Andy Warhol and His Amazing Technicolor Shoes: Characterizing the Synthetic Dyes Found in Dr. Ph. Martin’s Synchromatic Transparent Watercolors and Used in À la Recherche du Shoe Perdu
Abstract
:1. Introduction
1.1. Art Historical Background
1.2. Analysis of Synthetic Organic Dyes
1.3. Dr. Ph. Martin’s Synchromatic Transparent Water Colors: Current Research
2. Materials and Methods
2.1. Dye Characterization
2.2. Light Sensitivity
3. Results and Discussion
3.1. Characterization of Dr. Ph. Martin’s Synchromatic Transparent Water Colors
3.1.1. Reds
3.1.2. Oranges and Yellows
3.1.3. Greens and Blues
3.1.4. Pinks and Purples
3.1.5. Browns
3.1.6. Blacks and Grays
3.2. Correlation between Dyes Identified and Colors Used in Andy Warhol’s À la Recherche du Shoe Perdu
3.3. Light Sensitivity Testing by MFT
3.3.1. Light Sensitivity of Dr. Ph. Martin’s Synchromatic Transparent Water Colors
3.3.2. Light Sensitivity of À la Recherche du Shoe Perdu (c. 1955)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldmann, M. Examination and Treatment of Early Andy Warhol Hand-Colored Lithographs. Stud. Conserv. 2002, 47, 78–82. [Google Scholar] [CrossRef]
- Andy Warhol|À La Recherche Du Shoe Perdu; and Shoe and Leg (See F. & S. Iv.69a-85). Sotheby’s. Available online: https://www.sothebys.com/buy/86d0c302-04b8-4b83-b3b3-854d5d849b02/lots/af57a7be-9324-4cc7-861c-8ec0e7d790f5 (accessed on 12 October 2022).
- Price, B.A.; Pretzel, B.; Lomax, S. (Eds.) Infrared and Raman Users Group Spectral Database, 2007th ed.; IRUG: Philadelphia, PA, USA, 2009; Volume 1–2. [Google Scholar]
- Casadio, F.; Mauck, K.; Chefitz, M.; Freeman, R. Direct Identification of Early Synthetic Dyes: FT-Raman Study of the Illustrated Broadside Prints of José Gaudalupe Posada (1852–1913). Appl. Phys. A 2010, 100, 885–899. [Google Scholar] [CrossRef]
- Dhakal, S.; Chao, K.; Schmidt, W.; Qin, J.; Kim, M.; Huang, Q. Detection of Azo Dyes in Curry Powder Using a 1064-Nm Dispersive Point-Scan Raman System. Appl. Sci. 2018, 8, 564. [Google Scholar] [CrossRef] [Green Version]
- Bisulca, C.; Picollo, M.; Bacci, M.; Kunzelman, D. UV-Vis-NIR Reflectance Spectroscopy of Red Lakes in Paintings. In Proceedings of the 9th International Conference on NDT of Art, Jerusalem, Israel, 25–30 May 2008; p. 8. [Google Scholar]
- Bell, I.M.; Clark, R.J.H.; Gibbs, P.J. Raman Spectroscopic Library of Natural and Synthetic Pigments (Pre- ≈ 1850 AD). Spectrochim. Acta A Mol. Biomol. Spectrosc. 1997, 53, 2159–2179. [Google Scholar] [CrossRef] [PubMed]
- Burgio, L.; Clark, R.J.H. Library of FT-Raman Spectra of Pigments, Minerals, Pigment Media and Varnishes, and Supplement to Existing Library of Raman Spectra of Pigments with Visible Excitation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2001, 57, 1491–1521. [Google Scholar] [CrossRef] [PubMed]
- Castro, K.; Pérez, M.; Rodríguez-Laso, M.D. FTIR Spectra Database of Inorganic Art Materials. Anal. Chem. 2003, 75, 214 A–221 A. [Google Scholar] [CrossRef] [Green Version]
- Castro, K.; Pérez-Alonso, M.; Rodríguez-Laso, M.D.; Fernández, L.A.; Madariaga, J.M. On-Line FT-Raman and Dispersive Raman Spectra Database of Artists’ Materials (e-VISART Database). Anal. Bioanal. Chem. 2005, 382, 248–258. [Google Scholar] [CrossRef]
- Montagner, C.; Bacci, M.; Bracci, S.; Freeman, R.; Picollo, M. Library of UV-Vis–NIR Reflectance Spectra of Modern Organic Dyes from Historic Pattern-Card Coloured Papers. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 1669–1680. [Google Scholar] [CrossRef]
