A CNN-Based Method for Quantitative Assessment of Steel Microstructures in Welded Zones
Abstract
:Highlights:
- The study demonstrates the viability and effectiveness of using convolutional neural networks (CNNs) for automated quantification of steel microconstituents.
- Among the tested models, VGG19 achieved the best performance, with a mean absolute error (MAE) below 5%, confirming its suitability for this task.
- CNN-based approaches offer a reliable alternative to manual methods, significantly improving speed, consistency, and scalability in microstructural analysis.
- These results suggest that researchers and engineers can adopt deep learning models, such as VGG19, to replace manual quantification in metallurgical quality control processes.
Abstract
1. Introduction
- PF(G): Ferrite grains are usually polygonal, located within the previous austenitic grains, and three times larger than the adjacent ferrite grains or sheets. They appear in the form of clear and smooth veins, outlining the columnar grain contour of the austenite, giving it an elongated shape. In general, high amounts of PF(G) are undesirable in welds that must have high resistance to brittle fracture since constituents rich in carbon and impurities can be observed among their grains [21,23].
- PF(I): Presents polygonal grain veins associated with previous austenitic boundaries. It is more common in welds with a low cooling rate and a low content of alloying elements [21].
- FS(A): It appears in the form of coarse grains and is parallel, always growing along a well-defined plane, forming two or more plates of parallel ferrite. Such morphology, precisely with the presence of films of constituents rich in carbon and fragile in their contours, makes FS(A) little desired in the molten zone of welds that must present a certain degree of toughness [23].
- FS(NA): Ferrite involving microphases that appear approximately equiaxed or distributed randomly or isolated AF laminae.
- AF: When seen in two-dimensional cross-sections, AF is commonly described as a complicated microstructure made up of tiny, elongated grains. In particular, these grains have a three-dimensional appearance, taking the form of thin, lenticular plates. Such a chaotic arrangement contributes to AF’s superior mechanical properties, particularly its strength, making it a highly desirable microstructure [3].
- To assess the effectiveness of CNNs in the task of quantifying microconstituents in steel micrographs.
- To identify the CNN model that performs best for the considered application.
- To analyze how pre-trained CNN models perform in comparison to models trained entirely from zero on the available dataset.
2. Related Works
3. Materials and Methods
3.1. Experimental Data
3.2. Data Preprocessing
3.3. Artificial Neural Network (ANN)
3.4. Convolutional Neural Networks (CNNs)
3.5. Assessment Metrics
3.6. Optimizers
4. Results and Discussion
4.1. Quantification vs. Recognition
4.2. Model Evaluation and Error Behavior
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- DeHoff, R. Engineering of Microstructures. Mater. Res. 1999, 2, 111–126. [Google Scholar] [CrossRef]
- Li, J.C.M. Microstructure and Properties of Materials; World Scientific: Singapore, 1996; Volume 2. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H.; Honeycombe, R.W.K. Steels: Microstructure and Properties, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Azimi, S.M.; Britz, D.; Engstler, M.; Fritz, M.; Mücklich, F. Advanced steel microstructural classification by deep learning methods. Sci. Rep. 2018, 8, 2128. [Google Scholar] [CrossRef] [PubMed]
