Advances on Optical Fiber Sensors
Abstract
:1. Introduction
2. Optical Fiber Gratings as Key Elements of Sensors
2.1. Fiber Bragg Grating Sensors
2.2. Passive Long Period Grating Sensors
2.3. Active Long Period Grating Sensors
3. Evanescent Field, Hollow Core, Liquid Filled and Exposed Optical Fiber Sensors
4. Conclusions
Conflicts of Interest
References
- Girard, S.; Mescia, L.; Vivona, M.; Laurent, A.; Ouerdane, Y.; Marcandella, C.; Prudenzano, F.; Boukenter, A; Robin, T.; Paillet, P; Goiffon, V.; Gaillardin, M.; Cadier, B.; Pinsard, E.; Cannas, M.; Boscaino, R. Design of radiation-hardened rare-earth doped amplifiers through a coupled experiment/simulation approach. J. Lightwave Technol. 2013, 31, 1247–1254. [Google Scholar] [CrossRef] [Green Version]
- Lee, B. Review of the present status of optical fiber sensors. Opt. Fiber Technol. 2003, 9, 57–79. [Google Scholar] [CrossRef]
- Pelli, S.; Chiasera, A.; Ferrari, M.; Righini, G.C. Spectroscopic Techniques for Sensors. In An Introduction to Optoelectronic Sensors; Series in Optics and Photonics; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2009; Volume 7, ISBN: 978-981-283-412-6 981-283-412-5. [Google Scholar]
- Cordeiro, C.M.B.; Franco, M.A.R.; Chesini, G.; Barretto, E.C.S.; Lwin, R.; Cruz, C.H.B.; Large, M.C.J. Microstructured-core optical fibre for evanescent sensing applications. Opt. Express 2006, 14, 13056–13066. [Google Scholar] [CrossRef]
- Jensen, J.; Hoiby, P.; Emiliyanov, G.; Bang, O.; Pedersen, L.H.; Bjarklev, A. Selective detection of antibodies in microstructured polymer optical fibers. Opt. Express 2005, 13, 5883–5889. [Google Scholar] [CrossRef]
- Jensen, J.B.; Pedersen, L.H.; Hoiby, P.E.; Nielsen, L.B.; Hansen, T.P.; Folkenberg, J.R.; Riishede, J.; Noordegraaf, D.; Nielsen, K.; Carlsen, A.; Bjarklev, A. Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions. Opt. Lett. 2004, 29, 1974–1976. [Google Scholar] [CrossRef]
- Lehmann, H.; Brückner, S.; Kobelke, J.; Schwotzer, G.; Schuster, K.; Willsch, R. Toward photonic crystal fiber based distributed chemosensors. Proc. SPIE 2005, 5855, 419–422. [Google Scholar] [CrossRef]
- Rothwell, J.H.; Flavin, D.A.; MacPherson, W.N.; Jones, J.D.C.; Knight, J.C.; Russell, P.St.J. Photonic sensing based on variation of propagation properties of photonic crystal fibres. Opt. Express 2006, 14, 12445–12450. [Google Scholar] [CrossRef]
- Ma, J; Bock, W.J.; Wang, Z. Y.; Hao, W; MacKinnon, S. M. Fiber-optic membrane fluorescent sensor based on photonic crystal fiber with a glass rod in the fiber end. In IEEE Sensors 2005, Irvine, CA, USA, 30 October–November 2005; pp. 1096–1099.
- Cox, F.M.; Argyros, A.; Large, M.C.J. Liquid-filled hollow core microstructured polymer optical fiber. Opt. Express 2006, 14, 4135–4140. [Google Scholar] [CrossRef]
- Fini, J.M. Microstructure fibres for optical sensing in gases and liquids. Meas. Sci. Technol. 2004, 15, 1120–1128. [Google Scholar] [CrossRef]
- Monro, T.M.; Belardi, W.; Furusawa, K.; Baggett, J.C.; Broderick, N.G.R.; Richardson, D.J. Sensing with microstructured optical fibres. Meas. Sci. Technol. 2001, 12, 854–858. [Google Scholar] [CrossRef]
- Hill, K.O.; Meltz, G. Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol. 1997, 15, 1263–1276. [Google Scholar] [CrossRef]
- Hill, K.O.; Fujii, Y.; Johnson, D.C.; Kawasaki, B.S. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett. 1978, 32, 647–649. [Google Scholar] [CrossRef]
- Culshaw, B.; Kersey, A. Fiber-optic sensing: A historical perspective. J. Lightwave Technol. 2008, 26, 1064–1078. [Google Scholar] [CrossRef]
- Guan, B.; Jin, L.; Zhang, Y.; Tam, H. Polarimetric heterodyning fiber grating laser sensors. J. Lightwave Technol. 2012, 30, 1097–1111. [Google Scholar] [CrossRef]
- Dong, L.; Loh, W.H.; Caplen, J.E.; Minelly, J.D.; Hsu, K.; Reekie, L. Efficient single-frequency fiber lasers with novel photosensitive Er/Yb optical fibers. Opt. Lett. 1997, 22, 694–696. [Google Scholar] [CrossRef]
- Hill, D.J.; Hodder, B.; DeFreitas, J.; Thomas, S.D.; Hickey, L. DFB Fibre-Laser Sensor Developments. In Proceedings of SPIE, the 17th International Conference on Optical Fibre Sensors, Bruges, Belgium, 23 May 2005; Volume 5855, pp. 904–907.