- Fremout, W.; Saverwyns, S. Identification of Synthetic Organic Pigments: The Role of a Comprehensive Digital Raman Spectral Library. J. Raman Spectrosc. 2012, 43, 1536–1544. [Google Scholar] [CrossRef]
- Pozzi, F.; Porcinai, S.; Lombardi, J.R.; Leona, M. Statistical Methods and Library Search Approaches for Fast and Reliable Identification of Dyes Using Surface-Enhanced Raman Spectroscopy (SERS). Anal. Methods 2013, 5, 4205. [Google Scholar] [CrossRef]
- Cosentino, A. FORS Spectral Database of Historical Pigments in Different Binders. E-Conserv. J. 2014, 2, 54–65. [Google Scholar] [CrossRef]
- Pause, R.; van der Werf, I.D.; van den Berg, K.J. Identification of Pre-1950 Synthetic Organic Pigments in Artists’ Paints. A Non-Invasive Approach Using Handheld Raman Spectroscopy. Heritage 2021, 4, 1348–1365. [Google Scholar] [CrossRef]
- Festa, G.; Scatigno, C.; Saladino, M.L.; Armetta, F.; Ciaramitaro, V.; Nardo, V.M.; Ponterio, R.C. A Database for Historical Pigments through Handheld Instrumentation. In Proceedings of the 2020 IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage, Trento, Italy, 22–24 October 2020; pp. 22–24. [Google Scholar]
- Festa, G.; Scatigno, C.; Armetta, F.; Saladino, M.L.; Ciaramitaro, V.; Nardo, V.M.; Ponterio, R.C. Chemometric Tools to Point Out Benchmarks and Chromophores in Pigments through Spectroscopic Data Analyses. Molecules 2022, 27, 163. [Google Scholar] [CrossRef] [PubMed]
- Pachuta, S.J.; Staral, J.S. Nondestructive Analysis of Colorants on Paper by Time-of-Flight Secondary Ion Mass Spectrometry. Anal. Chem. 1994, 66, 276–284. [Google Scholar] [CrossRef]
- Lee, J.; Lee, C.; Lee, K.; Lee, Y. TOF-SIMS Study of Red Sealing-Inks on Paper and Its Forensic Applications. Appl. Surf. Sci. 2008, 255, 1523–1526. [Google Scholar] [CrossRef]
- Soltzberg, L.J.; Hagar, A.; Kridaratikorn, S.; Mattson, A.; Newman, R. MALDI-TOF Mass Spectrometric Identification of Dyes and Pigments. J. Am. Soc. Mass Spectrom. 2007, 18, 2001–2006. [Google Scholar] [CrossRef] [Green Version]
- Tamburini, D.; Shimada, C.M.; McCarthy, B. The Molecular Characterization of Early Synthetic Dyes in E. Knecht et al.’s Textile Sample Book “A Manual of Dyeing” (1893) by High Performance Liquid Chromatography—Diode Array Detector—Mass Spectrometry (HPLC-DAD-MS). Dyes Pigments 2021, 190, 109286. [Google Scholar] [CrossRef]
- Pirok, B.W.J.; den Uijl, M.J.; Moro, G.; Berbers, S.V.J.; Croes, C.J.M.; van Bommel, M.R.; Schoenmakers, P.J. Characterization of Dye Extracts from Historical Cultural-Heritage Objects Using State-of-the-Art Comprehensive Two-Dimensional Liquid Chromatography and Mass Spectrometry with Active Modulation and Optimized Shifting Gradients. Anal. Chem. 2019, 91, 3062–3069. [Google Scholar] [CrossRef] [Green Version]
- Cesaratto, A.; Leona, M.; Pozzi, F. Recent Advances on the Analysis of Polychrome Works of Art: SERS of Synthetic Colorants and Their Mixtures With Natural Dyes. Front. Chem. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Bruni, S.; Guglielmi, V.; Pozzi, F. Historical Organic Dyes: A Surface-Enhanced Raman Scattering (SERS) Spectral Database on Ag Lee–Meisel Colloids Aggregated by NaClO4. J. Raman Spectrosc. 2011, 42, 1267–1281. [Google Scholar] [CrossRef]