- Trolier-McKinstry, S.; Newnham, R.E. Materials Engineering: Bonding, Structure, and Structure-Property Relationships, 1st ed.; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Gola, J.; Britz, D.; Staudt, T.; Winter, M.; Schneider, A.S.; Ludovici, M.; Mücklich, F. Advanced microstructure classification by data mining methods. Comput. Mater. Sci. 2018, 148, 324–335. [Google Scholar] [CrossRef]
- Schorr, S.; Weidenthaler, C. (Eds.) Crystallography in Materials Science: From Structure-Property Relationships to Engineering; De Gruyter: Berlin, Germany, 2021. [Google Scholar] [CrossRef]
- Davim, J.P. (Ed.) Welding Technology; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Phillips, D.H. Welding Engineering: An Introduction, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2023. [Google Scholar]
- Leng, Y. Materials Characterization: Introduction to Microscopic and Spectroscopic Methods; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Abson, D.J. Acicular ferrite and bainite in C–Mn and low-alloy steel arc weld metals. Sci. Technol. Weld. Join. 2018, 23, 635–648. [Google Scholar] [CrossRef]
- ASTM E562-19e1; Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count. Book of Standards Volume: 03.01. ASTM: West Conshohocken, PA, USA, 2019; p. 7. [CrossRef]
- Campbell, A.; Murray, P.; Yakushina, E.; Marshall, S.; Ion, W. New methods for automatic quantification of microstructural features using digital image processing. Mater. Des. 2018, 141, 395–406. [Google Scholar] [CrossRef]
- Ma, W.; Kautz, E.J.; Baskaran, A.; Chowdhury, A.; Joshi, V.; Yener, B.; Lewis, D.J. Image-driven discriminative and generative machine learning algorithms for establishing microstructure–processing relationships. J. Appl. Phys. 2020, 128, 134901. [Google Scholar] [CrossRef]
- ASTM E112-24; Standard Test Methods for Determining Average Grain Size. Book of Standards Volume: 03.01. ASTM: West Conshohocken, PA, USA, 2024; p. 28. [CrossRef]
- ASTM E3-11(2017); Standard Guide for Preparation of Metallographic Specimens. Book of Standards Volume: 03.01. ASTM: West Conshohocken, PA, USA, 2017; p. 12. [CrossRef]
- Franco, V.R.; Hott, M.C.; Andrade, R.G.; Goliatt, L. Hybrid machine learning methods combined with computer vision approaches to estimate biophysical parameters of pastures. Evol. Intell. 2023, 16, 1271–1284. [Google Scholar] [CrossRef]
- Fayer, G.; Lima, L.; Miranda, F.; Santos, J.; Campos, R.; Bignoto, V.; Andrade, M.; Moraes, M.; Ribeiro, C.; Capriles, P.; et al. A temporal fusion transformer deep learning model for long-term streamflow forecasting: A case study in the Funil Reservoir, Southeast Brazil. Knowl.-Based Eng. Sci. 2023, 4, 73–88. [Google Scholar]
- Bodini, M. Daily Streamflow Forecasting Using AutoML and Remote-Sensing-Estimated Rainfall Datasets in the Amazon Biomes. Signals 2024, 5, 659–689. [Google Scholar] [CrossRef]
- Durmaz, A.R.; Potu, S.T.; Romich, D.; Möller, J.J.; Nützel, R. Microstructure quality control of steels using deep learning. Front. Mater. 2023, 10, 1222456. [Google Scholar] [CrossRef]
- Modenesi, P.J. Soldabilidade dos Aços Transformáveis; Universidade Federal de Minas Gerais: Minas Gerais, BZ, USA, 2012. [Google Scholar]
- Singh, R. Applied Welding Engineering: Processes, Codes, and Standards, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2016. [Google Scholar] [CrossRef]
- Silva, G.C.; de Castro, J.A.; Filho, R.M.M.; Caldeira, L.; Lagares, M.L. Comparing two different arc welding processes through the welding energy: A selection analysis based on quality and energy consumption. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 301. [Google Scholar] [CrossRef]
- Abson, D.J. Guide to the Light Microscope Examination of Ferritic Steel Weld Metals; Technical Report IIW Doc. IX-1533-88; International Institute of Welding: Paris, France, 1988. [Google Scholar]