- Li, J.; He, F.; Xu, T.; Wang, Y.; Liu, Y. High Performance Distributed Feedback Fiber Laser Sensor Array System. In Proceedings of Asia Communications and Photonics Conference Exhibition, Shanghai, China, 2–6 November 2009; Volume 7634, pp. 76340K:1–76340K:9.
- Cranch, G.A.; Flockhart, G.; Kirkendall, C.K. Distributed feedback fiber laser strain sensors. IEEE Sens. J. 2008, 8, 1161–1172. [Google Scholar] [CrossRef]
- Beverini, N.; Maccioni, E.; Morganti, M.; Stefani, V.; Falciai, R.; Trono, C. Fiber laser strain sensor device. J. Opt. A: Pure Appl. Opt. 2007, 9, 958–962. [Google Scholar] [CrossRef]
- Saitoh, K.; Koshiba, M.; Hasegawa, T.; Sasaoka, F. Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion. Opt. Express 2003, 11, 843–852. [Google Scholar] [CrossRef]
- Westbrook, P.S.; Eggleton, B.J.; Windeler, R.S.; Hale, A.; Strasser, T.A.; Burdge, G.L. Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings. IEEE Photonics Technol. Lett. 2000, 12, 495–497. [Google Scholar] [CrossRef]
- Lee, B.H.; Liu, Y.; Lee, S.B.; Choi, S.S.; Jang, J.N. Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index. Opt. Lett. 1997, 22, 1769–1771. [Google Scholar] [CrossRef]
- Steivurzel, P.; Moore, E.D.; Mägi, E.C.; Kuhlmey, B.T.; Eggleton, B.J. Long period grating resonances in photonic bandgap fiber. Opt. Express 2006, 14, 3007–3014. [Google Scholar] [CrossRef]
- Lee, D.; Jung, Y.; Jeong, Y.S.; Oh, K.; Kobelke, J.; Schuster, K.; Kirchhof, J. Highly polarization-depend periodic coupling in mechanically induced long period grating over air-silica fibers. Opt. Lett. 2006, 31, 296–298. [Google Scholar] [CrossRef]
- Lim, J.H.; Lee, K.S.; Kim, J.C.; Lee, B.H. Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure. Opt. Lett. 2004, 29, 331–333. [Google Scholar] [CrossRef]
- Petrovic, J.S.; Dobb, H.; Mezentsev, V.K.; Kalli, K.; Webb, D.J.; Bennion, I. Sensitivity of LPGs in PCFs fabricated by an electric Arc to temperature, strain, and external refractive index. J. Lightwave Technol. 2007, 25, 1306–1312. [Google Scholar] [CrossRef]
- Zhao, C.L.; Xiao, L.; Ju, J.; Demokan, M.S.; Jin, W. Strain and temperature characteristics of a long-period grating written in a photonic crystal fiber and its application as a temperature-insensitive strain sensor. J. Lightwave Technol. 2008, 26, 220–227. [Google Scholar]
- Eggleton, B.J.; Westbrook, P.S.; Windeler, R.S.; Spalter, S.; Strasser, T.A. Grating resonances in air-silica microstructured optical fibers. Opt. Lett. 1999, 24, 1460–1462. [Google Scholar] [CrossRef]
- Erdogan, T. Cladding-mode resonances in short-and long-period fiber grating filters. J. Opt. Soc. Am. A 1997, 14, 1760–1773. [Google Scholar] [CrossRef]
- Mescia, L. Design of long-period gratings in cladding-pumped microstructured optical fiber. J. Opt. Soc. Am. B 2008, 25, 1883–1839. [Google Scholar] [CrossRef]
- Calò, G.; D’Orazio, A.; De Sario, M.; Mescia, L.; Petruzzelli, V.; Allegretti, L.; Palmisano, T.; Prudenzano, F. Improvement of the Pump Power Coupling in Double Cladding Photonic Crystal Fiber. In Proceedings of IEEE/LEOS Winter Topical Meeting Series, Sorrento, Italy, 14–16 January 2008; pp. 146–147.