- Chieli, A.; Sanyova, J.; Doherty, B.; Brunetti, B.G.; Miliani, C. Chromatographic and Spectroscopic Identification and Recognition of Ammoniacal Cochineal Dyes and Pigments. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 162, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Ai, Y.; Liang, P.; Wu, Y.; Dong, Q.; Li, J.; Bai, Y.; Xu, B.-J.; Yu, Z.; Ni, D. Rapid Qualitative and Quantitative Determination of Food Colorants by Both Raman Spectra and Surface-Enhanced Raman Scattering (SERS). Food Chem. 2018, 241, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Campanella, B.; Botti, J.; Cavaleri, T.; Cicogna, F.; Legnaioli, S.; Pagnotta, S.; Poggialini, F.; Poli, T.; Scalarone, D.; Palleschi, V. The Shining Brightness of Daylight Fluorescent Pigments: Raman and SERS Study of a Modern Class of Painting Materials. Microchem. J. 2020, 152, 104292. [Google Scholar] [CrossRef]
- Zhang, D.; Pu, H.; Huang, L.; Sun, D.-W. Advances in Flexible Surface-Enhanced Raman Scattering (SERS) Substrates for Nondestructive Food Detection: Fundamentals and Recent Applications. Trends Food Sci. Technol. 2021, 109, 690–701. [Google Scholar] [CrossRef]
- Henzel, U.B. Journal of Chromatography Library; Elsevier: Amsterdam, The Netherlands, 1977; pp. 147–188. [Google Scholar]
- Geiman, I.; Leona, M.; Lombardi, J.R. Application of Raman Spectroscopy and Surface-Enhanced Raman Scattering to the Analysis of Synthetic Dyes Found in Ballpoint Pen Inks. J. Forensic Sci. 2009, 54, 947–952. [Google Scholar] [CrossRef]
- Brosseau, C.L.; Gambardella, A.; Casadio, F.; Grzywacz, C.M.; Wouters, J.; Van Duyne, R.P. Ad-Hoc Surface-Enhanced Raman Spectroscopy Methodologies for the Detection of Artist Dyestuffs: Thin Layer Chromatography-Surface Enhanced Raman Spectroscopy and in Situ On the Fiber Analysis. Anal. Chem. 2009, 81, 3056–3062. [Google Scholar] [CrossRef]
- Pozzi, F.; Shibayama, N.; Leona, M.; Lombardi, J.R. TLC-SERS Study of Syrian Rue (Peganum Harmala) and Its Main Alkaloid Constituents. J. Raman Spectrosc. 2013, 44, 102–107. [Google Scholar] [CrossRef]
- Cañamares, M.V.; Reagan, D.A.; Lombardi, J.R.; Leona, M. TLC—SERS of Mauve, the First Synthetic Dye. J. Raman Spectrosc. 2014, 45, 1147–1152. [Google Scholar] [CrossRef] [Green Version]
- Sha, X.; Han, S.; Fang, G.; Li, N.; Lin, D.; Hasi, W. A Novel Suitable TLC-SERS Assembly Strategy for Detection of Rhodamine B and Sudan I in Chili Oil. Food Control 2022, 138, 109040. [Google Scholar] [CrossRef]
- Minh, D.T.C.; Thi, L.A.; Huyen, N.T.T.; Van Vu, L.; Anh, N.T.K.; Ha, P.T.T. Detection of Sildenafil Adulterated in Herbal Products Using Thin Layer Chromatography Combined with Surface Enhanced Raman Spectroscopy: “Double Coffee-Ring Effect” Based Enhancement. J. Pharm. Biomed. Anal. 2019, 174, 340–347. [Google Scholar] [CrossRef]
- Zhu, Q.; Cao, Y.; Li, D.; Fang, F.; Lu, F.; Yuan, Y. A Fast Response TLC-SERS Substrate for on-Site Detection of Hydrophilic and Hydrophobic Adulterants in Botanical Dietary Supplements. New J. Chem. 2019, 43, 13873–13880. [Google Scholar] [CrossRef]
- Connors-Rowe, S.A.; Morris, H.R.; Whitmore, P.M. Evaluation of Appearance and Fading of Daylight Fluorescent Watercolors. J. Am. Inst. Conserv. 2005, 44, 75–94. [Google Scholar] [CrossRef]
- Beltran, V.L.; Druzik, J.; Maekawa, S. Large-Scale Assessment of Light-Induced Color Change in Air and Anoxic Environments. Stud. Conserv. 2012, 57, 42–57. [Google Scholar] [CrossRef]
- Pozzi, F.; Basso, E.; Katz, M. In Search of Humboldt’s Colors: Materials and Techniques of a 17th-Century Lacquered Gourd from Colombia. Herit. Sci. 2020, 8, 101. [Google Scholar] [CrossRef]