- Devezas, T.; Leitão, J.; Sarygulov, A. (Eds.) Industry 4.0: Entrepreneurship and Structural Change in the New Digital Landscape; Springer: Cham, Switzerland, 2017; p. 431. [Google Scholar] [CrossRef]
- Suleiman, Z.; Shaikholla, S.; Dikhanbayeva, D.; Shehab, E.; Turkyilmaz, A. Industry 4.0: Clustering of concepts and characteristics. Cogent Eng. 2022, 9, 2034264. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, T.; Zhang, G. Artificial Intelligence for Materials Science; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Winston, P.H. Artificial Intelligence, 3rd ed.; Addison-Wesley: Boston, MA, USA, 1992; p. 737. [Google Scholar]
- Hunt, E.B. Artificial Intelligence; Academic Press: Cambridge, MA, USA, 2014; p. 484. [Google Scholar]
- Bulgarevich, D.S.; Tsukamoto, S.; Kasuya, T.; Demura, M.; Watanabe, M. Automatic steel labeling on certain microstructural constituents with image processing and machine learning tools. Sci. Technol. Adv. Mater. 2019, 20, 532–542. [Google Scholar] [CrossRef] [PubMed]
- Campesato, O. Artificial Intelligence, Machine Learning, and Deep Learning; Mercury Learning and Information: Herndon, VA, USA, 2020; p. 319. [Google Scholar]
- Rosebrock, A. Deep Learning for Computer Vision with Python; PyImageSearch: Philadelphia, PA, USA, 2017. [Google Scholar]
- Zaefferer, S.; Ohlert, J.; Bleck, W. A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel. Acta Mater. 2004, 52, 2765–2778. [Google Scholar] [CrossRef]
- Wu, J.; Wray, P.J.; Garcia, C.I.; Hua, M.; DeArdo, A.J. Image Quality Analysis: A New Method of Characterizing Microstructures. ISIJ Int. 2005, 45, 254–262. [Google Scholar] [CrossRef]
- DeArdo, A.d.; Garcia, C.; Cho, K.; Hua, M. New Method of Characterizing and Quantifying Complex Microstructures in Steels. Mater. Manuf. Process. 2010, 25, 33–40. [Google Scholar] [CrossRef]
- Randle, V. Electron backscatter diffraction: Strategies for reliable data acquisition and processing. Mater. Charact. 2009, 60, 913–922. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Networks Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef]
- Bodini, M. A Review of Facial Landmark Extraction in 2D Images and Videos Using Deep Learning. Big Data Cogn. Comput. 2019, 3, 14. [Google Scholar] [CrossRef]
- Boccignone, G.; Bodini, M.; Cuculo, V.; Grossi, G. Predictive Sampling of Facial Expression Dynamics Driven by a Latent Action Space. In Proceedings of the 2018 14th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Las Palmas de Gran Canaria, Spain, 26–29 November 2018; pp. 143–150. [Google Scholar] [CrossRef]
- Bodini, M.; D’Amelio, A.; Grossi, G.; Lanzarotti, R.; Lin, J. Single Sample Face Recognition by Sparse Recovery of Deep-Learned LDA Features. In Proceedings of the Advanced Concepts for Intelligent Vision Systems, Poitiers, France, 24–27 September 2018; Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P., Eds.; Springer: Cham, Switzerland, 2018; pp. 297–308. [Google Scholar] [CrossRef]
- Pokuri, B.S.S.; Ghosal, S.; Kokate, A.; Sarkar, S.; Ganapathysubramanian, B. Interpretable deep learning for guided microstructure-property explorations in photovoltaics. Npj Comput. Mater. 2019, 5, 95. [Google Scholar] [CrossRef]
- Lopez Pinaya, W.H.; Vieira, S.; Garcia-Dias, R.; Mechelli, A. Chapter 10—Convolutional Neural Networks; Machine Learning; Mechelli, A., Vieira, S., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 173–191. [Google Scholar] [CrossRef]
- Che, L.; He, Z.; Zheng, K.; Si, T.; Ge, M.; Cheng, H.; Zeng, L. Deep learning in alloy material microstructures: Application and prospects. Mater. Today Commun. 2023, 37, 107531. [Google Scholar] [CrossRef]
- DeCost, B.L.; Holm, E.A. A computer vision approach for automated analysis and classification of microstructural image data. Comput. Mater. Sci. 2015, 110, 126–133. [Google Scholar] [CrossRef]