- Baek, S.; Roh, S.; Jeong, Y.; Lee, B. Experimental demonstration of enhancing pump absorption rate in cladding-pumped ytterbium-doped fiber laser using pump-coupling long-period gratings. IEEE Photonics Technol. Lett. 2006, 18, 700–702. [Google Scholar] [CrossRef]
- Allsop, T.; Kalli, K.; Zhou, K.; Smith, G.; Laia, V.; Smith, G.; Dubov, M.; Webb, D.; Bennion, V. Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors. Opt. Commun. 2008, 281, 5092–5096. [Google Scholar]
- Long, J.; Zhi, W.; Yange, L.; Guiyun, K.; Xiaoyi, D. Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers. Opt. Express 2008, 16, 21119–21131. [Google Scholar] [CrossRef]
- Shujing, L.; Long, J.; Wei, J.; Dongning, W.; Changrui, L.; Ying, W. Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser. Opt. Express 2010, 18, 5496–5503. [Google Scholar] [CrossRef]
- D’Orazio, A.; De Sario, M.; Mescia, L.; Petruzzelli, V.; Prudenzano, F. Design of double-clad ytterbium doped microstructured fibre laser. Appl. Surf. Sci. 2005, 248, 499–502. [Google Scholar] [CrossRef]
- Prudenzano, F. Erbium-doped hole-assisted optical fiber amplifier: Design and optimization. J. Lightwave Technol. 2005, 23, 330–340. [Google Scholar] [CrossRef]
- Sabaiean, M.; Nadgaran, H.; De Sario, M.; Mescia, L.; Prudenzano, F. Thermal effects on double clad octagonal Yb: glass fiber laser. Opt. Mater. 2009, 31, 1300–1305. [Google Scholar] [CrossRef]
- Prudenzano, F.; Mescia, V.; Allegretti, L.; De Sario, M.; Palmisano, T.; Smektala, F.; Moizan, V.; Nazabal, V.; Troles, J. Design of Er3+-doped chalcogenide glass laser for MID-IR application. J. Non-Cryst. Solids 2009, 355, 1145–1148. [Google Scholar] [CrossRef]
- Li, L.; Schülzgen, A.; Temyanko, V.L.; Morrell, M.M.; Sabet, S.; Li, H.; Moloney, J.V.; Peyghambarian, N. Ultracompact cladding-pumped 35-mm-short fiber laser with 4.7-W single-mode. Applied Physics Letters. 2006, 88, 161106:1–161106:2. [Google Scholar]
- Prudenzano, F.; Mescia, L.; Allegretti, L.; Moizan, V.; Nazabal, V.; Smektala, F. Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers. Opt. Mater. 2010, 33, 241–245. [Google Scholar] [CrossRef]
- Mescia, L.; Smektala, F.; Prudenzano, F. New trends in amplifiers and sources via chalcogenide photonic crystal fibers. Int. J. Opt. 2012, 2012, E212091. [Google Scholar]
- Prudenzano, F.; Mescia, L.; Di Tommaso, A.; Surico, M.; De Sario, M. Design and refinement of rare earth doped multicore fiber lasers. Opt. Mater. 2013, 35, 1941–1946. [Google Scholar] [CrossRef]
- Rajan, G.; Ramakrishnan, M.; Semenova, Y.; Milenko, K.; Lesiak, P.; Domanski, A.W.; Wolinski, T.R.; Farrell, G. A photonic crystal fiber and fiber Bragg grating-based hybrid fiber-optic sensor. Syst. IEEE Sens. J. 2012, 12, 39–43. [Google Scholar] [CrossRef]
- Zou, Y.; Dong, X.; Lin, G.; Adhami, R. Wide range FBG displacement sensor based on twin-core fiber filter. J. Lightwave Technol. 2012, 30, 337–343. [Google Scholar] [CrossRef]
