Rock Powder Applied in the Discoloration of Industry Dye of Molded Pulp Packages Effluent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization of Rock Dust
2.2.1. Scanning Electron Microscopy (SEM) Associated with Energy Dispersive Spectroscopy (EDS)
2.2.2. X-ray Diffraction (XRD)
2.2.3. Textural Analysis: N2 Adsorption and Desorption Measurements
2.2.4. Photoacoustic Spectroscopy
2.2.5. Fourier Transform Infrared Spectroscopy (FTIR)
2.3. Experimental Tests
- For the experimental tests, we used a volume of 500 mL of solution in a reactor with a volume of 600 mL (Figure 2). The reactor was surrounded by a rubber jacket for cooling, with an inlet and outlet for cold water passage. A 250 W mercury vapor lamp was attached just above the reactor, which was open to the environment. Furthermore, the solution was kept under constant magnetic stirring, and airflow was bubbled into the reaction medium at a volumetric flow rate of 0.5 L min−1. Oxygen is widely used in photodegradation processes due to its low cost and because it does not compete for adsorption with the semiconductor present in the medium. The addition of oxygen, for example, can help the reaction by avoiding the recombination of free radicals and aiding in the production of hydroxyl radicals [28,29]. For Teixeira and Jardim, using O2 in the reaction can decrease the recombination effect of the electron–hole pair since oxygen acts as an electron acceptor.
2.3.1. Discoloration of Effluent Containing Cationic Dye
2.3.2. Phenol and Salicylic Acid Degradation
3. Results and Discussion
3.1. Rock Dust Characterization
3.1.1. SEM/EDS
3.1.2. X-ray Diffraction (XRD)
3.1.3. Specific Surface Area and Bandgap (Egap)
3.1.4. FTIR
3.2. Synthetic and Industrial Dye Degradation
3.3. Degradation of Phenol and Salicylic Acid
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Brito, R.S.; Batista, J.F.; Moraes, O.N.K.; da Silva, S.O. Rochagem Na Agricultura: Importância e Vantagens Para Adubação Suplementar. South Am. J. Basic Educ. Tech. Technol. 2019, 6, 528–540. [Google Scholar]
- Deparamento Nacional de Produção Mineral. Cadastro Nacional de Produtores de Brita; Pinheiro, C.G.W.F., Ed.; Deparamento Nacional de Produção Mineral: Brasília, Brazil, 2018. [Google Scholar]
- Montani, C. Marble and Stones in the World 2018 XXIX Report. Miner. Econ. 2019, 32, 255–256. [Google Scholar]
- Ramos, C.G.; Hower, J.C.; Blanco, E.; Oliveira, M.L.S.; Theodoro, S.H. Possibilities of Using Silicate Rock Powder: An Overview. Geosci. Front. 2021, 13, 101185. [Google Scholar] [CrossRef]
- Lopes, O.M.M.; Carrilho, E.N.V.M.; Lopes-Assad, M.L.R.C. Effect of Rock Powder and Vinasse on Two Types of Soils. Rev. Bras. Ciências Solo 2014, 38, 1547–1557. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira Zawadzki, R.A.F.; Vieira, A.R.; Zanella, F.S.; dos Santos, P.B. Uso Do Pó de Rocha Para Tratamento Físico-Químico de Efluentes-Auxipó. In Proceedings of the II Congresso Brasileiro de Rochagem, Poços de Caldas, Brazil, 12–17 May 2013; pp. 359–367. [Google Scholar]
- Li, X.-G.; Ma, X.-L.; Sun, J.; Huang, M.-R. Powerful Reactive Sorption of Silver(I) and Mercury(II) onto Poly(o -Phenylenediamine) Microparticles. Langmuir 2009, 25, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
- Meesri, S.; Praphairaksit, N.; Imyim, A. Extraction and Preconcentration of Toxic Metal Ions from Aqueous Solution Using Benzothiazole-Based Chelating Resins. Microchem. J. 2007, 87, 47–55. [Google Scholar] [CrossRef]
- Abollino, O.; Giacomino, A.; Malandrino, M.; Mentasti, E. The Efficiency of Vermiculite as Natural Sorbent for Heavy Metals. Appl. Contam. Soil. Water Air Soil. Pollut. 2007, 181, 149–160. [Google Scholar] [CrossRef]
