Increasing the Performance of a Fiber-Reinforced Concrete for Protective Facilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- −
- for the composite binder: Portland cement CEM I 42.5N according to EN-197 [44], active silica-containing additive, ground quartz sand, limestone microfiller;
- −
2.2. Mix Design
2.3. Methods
3. Results and Discussion
4. Conclusions
- −
- The processes of structure formation in multicomponent polymineral hardening systems based on composite binders using nature-like technologies were examined through experimental tests and supplemented when creating building materials for operation in extreme conditions.
- −
- A wide range of fiber-reinforced concretes based on composite binder has been prepared, with increased characteristics of impact strength. The influence of the manufacturing technology of cement composites on the coefficient of dynamic hardening has been established, while the growth of these indicators attributed a denser interfacial transition zone between the cement paste, aggregate, and fiber as a result of improving the homogeneity of the concrete mixture and controlling the consistency.
- −
- The dependence of the viscosity of mixtures on the type of composite binder has been studied. The workability indices of the mixes make it possible to classify them as self-compacting concrete mixes (grade SF2 by the value of slump flow). The high workability of fiber-reinforced concrete mixtures makes it possible to use them for the construction of objects of complex configuration in terms of plan, including underground civil defense facilities.
- −
- An increase in the values of the impact strength coefficient up to 5.5 times, the dynamic hardening coefficient by almost 70% as a result of a directionally synthesized binder matrix, as well as absorption of impact energy by fiber, was revealed. The mechanical changes should be attributed to the mechanical properties of the binder and the ITZ.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amran, M.; Fediuk, R.; Vatin, N.; Lee, Y.H.; Murali, G.; Ozbakkaloglu, T.; Klyuev, S.; Alabduljabber, H. Fibre-Reinforced Foamed Concretes: A Review. Materials 2020, 13, 4323. [Google Scholar] [CrossRef]
- Amran, Y.M.; Alyousef, R.; Alabduljabbar, H.; Khudhair, M.; Hejazi, F.; Alaskar, A.; Alrshoudi, F.; Siddika, A. Performance Properties of Structural Fibred-Foamed Concrete. Results Eng. 2020, 5, 100092. [Google Scholar] [CrossRef]
- Murali, G.; Abid, S.; Amran, M.; Fediuk, R.; Vatin, N.; Karelina, M. Combined Effect of Multi-Walled Carbon Nanotubes, Steel Fibre and Glass Fibre Mesh on Novel Two-Stage Expanded Clay Aggregate Concrete against Impact Loading. Crystals 2021, 11, 720. [Google Scholar] [CrossRef]
- Murali, G.; Abid, S.R.; Karthikeyan, K.; Haridharan, M.; Amran, M.; Siva, A. Low-Velocity Impact Response of Novel Prepacked Expanded Clay Aggregate Fibrous Concrete Produced with Carbon Nano Tube, Glass Fiber Mesh and Steel Fiber. Constr. Build. Mater. 2021, 284, 122749. [Google Scholar] [CrossRef]
- Rossi, P.; Arca, A.; Parant, E.; Fakhri, P. Bending and Compressive Behaviours of a New Cement Composite. Cem. Concr. Res. 2005, 35, 27–33. [Google Scholar] [CrossRef]
- Murphy, F.; Pavia, S.; Walker, R. An assessment of the physical properties of lime-hemp concrete. In Proceedings of the Bridge and Concrete Research, Cork, Ireland, 2–3 September 2010; pp. 431–438. [Google Scholar]
- Al-Nini, A.; Nikbakht, E.; Syamsir, A.; Shafiq, N.; Mohammed, B.S.; Al-Fakih, A.; Al-Nini, W.; Amran, Y.H.M. Flexural Behavior of Double-Skin Steel Tube Beams Filled with Fiber-Reinforced Cementitious Composite and Strengthened with CFRP Sheets. Materials 2020, 13, 3064. [Google Scholar] [CrossRef]