- Zhu, Y.; Shum, P.; Lu, C.; Lacquet, M.; Swart, P.; Chtcherbakov, A.; Spammer, S. Temperature insensitive measurements of static displacements using a fiber Bragg grating. Opt. Express 2003, 11, 1918–1924. [Google Scholar] [CrossRef]
- Guo, T.; Shao, L.; Tam, H.-Y.; Krug, A.; Albert, J. Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling. Opt. Express 2009, 17, 20651–20660. [Google Scholar] [CrossRef]
- Shao, L.Y.; Albert, J. Compact fiber-optic vector inclinometer. Opt. Lett. 2010, 35, 1034–1036. [Google Scholar] [CrossRef]
- Zhou, W.; Zhou, Y.; Dong, X.; Shao, L.-Y.; Cheng, J.; Albert, J. Fiber-optic curvature sensor based on cladding-mode Bragg grating excited by fiber multimode interferometer. IEEE Photonics J. 2012, 4, 1051–1057. [Google Scholar] [CrossRef]
- Rong, Q.; Qiao, X.; Zhang, J.; Wang, R.; Hu, M.; Feng, Z. Simultaneous measurement for displacement and temperature using fiber Bragg grating cladding mode based on core diameter mismatch. J. Lightwave Technol. 2012, 30, 1645–1650. [Google Scholar] [CrossRef]
- Gouveia, C.; Jorge, P.; Baptista, J.M.; Frazao, O. Temperature-independent curvature sensor using FBG cladding modes based on a core misaligned splice. IEEE Photonics Technol. Lett. 2011, 23, 804–806. [Google Scholar] [CrossRef]
- Qi, T.; Xiao, S.; Shi, J.; Yi, L.; Zhou, Z.; Bi, M.; Hu, W. Cladding-mode backward-recoupling-based displacement sensor incorporating fiber up taper and Bragg grating. IEEE Photonics J. 2013, 5, 7100608. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, K.; Yang, J. Novel target type flowmeter based on a differential fiber Bragg grating sensor. Measurement 2005, 38, 230–235. [Google Scholar] [CrossRef]
- Jewart, C.; McMillen, B.; Cho, S.K.; Chen, K.P. X-probe flow using self-powered active fiber Bragg gratings. Sens. Actuators A Phys. 2006, 127, 63–68. [Google Scholar] [CrossRef]
- Byrne, G.D.; James, S.W.; Tatam, R.P. A Bragg grating based fibre optic reference beam laser Doppler anemometer. Meas. Sci. Technol. 2001, 12, 909–913. [Google Scholar]
- Lien, V.; Vollmer, F. Microfluidic flow rate detection based on integrated optical fiber cantilever. Lab Chip 2007, 7, 1352–1356. [Google Scholar] [CrossRef]
- Lee, C.L.; Hong, W.Y.; Hsieh, H.J.; Weng, Z.Y. Air gap fiber Fabry-Pe´ rot interferometer for highly sensitive microairflow sensing. IEEE Photonics Technol. Lett. 2011, 23, 905–907. [Google Scholar] [CrossRef]
- Dong, X.; Zhou, Y.; Zhou, W.; Cheng, J.; Su, Z. Compact anemometer using silver-coated fiber Bragg grating. IEEE Photonics J. 2012, 5, 1381–1386. [Google Scholar]
- Kreger, S.; Calvert, S.; Udd, E. High Pressure Sensing Using Fiber Bragg Gratings Written in Birefringent Side Hole Fiber. In Proceedings of the 15th Optical Fiber Sensors Conference Technical Digest, Portland, OR, USA, 10 May 2002; pp. 355–358.