- Li, X.-G.; Huang, M.-R.; Jiang, Y.-B.; Yu, J.; He, Z. Synthesis of Poly(1,5-Diaminonaphthalene) Microparticles with Abundant Amino and Imino Groups as Strong Adsorbers for Heavy Metal Ions. Microchim. Acta 2019, 186, 208. [Google Scholar] [CrossRef]
- Li, X.G.; Huang, M.R.; Tao, T.; Ren, Z.; Zeng, J.; Yu, J.; Umeyama, T.; Ohara, T.; Imahori, H. Highly Cost-Efficient Sorption and Desorption of Mercury Ions onto Regenerable Poly(m-Phenylenediamine) Microspheres with Many Active Groups. Chem. Eng. J. 2020, 391, 123515. [Google Scholar] [CrossRef]
- Ahmed, N.A.S.; Latif, M.L.A.; Sanad, S.A.; Sanad, S.A.; Mohammed, S.A.R. Utilization of Industrial Granitic Waste as Adsorbent for Phosphate Ions from Wastewater. Int. J. Sci. Eng. Res. 2020, 11, 184–194. [Google Scholar]
- Park, J.H.; Lee, J.K. Weathered Sand of Basalt as a Potential Nickel Adsorbent. Processes 2020, 8, 1238. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, L.; Ling, L.; Chen, Z.; Jia, Y.; Zhang, H.; Li, Z.; Guo, J. Preparation of Wasted Rock Dust Catalyst and Its Catalytic Ozonation Properties for the Treatment of Oxalic Acid Containing Wastewater. Mater. Sci. Forum 2019, 956, 273–281. [Google Scholar] [CrossRef]
- Braslavsky, S.E.; Braun, A.M.; Cassano, A.E.; Emeline, A.V.; Litter, M.I.; Palmisano, L.; Parmon, V.N.; Serpone, N. Glossary of Terms Used in Photocatalysis and Radiation Catalysis (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83, 931–1014. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, J. Photocatalysis Fundamentals Revisited to Avoid Several Misconceptions. Appl. Catal. B 2010, 99, 461–468. [Google Scholar] [CrossRef]
- Ziolli, R.L.; Jardim, W.F. Mechanism Reactions of Photodegradation of Organic Compounds Catalyzed by TiO2. Quim. Nova 1998, 21, 319–325. [Google Scholar]
- Reza, K.M.; Kurny, A.; Gulshan, F. Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO2: A Review. Appl. Water Sci. 2017, 7, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Barbero, N.; Vione, D. Why Dyes Should Not Be Used to Test the Photocatalytic Activity of Semiconductor Oxides. Environ. Sci. Technol. 2016, 50, 2130–2131. [Google Scholar] [CrossRef]
- Knutson, K.; Kirzan, S.; Ragauskas, A. Enzymatic Biobleaching of Two Recalcitrant Paper Dyes with Horseradish and Soybean Peroxidase. Biotechnol. Lett. 2005, 27, 753–758. [Google Scholar] [CrossRef]
- Degen, H.-J.; Feichtmayr, F.; Grychtol, K. Methine Dyes for Paper and Amonically-Modified Fibers. US4256458A, 17 March 1981. [Google Scholar]
- Scherrer, P. Bestimmung Der Grösse Und Der Inneren Struktur von Kolloidteilchen Mittels Röntgenstrahlen, Nachrichten von Der Gesellschaft Der Wissenschaften, Göttingen. Math.-Phys. Kl. 1918, 2, 98–100. [Google Scholar]
- Fuziki, M.E.K.; Abreu, E.; De Carvalho, A.E.; Silva, L.H.B.O.; Fidelis, M.Z.; Tusset, A.M.; Brackmann, R.; Dias, D.T.; Lenzi, G.G. Sol–Gel Fe/TiO2 Magnetic Catalysts Applied to Selenium Photoreduction. Top Catal. 2020, 63, 1131–1144. [Google Scholar] [CrossRef]
- Lim, D.J.; Marks, N.A.; Rowles, M.R. Universal Scherrer Equation for Graphene Fragments. Carbon 2020, 162, 475–480. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Comput. Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Drabeski, R.G.; Gunha, J.V.; Novatski, A.; de Souza, G.B.; Tebcherani, S.M.; Kubaski, E.T.; Dias, D.T. Raman and Photoacoustic Spectroscopies of SnO2 Thin Films Deposited by Spin Coating Technique. Vib. Spectrosc. 2020, 109, 103094. [Google Scholar] [CrossRef]
- De Almeida Barêa Teixeira, C.P.; de Figueiredo Jardim, W. Processos Oxidativos Avançados: Conceito Teóricos; Caderno Temático; Universidade Estadual de Campinas—UNICAMP: Campinas, Brazil, 2004; Volume 3. [Google Scholar]
- Yasmina, M.; Mourad, K.; Mohammed, S.H.; Khaoula, C. Treatment Heterogeneous Photocatalysis; Factors Influencing the Photocatalytic Degradation by TiO2. Energy Procedia 2014, 50, 559–566. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.B.; Kumar, B. Effects of Stone Crusher Dust Pollution on Growth Performance and Yield Status of Rice (Oryza sativa L.). Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 796–806. [Google Scholar] [CrossRef]