- Adamczyk, W.P.; Gorski, M.; Ostrowski, Z.; Bialecki, R.; Kruczek, G.; Przybyła, G.; Krzywon, R.; Bialozor, R. Application of Numerical Procedure for Thermal Diagnostics of the Delamination of Strengthening Material at Concrete Construction. Int. J. Numer. Methods Heat Fluid Flow 2019, 30, 2655–2668. [Google Scholar] [CrossRef]
- Fediuk, R.S.; Ibragimov, R.A.; Lesovik, V.S.; Pak, A.A.; Krylov, V.V.; Poleschuk, M.M.; Stoyushko, N.Y.; Gladkova, N.A. Processing Equipment for Grinding of Building Powders. IOP Conf. Ser. Mater. Sci. Eng. 2018, 327, 042029. [Google Scholar] [CrossRef]
- Lesovik, V.S. The Reducing Effect of Argon in the Plasma Treatment of High-Melting Nonmetallic Materials (A Review). Glas. Ceram. 2001, 58, 362–364. [Google Scholar]
- Chernysheva, N.; Lesovik, V.; Fediuk, R.; Vatin, N. Improvement of Performances of the Gypsum-Cement Fiber Reinforced Composite (GCFRC). Materials 2020, 13, 3847. [Google Scholar] [CrossRef]
- Szeląg, M. Properties of Cracking Patterns of Multi-Walled Carbon Nanotube-Reinforced Cement Matrix. Materials 2019, 12, 2942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rucka, M.; Wojtczak, E.; Knak, M.; Kurpińska, M. Characterization of Fracture Process in Polyolefin Fibre-Reinforced Concrete Using Ultrasonic Waves and Digital Image Correlation. Constr. Build. Mater. 2021, 280, 122522. [Google Scholar] [CrossRef]
- Lesovik, V.; Voronov, V.; Glagolev, E.; Fediuk, R.; Alaskhanov, A.; Amran, Y.M.; Murali, G.; Baranov, A. Improving the Behaviors of Foam Concrete Through the Use of Composite Binder. J. Build. Eng. 2020, 31, 101414. [Google Scholar] [CrossRef]
- Khan, M.; Cao, M.; Xie, C.; Ali, M. Hybrid Fiber Concrete with Different Basalt Fiber Length and Content. Struct. Concr. 2021, 51678111. [Google Scholar] [CrossRef]
- Fediuk, R.S.; Lesovik, V.S.; Mochalov, A.V.; Otsokov, K.A.; Lashina, I.V.; Timokhin, R.A. Composite Binders for Concrete of Protective Structures. Mag. Civ. Eng. 2018, 82, 208–218. [Google Scholar] [CrossRef]
- Amran, Y.H.M. Influence of Structural Parameters on the Properties of Fibred-Foamed Concrete. Innov. Infrastruct. Solut. 2020, 5, 16. [Google Scholar] [CrossRef]
- Khan, M.; Cao, M.; Xie, C.; Ali, M. Efficiency of Basalt Fiber Length and Content on Mechanical and Microstructural Properties of Hybrid Fiber Concrete. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 2135–2152. [Google Scholar] [CrossRef]
- Khan, M.; Cao, M. Effect of Hybrid Basalt Fibre Length and Content on Properties Of Cementitious Composites. Mag. Concr. Res. 2021, 73, 487–498. [Google Scholar] [CrossRef]
- Siddika, A.; Al Mamun, A.; Alyousef, R.; Amran, Y.M. Strengthening of Reinforced Concrete Beams by Using Fiber-Reinforced Polymer Composites: A review. J. Build. Eng. 2019, 25, 100798. [Google Scholar] [CrossRef]
- Khan, M.; Cao, M.; Hussain, A.; Chu, S. Effect of Silica-Fume Content on Performance of Caco3 Whisker and Basalt Fiber at Matrix Interface in Cement-Based Composites. Constr. Build. Mater. 2021, 300, 124046. [Google Scholar] [CrossRef]
- Haridharan, M.; Matheswaran, S.; Murali, G.; Abid, S.R.; Fediuk, R.; Amran, Y.M.; Abdelgader, H.S. Impact Response of Two-Layered Grouted Aggregate Fibrous Concrete Composite under Falling Mass Impact. Constr. Build. Mater. 2020, 263, 120628. [Google Scholar] [CrossRef]
- Murali, G.; Abid, S.R.; Amran, Y.M.; Abdelgader, H.S.; Fediuk, R.; Susrutha, A.; Poonguzhali, K. Impact Performance of Novel Multi-Layered Prepacked Aggregate Fibrous Composites under Compression and Bending. Structures 2020, 28, 1502–1515. [Google Scholar] [CrossRef]