- Chen, T.; Chen, R.; Jewart, C.; Zhang, B.; Cook, K.; Canning, J.; Chen, K.P. Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing. Opt. Lett. 2011, 36, 3542–3544. [Google Scholar] [CrossRef]
- Jewart, C.M.; Wang, Q.; Canning, J.; Grobnic, D.; Mihailov, S.J.; Chen, K.P. Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing. Opt. Lett. 2010, 35, 1443–1445. [Google Scholar] [CrossRef]
- Chmielewska, E.; Urbanczyk, W.; Bock, W.J. Measurement of pressure and temperature sensitivities of a Bragg grating imprinted in a highly birefringent side-hole fiber. Appl. Opt. 2003, 42, 6284–6291. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, N.; Fink, T.; Li, H.; Peng, W.; Han, M. Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber. IEEE Photonics Technol. Lett. 2012, 24, 1519–1522. [Google Scholar]
- Khaliq, S.; James, S.W.; Tatam, R.P. Fiber-optic liquid-level sensor using a long-period grating. Opt. Lett. 2001, 26, 1224–1226. [Google Scholar] [CrossRef]
- Yun, B.; Chen, N.; Cui, Y. Highly sensitive liquid-level sensor based on etched fiber Bragg grating. IEEE Photonics Technol. Lett. 2007, 19, 1747–1749. [Google Scholar] [CrossRef]
- Fu, H.; Shu, X.; Zhang, A.; Liu, W.; Zhang, L.; He, S.; Bennion, I. Implementation and characterization of liquid-level sensor based on a long-period fiber grating mach-zehnder interferometer. IEEE Sens. J. 2011, 11, 2878–2883. [Google Scholar] [CrossRef]
- Homola, J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 2003, 377, 528–539. [Google Scholar] [CrossRef]
- Räther, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. In Springer Tracts in Modern Physics; Springer-Verlag: Berlin, Germany, 1988; Volume 11. [Google Scholar]
- Kretschmann, E. Die Bestimmung optischer Konstanten vonMetallen durch anregung von oberflächenplasmaschwingungen. Zeitschrift für Physik A: Hadrons and Nuclei 1971, 241, 313–324. [Google Scholar]
- Dostáleka, J.; Čtyrokýa, J.; Homolaa, J.; Bryndab, E.; Skalskýa, M.; Nekvindovác, P.; Špirkovác, J.; Škvord, J.; Schröfele, J. Surface plasmon resonance biosensor based on integrated optical waveguide. Sens. Actuators B Chem. 2001, 76, 8–12. [Google Scholar] [CrossRef]
- Gupta, B.D.; Verma, R.K. Surface plasmon resonance-based fiber optic sensors: Principle, probe designs, and some applications. J. Sens. 2009. [Google Scholar] [CrossRef]
- Obando, L.; Gentleman, D.; Holloway, J.; Booksh, K. Manufacture of robust surface plasmon resonance fiber optic based dip-probes. Sens. Actuators B Chem. 2004, 100, 439–449. [Google Scholar] [CrossRef]
- Esteban, Ó.; Díaz-Herrera, N.; Navarrete, M.; González-Cano, A. Surface plasmon resonance sensors based on uniform-waist tapered fibers in a reflective configuration. Appl. Opt. 2006, 45, 7294–7298. [Google Scholar] [CrossRef]
- He, Y.J.; Lo, Y.L.; Huang, J.F. Optical-fiber surface plasmon-resonance sensor employing long period fiber gratings in multiplexing. J. Opt. Soc. Am. B 2006, 23, 801–811. [Google Scholar] [CrossRef]
- Spacáková, B.; Homola, J. Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating. Opt. Express 2009, 17, 23254–23264. [Google Scholar] [CrossRef]
- Lu, Y.C.; Huang, W.P.; Jian, S.S. Influence of mode loss on the feasibility of grating-assisted optical fiber surface plasmon resonance refractive index sensors. J. Lightwave Technol. 2009, 27, 4804–4808. [Google Scholar] [CrossRef]
- Caucheteur, C.; Shevchenko, Y.; Shao, L.-Y.; Wuilpart, M.; Albert, J. High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement. Opt. Express 2011, 19, 1656–1664. [Google Scholar] [CrossRef]
