Improvement by Nanofibers of Load Transfer in Carbon Fiber Reinforced Composites
Abstract
:1. Introduction
2. Methods
2.1. Material Behavior
2.2. Geometrical Parameters
- Fiber length: constant value, set at 100 μm.
- Fiber diameter: constant value, set at 7 μm.
- NF diameter: variable value, can take the value of , , or .
- NF length: variable value, depending on the NF reinforced matrix modeling (homogenized or effective).
- Inter-fiber distance: constant value, set at 0.4 μm, which corresponds to a fiber volume fraction or respectively for a hexagonal or square distribution (Figure 1). Indeed, this distance depends on fiber volume fraction in the composite. The fiber repartition in the section of a unidirectional composite follows a square or hexagonal distribution. When the fiber volume fraction increases, the hexagonal arrangement is preferred because it increases the compactness of the composite.
2.3. Boundary Conditions
- Left and right RVE border: for all the nodes, displacement in the longitudinal direction , corresponding to fiber axis, is free; all the nodes on the same border have the same displacement in the radial direction ( identical).
- Upper RVE border: radial displacement is free and longitudinal displacement is equal for all the nodes, a force is applied uniformly on all the nodes of the upper border in the direction .
- Lower RVE border: free and for all the nodes of the left fiber and matrix mesh; for the nodes of the right fiber base, radial displacement is free and longitudinal displacement is free if the fiber is broken, or blocked if the fiber is intact.
2.4. Modeling of Homogenized Reinforced Matrix
2.5. Effective Modeling of NF Network Reinforcing Matrix
2.5.1. NF Generating Method
2.5.2. Intersection and Overlapping between NFs
2.5.3. NFs Perpendicular to Mesh Plane
2.5.4. NF Network Mesh Refinement
2.5.5. Matrix Mesh
2.6. Carbon Fiber Meshes
2.7. CF-Matrix, CF-NF and NF-Matrix Interfaces
2.8. Definitions of the Different Volume Fractions
2.9. An Estimation Method of Load Transfer Efficiency
3. Method Validation
3.1. Non-Reinforced Matrix
3.2. Result Sensitivity to Mesh
4. Results and Discussion
4.1. Reinforcement of Matrix Shear Modulus and Load Transfer Efficiency
4.2. Importance of NF Network Morphology
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Sharma, S.P.; Lakkad, S.C. Morphology study of carbon nanospecies grown on carbon fibers by thermal CVD technique. Surf. Coat. Technol. 2009, 203, 1329–1335. [Google Scholar] [CrossRef]
- De Riccardis, M.F.; Carbone, D.; Dikonimos Makris, Th.; Giorgi, R.; Lisi, N.; Salernitano, E. Anchorage of carbon nanotubes grown on carbon fibres. Carbon 2006, 44, 671–674. [Google Scholar]
- Downs, W.B.; Baker, R.T.K. Modification of the surface properties of carbon fibers via the catalytic growth of carbon nanofibers. J. Mater. Res. 1996, 10, 625–633. [Google Scholar] [CrossRef]
- Thostenson, E.T.; Li, W.Z.; Wang, D.Z.; Ren, Z.F.; Chou, T.W. Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 2002, 91, 6034–6037. [Google Scholar] [CrossRef]
- Hung, K.H.; Kuo, W.S.; Ko, T.H.; Tzeng, S.S.; Yan, C.F. Processing and tensile characterization of composites composed of carbon nanotube-grown carbon fibers. Compos. Part A 2009, 40, 1299–1304. [Google Scholar] [CrossRef]
- Laachachi, A.; Vivet, A.; Nouet, G.; Ben Doudou, B.; Poilâne, C.; Chen, J.; Bai, J.B.; Ayachi, M. A chemical method to graft carbon nanotubes onto a carbon fiber. Mater. Lett. 2007, 62, 394–397. [Google Scholar] [CrossRef]
- Vivet, A.; Ben Doudou, B.; Poilâne, C.; Chen, J.; Ayachi, M. A method for the chemical anchoring of carbon nanotubes onto carbon fibre and its impact on the strength of carbon fibre composites. J. Mater. Sci. 2011, 46, 1322–1327. [Google Scholar] [CrossRef]
- Zhao, F.; Huang, Y.; Liu, L.; Bai, Y.; Xu, L. Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites. Carbon 2011, 49, 2624–2632. [Google Scholar] [CrossRef]
- Kepple, K.L.; Sanborn, G.P.; Lacasse, P.A.; Gruenberg, K.M.; Ready, W.J. Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes. Carbon 2008, 46, 2026–2033. [Google Scholar] [CrossRef]
- Qian, H.; Greenhalgh, E.S.; Shaffer, M.S.P.; Bismarck, A. Carbon nanotube-based hierarchical composites: A review. J. Mater. Chem. 2010, 20, 4751–4762. [Google Scholar] [CrossRef]