- Abid, S.R.; Murali, G.; Amran, M.; Vatin, N.; Fediuk, R.; Karelina, M. Evaluation of Mode II Fracture Toughness of Hybrid Fibrous Geopolymer Composites. Materials 2021, 14, 349. [Google Scholar] [CrossRef]
- Murali, G.; Abid, S.R.; Abdelgader, H.S.; Amran, Y.H.M.; Shekarchi, M.; Wilde, K. Repeated Projectile Impact Tests on Multi-Layered Fibrous Cementitious Composites. Int. J. Civ. Eng. 2021, 19, 635–651. [Google Scholar] [CrossRef]
- Kalinichev, A.; Wang, J.; Kirkpatrick, R.J. Molecular Dynamics Modeling of the Structure, Dynamics and Energetics of Mineral–Water Interfaces: Application to Cement Materials. Cem. Concr. Res. 2007, 37, 337–347. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Banthia, N.; Yoon, Y.-S. Flexural Behavior of Ultra-High-Performance Fiber-Reinforced Concrete Beams Reinforced with GFRP and Steel Rebars. Eng. Struct. 2016, 111, 246–262. [Google Scholar] [CrossRef]
- Ranjbar, N.; Zhang, M. Fiber-Reinforced Geopolymer Composites: A Review. Cem. Concr. Compos. 2020, 107, 103498. [Google Scholar] [CrossRef]
- Favre, R.; Charif, H. Basic model and simplified calculations of deformations according to the CEB-FIP model code 1990. Struct. J. 1994, 91, 169–177. [Google Scholar]
- Salaimanimagudam, M.P.; Murali, G.; Vardhan, C.M.V.; Amran, M.; Vatin, N.; Fediuk, R.; Vasilev, Y. Impact Response of Preplaced Aggregate Fibrous Concrete Hammerhead Pier Beam Designed with Topology Optimization. Crystals 2021, 11, 147. [Google Scholar] [CrossRef]
- Murali, G.; Amran, M.; Fediuk, R.; Vatin, N.; Raman, S.N.; Maithreyi, G.; Sumathi, A. Structural Behavior of Fibrous-Ferrocement Panel Subjected to Flexural and Impact Loads. Materials 2020, 13, 5648. [Google Scholar] [CrossRef] [PubMed]
- Temuujin, J.; Minjigmaa, A.; Davaabal, B.; Bayarzul, U.; Ankhtuya, A.; Jadambaa, T.; MacKenzie, K. Utilization of Radioactive High-Calcium Mongolian Flyash for the Preparation of Alkali-Activated Geopolymers for Safe Use as Construction Materials. Ceram. Int. 2014, 40, 16475–16483. [Google Scholar] [CrossRef]
- Amran, M.; Debbarma, S.; Ozbakkaloglu, T. Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Constr. Build. Mater. 2021, 270, 121857. [Google Scholar] [CrossRef]
- Murtazaiev, S.-A.Y.; Lesovik, V.S.; Bataiev, D.K.-S.; Chernysheva, N.V.; Saidumov, M.S. Fine-Grainedcellular Concrete Creep Analysis Technique with Consideration Forcarbonation. Mod. Appl. Sci. 2015, 9, 233. [Google Scholar] [CrossRef] [Green Version]
- Jaishankar, P.; Murali, G.; Salaimanimagudam, M.P.; Amran, Y.H.M.; Fediuk, R.; Karthikeyan, K. Study of Topology Optimized Hammerhead Pier Beam Made with Novel Preplaced Aggregate Fibrous Concrete. Period. Polytech. Civ. Eng. 2020, 65, 287–298. [Google Scholar] [CrossRef]
- Semenov, P.; Uzunian, A.; Davidenko, A.; Derevschikov, A.; Goncharenko, Y.; Kachanov, V.; Khodyrev, V.; Meschanin, A.; Minaev, N.; Mochalov, V.; et al. First Study of Radiation Hardness of Lead Tungstate Crystals at Low Temperatures. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 582, 575–580. [Google Scholar] [CrossRef] [Green Version]
- Fediuk, R.S.; Yevdokimova, Y.G.; Smoliakov, A.K.; Stoyushko, N.Y.; Lesovik, V.S. Use of Geonics Scientific Positions for Designing of Building Composites for Protective (Fortification) Structures. IOP Conf. Ser. Mater. Sci. Eng. 2017, 221, 012011. [Google Scholar] [CrossRef]
- Fediuk, R.S. Mechanical Activation of Construction Binder Materials by Various Mills. IOP Conf. Ser. Mater. Sci. Eng. 2016, 125, 012019. [Google Scholar] [CrossRef]
- Volodchenko, A.A.; Lesovik, V.S.; Volodchenko, A.N.; Glagolev, E.S.; Zagorodnjuk, L.H.; Pukharenko, Y.V. Composite Performance Improvement Based on Non-Conventional Natural and Technogenic Raw Materials. Int. J. Pharm. Technol. 2016, 8, 18856–18867. [Google Scholar]