- Lux, C.; Lubio, A.; Ruediger, A.; Robert, S.; Muehlethaler, C. Optimizing the Analysis of Dyes by Surface-Enhanced Raman Spectroscopy (SERS) Using a Conventional-Microwave Silver Nanoparticles Synthesis. Forensic Chem. 2019, 16, 100186. [Google Scholar] [CrossRef]
- Souto, C. High Performance Liquid Chromatography with Diode Array Detector and Coupled Mass Detection Analysis of Early Synthetic Dyes. Master’s Thesis, Universidade NOVA de Lisboa, Lisbon, Portugal, 2010. [Google Scholar]
- Moretti, P.; Germinario, G.; Doherty, B.; van der Werf, I.D.; Sabbatini, L.; Mirabile, A.; Sgamellotti, A.; Miliani, C. Disclosing the Composition of Historical Commercial Felt-Tip Pens Used in Art by Integrated Vibrational Spectroscopy and Pyrolysis-Gas Chromatography/Mass Spectrometry. J. Cult. Herit. 2019, 35, 242–253. [Google Scholar] [CrossRef]
- Cesaratto, A.; Centeno, S.A.; Lombardi, J.R.; Shibayama, N.; Leona, M. A Complete Raman Study of Common Acid Red Dyes: Application to the Identification of Artistic Materials in Polychrome Prints: A Complete Raman Study of Common Acid Red Dyes. J. Raman Spectrosc. 2017, 48, 601–609. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, T.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Rapid SERS Detection of Acid Orange II and Brilliant Blue in Food by Using Fe3O4@Au Core–Shell Substrate. Food Chem. 2019, 270, 173–180. [Google Scholar] [CrossRef]
- Caycedo, M. Identification of Fifteen First Priority Textile Dyes from the Schweppe Collection with Raman and Surface Enhanced Raman Spectroscopy (SERS). Ph.D. Thesis, University of Amsterdam, Amsterdam, The Netherlands, 2012. [Google Scholar]
- Song, J.; Zhang, Y.; Huang, Y.; Fan, Y.; Lai, K. Rapid Tartrazine Determination in Large Yellow Croaker with Ag Nanowires Using Surface-Enhanced Raman Spectroscopy. Nanomaterials 2018, 8, 967. [Google Scholar] [CrossRef] [Green Version]
- Neugebauer, W.; Sessa, C.; Steuer, C.; Allscher, T.; Stege, H. Naphthol Green—A Forgotten Artists’ Pigment of the Early 20th Century. History, Chemistry and Analytical Identification. J. Cult. Herit. 2019, 36, 153–165. [Google Scholar] [CrossRef]
- Pettinger, B.; Ren, B.; Picardi, G.; Schuster, R.; Ertl, G. Tip-Enhanced Raman Spectroscopy (TERS) of Malachite Green Isothiocyanate at Au(111): Bleaching Behavior under the Influence of High Electromagnetic Fields. J. Raman Spectrosc. 2005, 36, 541–550. [Google Scholar] [CrossRef]
- Ho, Y.C.; Lee, W.W.Y.; Bell, S.E.J. Investigation of the Chemical Origin and Evidential Value of Differences in the SERS Spectra of Blue Gel Inks. Analyst 2016, 141, 5152–5158. [Google Scholar] [CrossRef] [PubMed]
- Cañamares, M.V.; Chenal, C.; Birke, R.L.; Lombardi, J.R. DFT, SERS, and Single-Molecule SERS of Crystal Violet. J. Phys. Chem. C 2008, 112, 20295–20300. [Google Scholar] [CrossRef]
- Bonacini, I.; Gallazzi, F.; Espina, A.; Cañamares, M.V.; Prati, S.; Mazzeo, R.; Sanchez-Cortes, S. Sensitive ‘on the Fiber’ Detection of Synthetic Organic Dyes by Laser Photoinduced Plasmonic Ag Nanoparticles: Sensitive ‘on the Fiber’ Detection of Synthetic Organic Dyes. J. Raman Spectrosc. 2017, 48, 925–934. [Google Scholar] [CrossRef]
- Muehlethaler, C.; Ng, K.; Gueissaz, L.; Leona, M.; Lombardi, J.R. Raman and SERS Characterization of Solvent Dyes: An Example of Shoe Polish Analysis. Dyes Pigments 2017, 137, 539–552. [Google Scholar] [CrossRef] [Green Version]