- Mujika, F.; Vargas, G.; Ibarretxe, J.; de Gracia, J.; Arrese, A. Influence of the modification with MWCNT on the interlaminar fracture properties of long carbon fiber composites. Compos. Part B 2012, 43, 1336–1340. [Google Scholar] [CrossRef]
- Yoo, T.W.; Lee, Y.K.; Lim, S.J.; Yoon, H.G.; Kim, W.N. Effects of hybrid fillers on the electromagnetic interference shielding effectiveness of polyamide 6/conductive filler composites. J. Mater. Sci. 2014, 49, 1701–1708. [Google Scholar] [CrossRef]
- Cox, H.L. The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 1952, 3, 72–79. [Google Scholar] [CrossRef]
- Hedgepeth, J.M.; van Dyke, P. Local stress concentrations in imperfect filamentary composite materials. J. Compos. Mater. 1967, 1, 294–309. [Google Scholar]
- Ochiai, S.; Schulte, K.; Peters, P.W.M. Strain concentration factors for fibers and matrix in unidirectional composites. Compos. Sci. Technol. 1991, 41, 237–256. [Google Scholar] [CrossRef]
- Sastry, A.M.; Phoenix, S.L. Load redistribution near non-aligned fibre breaks in a two-dimensional unidirectional composite using break-influence superposition. J. Mater. Sci. Lett. 1993, 12, 1596–1599. [Google Scholar] [CrossRef]
- Lagoudas, D.C.; Chung-Yuen, H.; Phoenix, S.L. Time evolution of overstress profiles near broken fibers in a composite with a viscoelastic matrix. Int. J. Solids Struct. 1989, 25, 45–66. [Google Scholar] [CrossRef]
- Blassiau, S.; Thionnet, A.; Bunsell, A.R. Micromechanisms of load transfer in a unidirectional carbon fibre-reinforced epoxy composite due to fibre failures. Part 1: Micromechanisms and 3D analysis of load transfer: The elastic case. Compos. Struct. 2006, 74, 303–318. [Google Scholar] [CrossRef]
- Leclerc, W.; Karamian, P.; Vivet, A.; Campbell, A. A relevant stochastic and multi-scale model to estimate the impact of CNT morphology on the elastic properties of CNT-based composites. Comput. Mater. Sci. 2013, 69, 481–493. [Google Scholar] [CrossRef]
- Leclerc, W.; Karamian, P.; Vivet, A. An efficient and automated 3D FE approach to evaluate effective elastic properties of overlapping random fibre composites. Comput. Mater. Sci. 2015, 32, 365–368. [Google Scholar]
- Cast3M software. Available online: http://www-cast3m.cea.fr/ (accessed on 1 March 2012).
- Wong, E.W.; Sheehan, P.E.; Lieber, C.M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277, 1971–1975. [Google Scholar] [CrossRef]
- Salvetat, J.P.; Bonard, J.M.; Thomson, N.H.; Kulik, A.J.; Forro, L.; Benoit, W.; Zuppiroli, L. Mechanical properties of carbon nanotubes. Appl. Phys. A 1999, 69, 255–260. [Google Scholar] [CrossRef]
- Li, C.; Chou, T. Elastic moduli of multi-walled carbon nanotubes and the effect of Van der Waals forces. Compos. Sci. Technol. 2003, 63, 1517–1524. [Google Scholar] [CrossRef]
- Seidel, G.D.; Lagoudas, G.D. Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech. Mater. 2006, 38, 884–907. [Google Scholar] [CrossRef]
- Zalamea, L.; Kim, H.; Byron Pipes, R. Stress transfer in multi-walled carbon nanotubes. Compos. Sci. Technol. 2007, 67, 3425–3433. [Google Scholar] [CrossRef]
- Ashrafi, B.; Hubert, P. Modeling the elastic properties of carbon nanotubes array/polymer composites. Compos. Sci. Technol. 2006, 66, 387–396. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivet, A.; Leclerc, W.; Doudou, B.B.; Chen, J.; Poilâne, C. Improvement by Nanofibers of Load Transfer in Carbon Fiber Reinforced Composites. Fibers 2015, 3, 134-150. https://doi.org/10.3390/fib3020134
Vivet A, Leclerc W, Doudou BB, Chen J, Poilâne C. Improvement by Nanofibers of Load Transfer in Carbon Fiber Reinforced Composites. Fibers. 2015; 3(2):134-150. https://doi.org/10.3390/fib3020134
Chicago/Turabian StyleVivet, Alexandre, Willy Leclerc, Bessem Ben Doudou, Jun Chen, and Christophe Poilâne. 2015. "Improvement by Nanofibers of Load Transfer in Carbon Fiber Reinforced Composites" Fibers 3, no. 2: 134-150. https://doi.org/10.3390/fib3020134
APA StyleVivet, A., Leclerc, W., Doudou, B. B., Chen, J., & Poilâne, C. (2015). Improvement by Nanofibers of Load Transfer in Carbon Fiber Reinforced Composites. Fibers, 3(2), 134-150. https://doi.org/10.3390/fib3020134