- Fediuk, R. High-Strength Fibrous Concrete of Russian Far East Natural Materials. IOP Conf. Ser. Mater. Sci. Eng. 2016, 116, 012020. [Google Scholar] [CrossRef] [Green Version]
- Elistratkin, M.; Kozhuhova, M. Analysis of the Factors of Increasing the Strength of the Non-Autoclave Aerated Concrete. Constr. Mater. Prod. 2020, 1, 59–68. [Google Scholar] [CrossRef]
- Klyuyev, S.; Guryanov, Y. External Reinforcing of Fiber Concrete Constructions by Carbon Fiber Tapes. Mag. Civ. Eng. 2013, 36, 21–26. [Google Scholar] [CrossRef]
- Ramakrishnan, K.; Depak, S.; Hariharan, K.; Abid, S.R.; Murali, G.; Cecchin, D.; Fediuk, R.; Amran, Y.M.; Abdelgader, H.S.; Khatib, J.M. Standard and Modified Falling Mass Impact Tests on Preplaced Aggregate Fibrous Concrete and Slurry Infiltrated Fibrous Concrete. Constr. Build. Mater. 2021, 298, 123857. [Google Scholar] [CrossRef]
- Sanjuán, M.A.; Argiz, C. La Nueva Norma Europea de Especificaciones de Cementos Comunes UNE-EN 197-1:2011. Mater. Constr. 2012, 62, 425–430. [Google Scholar] [CrossRef] [Green Version]
- EFNARC. Specification and Guidelines for Self-Compacting Concrete; EFNARC: Farnham, UK, 2002; ISBN 0-9539733-4-4. [Google Scholar]
- Tokarev, Y.; Yakovlev, G.; Saidova, Z.; Grakhov, V.; Buryanov, A.; Elrefai, A.E.M.M. A Study on Mechanical Properties and Structure of Anhydrite Binder Modified by Ultra-Dispersed Siltstone. Eng. Struct. Technol. 2020, 11, 78–86. [Google Scholar] [CrossRef]
- Murali, G.; Ramprasad, K. A Feasibility of Enhancing the Impact Strength of Novel Layered Two Stage Fibrous Concrete Slabs. Eng. Struct. 2018, 175, 41–49. [Google Scholar] [CrossRef]
- de Azevedo, A.R.; Marvila, M.T.; Tayeh, B.A.; Cecchin, D.; Pereira, A.C.; Monteiro, S.N. Technological Performance of Açaí Natural Fibre Reinforced Cement-Based Mortars. J. Build. Eng. 2021, 33, 101675. [Google Scholar] [CrossRef]
Characteristics | Steel Fiber | Basalt Fiber |
---|---|---|
Tensile strength, MPa | 600–1500 | 3500 |
Fiber diameter, mm | 1.2 | 13 × 10−3 |
Fiber length, mm | 13 | 6 ± 1.5 |
Elastic modulus, GPa | 190 | 75 |
Elongation ratio, % | 3.5 | 3.2 |
Melting temperature, °C | 1550 | 1450 |
Resistant to alkalis and corrosion | medium | high |
Density, kg/m3 | 7800 | 2600 |
Mix ID | Properties pf the Binder, % | Superplasticizer, % of the Binder | |||
---|---|---|---|---|---|
Portland Cement | Ground Quartz Sand | Limestone | ASCA | ||
1-1 | 70 | 2.5 | 2.5 | 25 | 1.0 |
1-2 | 64 | 2.5 | 2.5 | 31 | 1.3 |
1-3 | 58 | 2.5 | 2.5 | 37 | 1.6 |
2-1 | 65 | 5 | 5 | 25 | 1.0 |
2-2 | 59 | 5 | 5 | 31 | 1.3 |
2-3 | 63 | - | - | 37 | 1.6 |
3-1 | 60 | 7.5 | 7.5 | 25 | 1.0 |
3-2 | - | - | - | 31 | 1.3 |
3-3 | 63 | - | - | 37 | 1.6 |
CEM | 100 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fediuk, R.; Amran, M.; Klyuev, S.; Klyuev, A. Increasing the Performance of a Fiber-Reinforced Concrete for Protective Facilities. Fibers 2021, 9, 64. https://doi.org/10.3390/fib9110064
Fediuk R, Amran M, Klyuev S, Klyuev A. Increasing the Performance of a Fiber-Reinforced Concrete for Protective Facilities. Fibers. 2021; 9(11):64. https://doi.org/10.3390/fib9110064
Chicago/Turabian StyleFediuk, Roman, Mugahed Amran, Sergey Klyuev, and Aleksandr Klyuev. 2021. "Increasing the Performance of a Fiber-Reinforced Concrete for Protective Facilities" Fibers 9, no. 11: 64. https://doi.org/10.3390/fib9110064
APA StyleFediuk, R., Amran, M., Klyuev, S., & Klyuev, A. (2021). Increasing the Performance of a Fiber-Reinforced Concrete for Protective Facilities. Fibers, 9(11), 64. https://doi.org/10.3390/fib9110064