- Schuster, T.; Herschel, R.; Neumann, N.; Schäffer, C.G. Miniaturized long-period fiber grating assisted surface Plasmon resonance sensor. J. Lightwave Technol. 2012, 30, 1003–1008. [Google Scholar]
- Miao, Y.; Zhang, K.; Liu, B.; Lin, W.; Zhang, H.; Lu, Y.; Yao, J. Ferrofluid-infiltrated microstructured optical fiber long-period grating. IEEE Photonics Technol. Lett. 2013, 25, 306–309. [Google Scholar] [CrossRef]
- Mescia, L.; Palmisano, T.; Surico, M.; Prudenzano, F. Long-period gratings for the optimization of cladding-pumped microstructured optical fiber laser. Opt. Mater. 2010, 33, 236–240. [Google Scholar] [CrossRef]
- Prudenzano, F.; Mescia, L.; Palmisano, T.; Surico, M.; De Sario, M.; Righini, G.C. Optimization of pump absorption in MOF lasers via multi-long-period gratings: Design strategies. Appl. Opt. 2012, 51, 1410–1420. [Google Scholar]
- Slavík, R.; Kulishov, M.; Park, Y.; Azaña, J. Long-period fiber-grating-based filter configuration enabling arbitrary linear filtering characteristics. Opt. Lett. 2009, 34, 1045–1047. [Google Scholar] [CrossRef]
- Kim, S.J.; Eom, T.J.; Lee, B.H.; Park, C.S. Optical temporal encoding/decoding of short pulses using cascaded long period fiber gratings. Opt. Express 2003, 11, 3034–3040. [Google Scholar] [CrossRef]
- Ashrafi, R.; Li, M.; Azaña, J. Tsymbol/s optical coding based on long-period gratings. IEEE Photonics Technol. Lett. 2013, 25, 910–913. [Google Scholar] [CrossRef]
- Slavik, R.; Park, Y.; Kulishov, M.; Azaña, J. Terahertz-bandwidth high-order temporal differentiators based on phase-shifted long-period fiber gratings. Opt. Lett. 2009, 34, 3116–3118. [Google Scholar] [CrossRef]
- Ashrafi, R.; Li, M.; Azaña, J. Coupling-strength-independent long-period grating designs for THz-bandwidth optical differentiators. IEEE Photonics J. 2013, 5, 7100311. [Google Scholar] [CrossRef]
- Shu, X.; Allsop, T.; Gwandu, B.; Zhang, L.; Bennion, I. High-temperature sensitivity of long-period gratings in B-Ge codoped fiber. IEEE Photonics Technol. Lett. 2001, 13, 818–820. [Google Scholar] [CrossRef]
- Wang, Z.; Ramachandran, S. Ultrasensitive long-period fiber gratings for broadband modulators and sensors. Opt. Lett. 2003, 28, 2458–2460. [Google Scholar] [CrossRef]
- Steinvurzel, P.; Moore, E.D.; Mägi, E.C.; Eggleton, B.J. Tuning properties of long period gratings in photonic bandgap fibers. Opt. Lett. 2006, 31, 2103–2105. [Google Scholar] [CrossRef]
- Potyrailo, R.A.; Hobbs, S.E.; Hieftje, G.M. Optical waveguide sensors in analytical chemistry: Today’s instrumentation, applications and trends for future development. Fresenius J. Anal.Chem. 1998, 362, 349–373. [Google Scholar] [CrossRef]
- McAdam, G.; Newman, P.J.; McKenzie, I.; Davis, C.; Hinton, B.R.W. Fiber optic sensors for detection of corrosion within Aircraft. Struct. Health Monit. 2005, 4, 47–56. [Google Scholar] [CrossRef]
- Mendoza, E.A.; Khalil, A.N.; Sun, Z.; Robinson, D.; Syracuse, S.J.; Egalon, C.O.; Gunther, M.F.; Lieberman, R.A. Embeddable distributed moisture and pH sensors for nondestructive inspection of aircraft lap joints. Proc. SPIE 1995, 2455, 102–112. [Google Scholar] [CrossRef]
- Mendoza, E.A.; Robinson, D.; Lieberman, R.A. Miniaturized integrated optic chemical sensors for environmental monitoring and remediation. Proc. SPIE 1996, 2836, 76–87. [Google Scholar] [CrossRef]
- Cordero, S.R.; Beshay, M.; Low, A.; Mukamal, H.; Ruiz, D.; Lieberman, R.A. A distributed fiber optic chemical sensor for hydrogen cyanide detection. Proc. SPIE 2005, 5993, 599302. [Google Scholar] [CrossRef]
- Cordero, S.R.; Mukamal, H.; Low, A.; Locke, E.P.; Lieberman, R.A. A fiber optic sensor for nerve agent. Proc. SPIE 2006, 6378, 63780U–63783U. [Google Scholar]
