 3, 99-110. https://doi.org/10.3390/colorants3020007
Colonetti E, da Luz LC, Rodembusch FS. Solid-State Luminescence with a Large Stokes Shift in Starch Functionalized with Low-Content ESIPT Dye. Colorants. 2024; 3(2):99-110. https://doi.org/10.3390/colorants3020007
Chicago/Turabian StyleColonetti, Emerson, Lilian C. da Luz, and Fabiano S. Rodembusch. 2024. "Solid-State Luminescence with a Large Stokes Shift in Starch Functionalized with Low-Content ESIPT Dye" Colorants 3, no. 2: 99-110. https://doi.org/10.3390/colorants3020007
APA StyleColonetti, E., da Luz, L. C., & Rodembusch, F. S. (2024). Solid-State Luminescence with a Large Stokes Shift in Starch Functionalized with Low-Content ESIPT Dye. Colorants, 3(2), 99-110. https://doi.org/10.3390/colorants3020007