- Mookherjee, M.; Mainprice, D.; Maheshwari, K.; Heinonen, O.; Patel, D.; Hariharan, A. Pressure Induced Elastic Softening in Framework Aluminosilicate- Albite (NaAlSi3 O8). Sci. Rep. 2016, 6, 34815. [Google Scholar] [CrossRef] [Green Version]
- Da Luz, A.B.; Coelho, J.M. Rochas e Minerais Industriais—19. Feldspato. In Rochas & Minerais Industriais: Usos e Especificações; CETEM: Rio de Janeiro, Brazil, 2005. [Google Scholar]
- Tokarský, J.; Matějka, V.; Neuwirthová, L.; Vontorová, J.; Mamulová Kutláková, K.; Kukutschová, J.; Čapková, P. A Low-Cost Photoactive Composite Quartz Sand/TiO2. Chem. Eng. J. 2013, 222, 488–497. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Sorrell, C.C. Sand Supported Mixed-Phase TiO2 Photocatalysts for Water Decontamination Applications. Adv. Eng. Mater. 2014, 16, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Arunmetha, S.; Vinoth, M.; Srither, S.R.; Karthik, A.; Sridharpanday, M.; Suriyaprabha, R.; Manivasakan, P.; Rajendran, V. Study on Production of Silicon Nanoparticles from Quartz Sand for Hybrid Solar Cell Applications. J. Electron. Mater. 2018, 47, 493–502. [Google Scholar] [CrossRef]
- Mohammad-Rezaei, R.; Jaymand, M. Graphene Quantum Dots Coated on Quartz Sand as Efficient and Low-Cost Adsorbent for Removal of Hg2+ and Pb2+ from Aqueous Solutions. Environ. Prog. Sustain. Energy 2019, 38, S24–S31. [Google Scholar] [CrossRef]
- Jada, A.; Ait Akbour, R.; Douch, J. Surface Charge and Adsorption from Water onto Quartz Sand of Humic Acid. Chemosphere 2006, 64, 1287–1295. [Google Scholar] [CrossRef]
- Fuziki, M.E.K.; Ribas, L.S.; Tusset, A.M.; Brackmann, R.; Dos Santos, O.A.A.; Lenzi, G.G. Pharmaceutical Compounds Photolysis: PH Influence. Heliyon 2023, 9, e13678. [Google Scholar] [CrossRef]
- Tasbihi, M.; Ngah, C.R.; Aziz, N.; Mansor, A.; Abdullah, A.Z.; Teong, L.K.; Mohamed, A.R. Lifetime and Regeneration Studies of Various Supported TiO2 Photocatalysts for the Degradation of Phenol under UV-C Light in a Batch Reactor. Ind. Eng. Chem. Res. 2007, 46, 9006–9014. [Google Scholar] [CrossRef]
Phase | a | b | c | α | β | γ | Volume | Mass Fraction |
---|---|---|---|---|---|---|---|---|
SiO2 | 4.912 | 4.920 | 5.408 | 90.09 | 89.951 | 120.008 | 113.17 | 0.24867 |
Albite | 8.141 | 12.784 | 7.159 | 94.263 | 116.61 | 87.659 | 664.244 | 0.45285 |
Microcline | 8.589 | 12.983 | 7.218 | 90.556 | 115.904 | 87.824 | 723.413 | 0.29849 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, L.N.B.; Josué, T.G.; Fuziki, M.E.K.; Fávaro, Y.B.; Ribas, L.S.; Tusset, A.M.; Santos, O.A.A.; Lenzi, G.G. Rock Powder Applied in the Discoloration of Industry Dye of Molded Pulp Packages Effluent. Colorants 2023, 2, 487-499. https://doi.org/10.3390/colorants2030023
Almeida LNB, Josué TG, Fuziki MEK, Fávaro YB, Ribas LS, Tusset AM, Santos OAA, Lenzi GG. Rock Powder Applied in the Discoloration of Industry Dye of Molded Pulp Packages Effluent. Colorants. 2023; 2(3):487-499. https://doi.org/10.3390/colorants2030023
Chicago/Turabian StyleAlmeida, Lariana N. B., Tatiana G. Josué, Maria Eduarda K. Fuziki, Yuri B. Fávaro, Laura S. Ribas, Angelo M. Tusset, Onélia A. A. Santos, and Giane G. Lenzi. 2023. "Rock Powder Applied in the Discoloration of Industry Dye of Molded Pulp Packages Effluent" Colorants 2, no. 3: 487-499. https://doi.org/10.3390/colorants2030023
APA StyleAlmeida, L. N. B., Josué, T. G., Fuziki, M. E. K., Fávaro, Y. B., Ribas, L. S., Tusset, A. M., Santos, O. A. A., & Lenzi, G. G. (2023). Rock Powder Applied in the Discoloration of Industry Dye of Molded Pulp Packages Effluent. Colorants, 2(3), 487-499. https://doi.org/10.3390/colorants2030023