- Mukamal, H.; Cordero, S.R.; Ruiz, D.; Beshay, M.; Lieberman, R.A. Distributed fiber optic chemical sensor for hydrogen sulfide and chlorine detection. Proc. SPIE 2005, 6004, 600406. [Google Scholar] [CrossRef]
- Ghandehari, M.; Vimer, C.S. In situ monitoring of pH level with fiber optic evanescent field spectroscopy. NDT E Int. 2004, 37, 611–616. [Google Scholar] [CrossRef]
- Sinchenko, E.; Gibbs, W.E.K.; Mazzolini, A.P.; Stoddart, P.R. The effect of the cladding refractive index on an optical fiber evanescent-wave sensor. J. Lightwave Technol. 2013, 31, 3251–3257. [Google Scholar]
- Stewart, G.; Culshaw, B. Optical waveguide modelling and design for evanescent field chemical sensors. Opt. Quantum Electron. 1994, 26, S249–S259. [Google Scholar] [CrossRef]
- Schwotzer, G.; Latka, I.; Lehmann, H.; Willsch, R. Optical sensing of hydrocarbons in air or in water using UV absorption in the evanescnt field of fibers. Sens. Actuators B 1997, 38–39, 150–153. [Google Scholar]
- Gupta, B.D.; Dodeja, H.; Tomar, A.K. Fibre-optic evanescent field absorption sensor based on a U-shaped probe. Opt. Quantum Electron. 1996, 28, 1629–1639. [Google Scholar] [CrossRef]
- Zimmerman, B.; Burck, J.; Ache, H.J. Studies on siloxane polymers for NIR-evanescent wave absorbance sensor. Sens. Actuators B 1997, 41, 45–54. [Google Scholar] [CrossRef]
- Qing, D.-K.; Yamaguchi, I. Analysis of the sensitivity of optical waveguide chemical sensor for TM modes by the group-index method. J. Opt. Soc. Am. B 1999, 16, 1359–1369. [Google Scholar] [CrossRef]
- Buerck, J.; Roth, S.; Kraemer, K.; Scholz, M.; Klaas, N. Application of a fiber-optic NIR-EFA sensor system for in situ monitoring of aromatic hydrocarbons in contaminated groundwater. J. Hazard. Mater. 2001, 83, 11–28. [Google Scholar] [CrossRef]
- Prudenzano, F.; Mescia, L.; Allegretti, L.A.; Calò, G.; DʹOrazio, A.; De Sario, M.; Palmisano, T.; Petruzzelli, V. Design of an optical sensor array for hydrocarbon monitoring. Opt. Quantum Electron. 2009, 41, 55–68. [Google Scholar] [CrossRef]
- Mescia, L.; Prudenzano, F.; Allegretti, L.; Calò, G.; De Sario, M.; D’Orazio, A.; Maiorano, L.; Palmisano, T.; Petruzzelli, V. Design of silica-based photonic crystal fiber for biosensing applications. J. Non-Cryst. Solids 2009, 355, 1163–1166. [Google Scholar] [CrossRef]
- Palmisano, T.; Prudenzano, F.; Warren-Smith, S.C.; Monro, T.M. Design of exposed-core fiber for methadone monitoring in biological fluids. J. Non-Cryst. Solids 2011, 357, 2000–2004. [Google Scholar] [CrossRef]
- Kostecki, R.; Ebendorff-Heidepriem, H.; Davis, C.; McAdam, G.; Warren-Smith, S.C.; Monro, T.M. Silica exposed-core microstructured optical fibers. Opt. Mater. Express 2012, 2, 1538–1547. [Google Scholar] [CrossRef]
- Eggleton, B.J.; Kerbage, C.; Westbrook, P.S.; Windeler, R.S.; Hale, A. Microstructured optical fiber devices. Opt. Express 2001, 9, 698–713. [Google Scholar] [CrossRef]
- Bise, R.T.; Windeler, R.S.; Kranz, K.S.; Kerbage, C.; Eggleton, B.J.; Trevor., D.J. Tunable photonic band gap fiber. In Proc. Opt. Fiber Commun. Conf. Exhib. OSA Trends Opt. Photon. (Opt. Soc.Am. Washington); 2002; Volume 70, pp. 466–468. [Google Scholar]
- Wang, Y.; Tan, X.; Jin, W.; Ying, D.; Hoo, Y.L.; Liu, S. Temperature controlled transformation in fiber types of fluid-filled photonic crystal fibers and applications. Opt. Lett. 2010, 35, 88–90. [Google Scholar] [CrossRef]