- Dhakal, S.; Chao, K.; Schmidt, W.; Qin, J.; Kim, M.; Chan, D. Evaluation of Turmeric Powder Adulterated with Metanil Yellow Using FT-Raman and FT-IR Spectroscopy. Foods 2016, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Santhanam, V. Paper Swab Based SERS Detection of Non-Permitted Colourants from Dals and Vegetables Using a Portable Spectrometer. Anal. Chim. Acta 2019, 1090, 106–113. [Google Scholar] [CrossRef]
- Cesaratto, A.; Lombardi, J.R.; Leona, M. Tracking Photo-Degradation of Triarylmethane Dyes with Surface-Enhanced Raman Spectroscopy. J. Raman Spectrosc. 2017, 48, 418–424. [Google Scholar] [CrossRef]
- Egzar, H.K.; Mashkour, M.S.; Juda, A.M. Study the Photodegradation of Aniline Blue Dye in Aqueous Phase by Using Different Photocatalysts. Int. J. Eng. 2013, 13, 8. [Google Scholar]
- del Hoyo-Meléndez, J.M.; Mecklenburg, M.F. A Survey on the Light-Fastness Properties of Organic-Based Alaska Native Artifacts. J. Cult. Herit. 2010, 11, 493–499. [Google Scholar] [CrossRef]
- del Hoyo-Meléndez, J.M.; Mecklenburg, M.F. Micro-Fading Spectrometry: A Tool for Real-Time Assessment of the Light-Fastness of Dye/Textile Systems. Fibers Polym. 2012, 13, 1079–1085. [Google Scholar] [CrossRef]
- Martins, A.; Prud’hom, A.C.; Duranton, M.; Haddad, A.; Daher, C.; Genachte-Le Bail, A.; Tang, T. Jazz Colors: Pigment Identification in the Gouaches Used by Henri Matisse. Heritage 2021, 4, 4205–4221. [Google Scholar] [CrossRef]
- Sabatini, F.; Giugliano, R.; Degano, I. Photo-Oxidation Processes of Rhodamine B: A Chromatographic and Mass Spectrometric Approach. Microchem. J. 2018, 140, 114–122. [Google Scholar] [CrossRef]
- Clark, M. (Ed.) Handbook of Textile and Industrial Dyeing Volume 2; Woodhead Publishing Series in Textiles; Woodhead Publishing Limited: Oxford, UK; Philadelphia, PA, USA, 2011. [Google Scholar]
- Wei, L.; Gu, A.; Guo, Z.; Ding, J.; Jin, G.; Lei, Y. An Integrated Study on the Fading Mechanism of Malachite Green Industrial Dye for the Marquisette Curtain in the Studio of Cleansing Fragrance, the Palace Museum (Beijing). Molecules 2022, 27, 4411. [Google Scholar] [CrossRef] [PubMed]
- Horobin, R.W.; Kiernan, J.A.; Conn, H.J.; Biological Stain Commission (Eds.) Conn’s Biological Stains: A Handbook of Dyes, Stains and Fluorochromes for Use in Biology and Medicine, 10th ed.; Biological Stain Commission by BIOS: Oxford, UK, 2002. [Google Scholar]
- Opwis, K.; Celik, B.; Benken, R.; Knittel, D.; Gutmann, J.S. Dyeing of M-Aramid Fibers in Ionic Liquids. Polymers 2020, 12, 1824. [Google Scholar] [CrossRef]
- Casella, L.; Tsukada, M. Effects of Low-Oxygen Environments in the Light Fading of Six Dyes Present in the Autochrome Color Screen. J. Am. Inst. Conserv. 2012, 51, 159–174. [Google Scholar] [CrossRef]
- Smith, G.D.; Chen, V.J.; Hostettler, K.F.; Phipps, C.E. Disappearing Ink! Unraveling the Fading of a Contemporary Design Object. Phys. Sci. Rev. 2019, 4, 427–464. [Google Scholar] [CrossRef]
- Centeno, S.A.; Buisan, V.L.; Ropret, P. Raman Study of Synthetic Organic Pigments and Dyes in Early Lithographic Inks (1890–1920). J. Raman Spectrosc. 2006, 37, 1111–1118. [Google Scholar] [CrossRef]
- Giles, C.H. The Fading of Colouring Matters. J. Appl. Chem. 1965, 15, 541–550. [Google Scholar] [CrossRef]
- Mecklenburg, M.F.; del Hoyo-Meléndez, J.M. Development and Application of a Mathematical Model to Explain Fading Rate Inconsistencies Observed in Light-Sensitive Materials: Mathematical Model to Explain Fading Rate Inconsistencies in Light-Sensitive Materials. Color. Technol. 2012, 128, 139–146. [Google Scholar] [CrossRef]