- Yiou, S.; Delaye, P.; Rouvie, A.; Chinaud, J.; Frey, R.; Roosen, G.; Viale, P.; Février, S.; Roy, P.; Auguste, J.-L.; Blondy, J.-M. Stimulated Raman scattering in an ethanol core microstructured optical fiber. Opt. Express 2005, 13, 4786–4791. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, Y.; Yariv, A. Fabrication of functional microstructured optical fibers through a selective-filling technique. Appl. Phys. Lett. 2004, 85, 5182–5184. [Google Scholar] [CrossRef]
- Cordeiro, C.M.B.; dos Santos, E.M.; Cruz, C.H.B.; de Matos, C.J.S.; Ferreira, D.S. Lateral access to the holes of photonic crystal fibers—Selective filling and sensing applications. Opt. Express 2006, 14, 8403–8412. [Google Scholar] [CrossRef]
- Meneghini, C.; Caron, S.; Poulin, A.C.J.; Proulx, A.; Émond, V.; Paradis, P.; Paré, C.; Fougères, A. Determination of ethanol concentration by Raman spectroscopy in liquid-core microstructured optical fiber. IEEE Sens. J. 2008, 8, 1250–1255. [Google Scholar] [CrossRef]
- Ren, H.C.; Vollmer, F.; Arnold, S.; Libchaber, A. High-Q microsphere biosensor-analysis for adsorption ofrodlike bacteria. Opt. Express 2007, 15, 17410–17423. [Google Scholar] [CrossRef]
- Vollomer, F.; Stephen, A. Whispering-gallery-mode biosensing: Label-free detection down to single molecules. Nat. Methods 2008, 5, 591–596. [Google Scholar] [CrossRef]
- Yang, L.; Vahala, K.J. Gain functionalization of silica microresonators. Opt. Lett. 2008, 28, 592–594. [Google Scholar] [CrossRef]
- Murugan, G.S.; Zervas, M.N.; Panitchob, Y.; Wilkinson, J.S. Integrated Nd-doped borosilicate glass microsphere laser. Opt. Lett. 2011, 36, 73–75. [Google Scholar]
- Chen, S.Y.; Sun, T.; Grattan, K.T.V.; Annapurna, K.; Sen, R. Characteristics of Er and ErYbCr doped phosphate microsphere fibre lasers. Opt. Commun. 2009, 282, 3765–3769. [Google Scholar] [CrossRef]
- Feron, P. Whispering Gallery Mode Lasers in Erbium doped fluoride glasses. Annales de la Fondation Louis de Broglie 2004, 29, 317–329. [Google Scholar]
- Nunzi Conti, G.; Chiasera, A.; Ghisa, L.; Berneschi, S.; Brenci, M.; Dumeige, Y.; Pelli, S.; Sebastiani, S.; Feron, P.; Ferrari, M.; Righini, G.C. Spectroscopic and lasing properties of Er3+ doped glass microspheres. J. Non-Cryst. Solids 2006, 352, 2360–2363. [Google Scholar] [CrossRef]
- Elliot, G.R.; Hewak, D.W.; Senthil Murugan, G.; Wilkinson, J.S. Chalcogenide glass microspheres; their production, characterization and potential. Opt. Express 2007, 15, 17542–17553. [Google Scholar] [CrossRef]
- Mescia, L.; Prudenzano, F.; De Sario, M.; Palmisano, T.; Ferrari, M.; Righini, G.C. Design of rare-earth-doped microspheres. IEEE Photonics Technol. Lett. 2010, 22, 422–424. [Google Scholar] [CrossRef]
- Kouki, T.; Makoto, T. Optical microsphere amplification system. Opt. Lett. 2007, 32, 3197–3199. [Google Scholar] [CrossRef]
- Boucher, Y.G.; Feron, P. Generalized transfer function: A simple model applied to active single-mode microring resonators. Opt. Commun. 2009, 282, 3940–3947. [Google Scholar] [CrossRef]
- Mescia, L.; Bia, P.; De Sario, M.; Di Tommaso, A.; Prudenzano, F. Design of mid-infrared amplifiers based on fiber taper coupling to erbium-doped microspherical resonator. Opt. Express 2012, 20, 7616–7629. [Google Scholar]
- Mescia, L.; Bia, P.; Losito, O.; Prudenzano, F. Design of Mid-IR Er3+-doped microsphere laser. IEEE Photonics J. 2013, 5, 1501308. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mescia, L.; Prudenzano, F. Advances on Optical Fiber Sensors. Fibers 2014, 2, 1-23. https://doi.org/10.3390/fib2010001
Mescia L, Prudenzano F. Advances on Optical Fiber Sensors. Fibers. 2014; 2(1):1-23. https://doi.org/10.3390/fib2010001
Chicago/Turabian StyleMescia, Luciano, and Francesco Prudenzano. 2014. "Advances on Optical Fiber Sensors" Fibers 2, no. 1: 1-23. https://doi.org/10.3390/fib2010001