- Prestel, T. A Classification System to Enhance Light-Fastness Data Interpretation Based on Microfading Tests and Rate of Colour Change. Color. Technol. 2017, 133, 506–512. [Google Scholar] [CrossRef]
- Saunders, D.; Kirby, J. Wavelength-Dependent Fading of Artists’ Pigments. Stud. Conserv. 1994, 39 (Suppl. 2), 190–194. [Google Scholar] [CrossRef]
- Lerwill, A.; Brookes, A.; Townsend, J.H.; Hackney, S.; Liang, H. Micro-Fading Spectrometry: Investigating the Wavelength Specificity of Fading. Appl. Phys. A 2015, 118, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Clark, M. (Ed.) Handbook of Textile and Industrial Dyeing Volume 1; Woodhead Publishing Series in Textiles; Woodhead Publishing Limited: Oxford, UK; Philadelphia, PA, USA, 2011. [Google Scholar]
- Confortin, D.; Neevel, H.; Brustolon, M.; Franco, L.; Kettelarij, A.J.; Williams, R.M.; van Bommel, M.R. Crystal Violet: Study of the Photo-Fading of an Early Synthetic Dye in Aqueous Solution and on Paper with HPLC-PDA, LC-MS and FORS. J. Phys. Conf. Ser. 2010, 231, 012011. [Google Scholar] [CrossRef]
- Havlínová, B.; Mináriková, J.; Švorcová, L.; Hanus, J.; Brezová, V. Influence of Fixatives and Deacidification on the Stability of Arylmethane Dyes on Paper during the Course of Accelerated Aging. Restaurator 2005, 26, 1–13. [Google Scholar] [CrossRef]
- den Uijl, M.J.; Lokker, A.; van Dooren, B.; Schoenmakers, P.J.; Pirok, B.W.J.; van Bommel, M.R. Comparing Different Light-Degradation Approaches for the Degradation of Crystal Violet and Eosin Y. Dye Pigment. 2022, 197, 109882. [Google Scholar] [CrossRef]
C.I. Name | Commercial Name | µ-FTIR (cm−1) [3] * | SERS (cm−1) | UV-Vis (nm) [21,22,41] | Dr Martin’s Synchromatic Transparent Water Colors |
---|---|---|---|---|---|
Acid Red 17 | Fast Red B | 3405, 3087, 1637, 1597, 1566, 1517, 1500, 1459, 1438, 1411, 1494, 1369, 1357, 1340, 1303, 1260, 1224, 1170, 1159, 1130, 1081, 1038, 1021, 943, 883, 835, 795, 773, 751, 734, 684, 657 | 1612, 1595, 1570, 1546, 1509, 1460, 1434, 1405, 1357, 1336, 1301, 1272, 1255, 1036, 1009, 778, 731, 623, 520, 492, 420 [42] | 217, 283, 311, 331, 524 | Rose Madder Reddish Brown |
Acid Red 73 | Brilliant Crocein | 3471, 3067, 3041, 1629, 1597, 1557, 1537, 1375, 1330, 1305, 1238, 1215, 1143, 1047, 1039, 982, 845, 833, 812, 782, 766, 722, 685, 661 | 1596, 1503, 1492, 1446, 1423, 1377, 1329, 1294, 1236, 1219, 1185, 1141, 999, 709, 613, 473 [43] | 198, 247, 317 (sh), 345, 511 | Burnt Sienna Orange Scarlet Vermilion Light Brown |
Acid Red 87 | Eosin Y | 3468, 3320, 2942, 2923, 2894, 2864, 1618, 1606, 1585, 1571, 1560, 1520, 1497, 1455, 1416, 1373, 1355, 1314, 1288, 1258, 1241, 1230, 1175, 1160, 1120, 1091, 1060, 1041, 980, 928, 880, 761, 716, 660 | 1620, 1559, 1507, 1457, 1401, 1330, 1281, 1242, 1179, 1090, 1015, 967, 788, 767, 708, 639, 614, 593, 556, 4667, 400, 348 [23] | 195, 240 (sh) 255, 289 (sh), 301, 342, 480 (sh), 516 | Rose Carthame |
Acid Red 103 | Azocarmine B | 3444, 3075, 1605, 1575, 1502, 1475, 1460, 1435, 1381, 1336, 1277, 1218, 1197, 1130, 1097, 1048, 1022, 1003, 963, 943, 901, 844, 763, 728, 688, 655 | 1604, 1591, 1572, 1550, 1514, 1458, 1448, 1436, 1409, 1360, 1291, 1277, 1235, 1003, 729, 681, 529, 503, 484, 468, 416 * | 218, 228 242, 291, 339, 323, 510, 550 (sh) | Carmine |
Basic Red 1 | Rhodamine 6G | 3320, 3029, 2977, 2934, 2872, 1717, 1647, 1608, 1567, 1529, 1503, 1498, 1444, 1424, 1367, 1323, 1313, 1282, 1249, 1181, 1142, 1128, 1080, 1041, 1027, 845, 778, 735, 721 | 1649, 1596, 1572, 1508, 1448, 1431, 1419, 1387, 1362, 1310, 1275, 1223, 1206, 1127, 1084, 928, 772, 758, 636, 611, 403 [23] | 201, 247, 275, 294, 347, 491, 526 | Lake Magenta? |
Acid Orange 7 | Orange II | 3641, 3545, 3094, 3096, 3003, 1620, 1597, 1567, 1553, 1507, 1482, 1452, 1417, 1404, 1390, 1337, 1329, 1271, 1255, 1228, 1211, 1190, 1155, 1123, 1036, 1007, 987, 953, 872, 836, 756, 734, 697, 687 | 1654, 1596, 1549, 1479, 1448, 1417, 1387, 1336, 1303, 1258, 1229, 1206, 1182, 1095, 1036, 1004, 986, 874, 850, 759, 732, 694, 639, 592, 538, 509, 464, 429 [44] | 199, 228, 256, 308, 405, 486 | Beige Black Burnt Sienna Cadmium Orange Chrome Yellow Light Brown Olive Green Sepia Van Dyke Brown Yellow Ochre |
Acid Yellow 1? | Naphthol Yellow S? | n/a | 1607, 1544, 1469, 1446, 1387, 1374, 1358, 1286, 1247, 1221, 1158, 1133, 1115, 1078, 1047, 1004, 967, 948, 862, 692 [45] | 222, 260, 285, 392, 433 | Bluish Black Hooker’s Green Lemon Yellow |
Acid Yellow 23 | Tartrazine | 3474, 1694, 1636, 1560, 1501, 1476, 1416, 1351, 1272, 1181, 1155, 1127, 1038, 1008, 861, 835, 769, 740, 722, 698 | 1651, 1597, 1503, 1440, 1342, 1312, 1294, 1176, 1120, 1058, 1006, 885, 876, 780, 770, 709, 679, 610, 477, 426 [46] | 194, 251 (sh), 258, 277 (sh), 424 | Cadmium Chrome Yellow Emerald Green Nile green Scarlet |
Acid Green 1 | Naphthol Green B | 2956, 2924, 2853, 1607, 1548, 1499, 1189, 1077, 1039, 909, 835, 802 [47] | 1587, 1511, 1530, 1278, 1085, 1040, 909, 804, 753, 744, 673, 620, 543, 488, 471, 425, 362, 311 [47] | 199, 229, 289, 324 (sh), 414, 433, 714 (broad) | Burnt Sienna Hooker’s Green Olive Green Stone Gray |
Basic Green 4 | Malachite Green | 1730, 1613, 1117, 800, 718 | 1614, 1588, 1499, 1486, 1466, 1381, 1362, 1293, 1214, 1177, 914, 800, 435 [48] | 214 (sh), 258, 618 | Turquoise Viridian |
Acid Blue 3 | Patent Blue V | 3475, 3094, 3058, 2987, 2940, 2874, 1665, 1618, 1578, 1538, 478, 1417, 1390, 1343, 1303, 1278, 1243, 1223, 1182, 1151, 1076, 1034, 1009, 969, 917, 901, 847, 831, 807, 791, 757, 740, 726, 700, 691, 675 | 1618, 1584, 1548, 1498, 1470, 1429, 1396, 1361, 1346, 1292, 1217, 1180, 1160, 10474, 1025, 1000, 983, 916, 902, 828, 797, 725, 696, 670, 210, 435, 420, 365 [49] | 200, 261, 311, 393 (sh), 412, 583, 640 | Beige Cerulean Blue Emerald Green Hooker’s Green Nile Green Purple Prussian Blue Turquoise |
Acid Blue 93 | Aniline Blue | 3451, 3290, 3070, 2929, 2852, 1652, 1604, 1578, 1526, 1509, 1447, 1357, 1342, 1298, 1221, 1172, 1125, 1082, 1035, 1008, 916, 835, 812, 759, 732, 703 | 1620, 1594, 1578, 1522, 1499, 1462, 1396, 1367, 1348, 1296, 1217, 1180, 1033, 1006, 916, 817, 760, 728, 706, 591, 529, 450, 427 [30] | 195, 309, 483, 609 | Ultramarine |
Basic Violet 3 | Crystal Violet | 1586, 1525, 1375, 1228, 1176, 829, 792, 770, 760, 756, 727, 667 | 1644, 1617, 1582, 1481, 1367, 1301, 1178, 1075, 912, 800, 726, 609, 436, 421 [50] | 213 (sh), 249, 304, 336 (sh), 380, 552, 585 | Prussian Blue Purple Violet |
Basic Violet 17 | Fuchsine | 3447, 3347, 3232, 1629, 1583, 1541, 1497, 1460, 1432, 1370, 1300, 1296, 1189, 1131, 1112, 1936, 830, 758, 714, 869 | 1614, 1585, 1537, 1518, 1457, 1432, 1366, 1332, 1298, 1284, 1240, 1183, 1156, 1142, 1019, 829, 760, 738, 612, 574, 521, 438, 362 [51] | 210, 248, 299, 489, 516, 545 | Magenta |
Basic Violet 10 | Rhodamine B | 3352, 2974, 2932, 2873, 1710, 1647, 1589, 1555, 1529, 1506, 1482, 1467, 1434, 1413, 1396, 1382, 1339, 1275, 1248, 1197, 1182, 1158, 1134, 1077, 1038, 981, 924, 823, 759, 707, 683 | 1647, 1599, 1569, 1529, 1507, 1432, 1359, 1280, 1120, 1133, 1075, 934, 772, 736, 620, 611 [34] | 199, 254, 284, 351, 519, 553 | Cerise |
Acid Black 2 | Nigrosine WS | 3066, 2962, 2926, 2851, 1652, 1590, 1514, 1492, 1417, 1308, 1223, 1189, 1125, 1077, 1034, 1008, 829, 756, 697 | 1605, 1585, 1563, 1506, 1387, 1342, 1278, 1249, 1155, 1002, 610 [52] | 297, 575 | Black Bluish Black Payne’s Gray Stone Gray Light Gray Medium Gray Dark Gray Sepia Van Dyke Brown |
Plate | Dr Martin’s Synchromatic Transparent Watercolors | Plate | Dr Martin’s Synchromatic Transparent Water Colors |
---|---|---|---|
1 | Magenta + Blue (630 nm) * | 10 | Lake |
Turquoise | Chrome yellow | ||
Magenta | 11 | Vermilion | |
2 | Scarlet | Lake | |
Nile Green | Carmine | ||
Magenta + Blue (630 nm) * | 12 | Lemon Yellow + Nile Green | |
3 | Cerise | Magenta + Blue (630 nm) * | |
Lake | Lemon Yellow + Red (510 nm) * | ||
4 | Rose Carthame | 13 | Chrome Yellow |
Viridian | Olive Green | ||
Prussian Blue | Vermilion | ||
5 | Violet | 14 | Lake |
Prussian Blue | Chrome Yellow | ||
7 | Lemon Yellow + Nile Green | 15 | Violet |
Cerulean Blue | Cerise | ||
Cerise | 16 | Scarlet | |
8 | Rose Carthame + Lemon Yellow (450 nm) | Cerise | |
9 | Viridian | 17 | Purple |
Prussian Blue | Cerise over Cadmium | ||
Cadmium |
Color | ΔE00 | BWeq | Color | ΔE00 | BWeq |
---|---|---|---|---|---|
Beige | 1.1 | 2.4 | Nile Green | 1.0 | 2.4 |
Black | 0.2 | 3.9 | Olive Green | 0.7 | 2.8 |
Bluish Black | 0.6 | 3.0 | Orange | 1.2 | 2.3 |
Burnt Sienna | 0.5 | 3.2 | Payne’s Gray | 0.2 | 4.2 |
Cadmium | 0.3 | 3.7 | Prussian Blue | 0.4 | 3.2 |
Cadmium Orange | 1.2 | 2.3 | Purple | 0.5 | 3.0 |
Carmine | 0.6 | 3.0 | Reddish Brown | 1.4 | 2.1 |
Cerise | 2.6 | 1.5 | Rose Carthame | 1.2 | 2.2 |
Cerulean Blue | 0.8 | 2.6 | Rose Madder | 1.1 | 2.3 |
Chrome Yellow | 0.8 | 2.7 | Scarlet | 0.5 | 3.2 |
Dark Gray | 0.3 | 3.7 | Sepia | 0.4 | 3.4 |
Emerald | 0.9 | 2.5 | Stone Gray | 0.5 | 3.1 |
Hooker’s Green | 1.3 | 2.2 | Turquoise | 1.0 | 2.4 |
Lake | 1.1 | 2.3 | Ultramarine | 0.3 | 3.5 |
Lemon Yellow | 1.0 | 2.5 | Van Dyke Brown | 0.3 | 3.6 |
Light Brown | 1.3 | 2.2 | Vermilion | 0.4 | 3.4 |
Light Gray | 0.8 | 2.6 | Violet | 0.9 | 2.6 |
Magenta | 1.8 | 1.9 | Viridian | 2.5 | 1.6 |
Medium Gray | 0.6 | 2.9 | Yellow Ochre | 1.2 | 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haddad, A.; Nakie-Miller, T.; Jenks, J.B.; Kowach, G. Andy Warhol and His Amazing Technicolor Shoes: Characterizing the Synthetic Dyes Found in Dr. Ph. Martin’s Synchromatic Transparent Watercolors and Used in À la Recherche du Shoe Perdu. Colorants 2023, 2, 1-21. https://doi.org/10.3390/colorants2010001
Haddad A, Nakie-Miller T, Jenks JB, Kowach G. Andy Warhol and His Amazing Technicolor Shoes: Characterizing the Synthetic Dyes Found in Dr. Ph. Martin’s Synchromatic Transparent Watercolors and Used in À la Recherche du Shoe Perdu. Colorants. 2023; 2(1):1-21. https://doi.org/10.3390/colorants2010001
Chicago/Turabian StyleHaddad, Abed, Toni Nakie-Miller, Josephine Brilliant Jenks, and Glen Kowach. 2023. "Andy Warhol and His Amazing Technicolor Shoes: Characterizing the Synthetic Dyes Found in Dr. Ph. Martin’s Synchromatic Transparent Watercolors and Used in À la Recherche du Shoe Perdu" Colorants 2, no. 1: 1-21. https://doi.org/10.3390/colorants2010001
APA StyleHaddad, A., Nakie-Miller, T., Jenks, J. B., & Kowach, G. (2023). Andy Warhol and His Amazing Technicolor Shoes: Characterizing the Synthetic Dyes Found in Dr. Ph. Martin’s Synchromatic Transparent Watercolors and Used in À la Recherche du Shoe Perdu. Colorants, 2(1), 1-21. https://doi.org/10.3390/colorants2010001