- Papa, J.P.; Nakamura, R.Y.M.; Albuquerque, V.; Falcão, A.X. Computer techniques towards the automatic characterization of graphite particles in metallographic images of industrial materials. Expert Syst. Appl. 2013, 40, 590–597. [Google Scholar] [CrossRef]
- Souza, A.C.; Silva, G.C.; Caldeira, L.; de Almeida Nogueira, F.M.; Junior, M.L.L.; de Aguiar, E.P. An enhanced method for the identification of ferritic morphologies in welded fusion zones based on gray-level co-occurrence matrix: A computational intelligence approach. Proc. Inst. Mech. Eng. Part C 2021, 235, 1228–1240. [Google Scholar] [CrossRef]
- Nunes, T.M.; de Albuquerque, V.H.C.; Papa, J.P.; Silva, C.C.; Normando, P.G.; Moura, E.P.; Tavares, J.M.R. Automatic microstructural characterization and classification using artificial intelligence techniques on ultrasound signals. Expert Syst. Appl. 2013, 40, 3096–3105. [Google Scholar] [CrossRef]
- Albuquerque, V.H.C.D.; Tavares, J.M.R.; Cortez, P.C. Quantification of the microstructures of hypoeutectic white cast iron using mathematical morphology and an artificial neural network. Int. J. Microstruct. Mater. Prop. 2010, 5, 52–64. [Google Scholar] [CrossRef]
- Chowdhury, A.; Kautz, E.; Yener, B.; Lewis, D. Image driven machine learning methods for microstructure recognition. Comput. Mater. Sci. 2016, 123, 176–187. [Google Scholar] [CrossRef]
- Ling, J.; Hutchinson, M.; Antono, E.; DeCost, B.; Holm, E.A.; Meredig, B. Building data-driven models with microstructural images: Generalization and interpretability. Mater. Discov. 2017, 10, 19–28. [Google Scholar] [CrossRef]
- DeCost, B.L.; Francis, T.; Holm, E.A. Exploring the microstructure manifold: Image texture representations applied to ultrahigh carbon steel microstructures. Acta Mater. 2017, 133, 30–40. [Google Scholar] [CrossRef]
- Lorena, G.; Robinson, G.; Stefania, P.; Pasquale, C.; Fabiano, B.; Franco, M. Automatic Microstructural Classification with Convolutional Neural Network. In Proceedings of the Information and Communication Technologies of Ecuador (TIC.EC): TICEC 2018, Guayaquil, Ecuador, 21–23 November 2018; Advances in Intelligent Systems and, Computing. Botto-Tobar, M., Barba-Maggi, L., González-Huerta, J., Villacrés-Cevallos, P., Gómez, O.S., Uvidia-Fassler, M., Eds.; Springer: Cham, Switzerland, 2019; Volume 884. [Google Scholar] [CrossRef]
- Kim, H.; Inoue, J.; Kasuya, T. Unsupervised microstructure segmentation by mimicking metallurgists’ approach to pattern recognition. Sci. Rep. 2020, 10, 17835. [Google Scholar] [CrossRef]
- Holm, E.A.; Cohn, R.; Gao, N.; Kitahara, A.R.; Matson, T.P.; Lei, B.; Yarasi, S.R. Overview: Computer vision and machine learning for microstructural characterization and analysis. Metall. Mater. Trans. A 2020, 51, 5985–5999. [Google Scholar] [CrossRef]
- Perera, R.; Guzzetti, D.; Agrawal, V. Optimized and autonomous machine learning framework for characterizing pores, particles, grains and grain boundaries in microstructural images. Comput. Mater. Sci. 2021, 196, 110524. [Google Scholar] [CrossRef]
- Warmuzek, M.; Żelawski, M.; Jałocha, T. Application of the convolutional neural network for recognition of the metal alloys microstructure constituents based on their morphological characteristics. Comput. Mater. Sci. 2021, 199, 110722. [Google Scholar] [CrossRef]
- Baskaran, A.; Kane, G.; Biggs, K.; Hull, R.; Lewis, D. Adaptive characterization of microstructure dataset using a two stage machine learning approach. Comput. Mater. Sci. 2020, 177, 109593. [Google Scholar] [CrossRef]
- Mishra, S.P.; Rahul, M. A comparative study and development of a novel deep learning architecture for accelerated identification of microstructure in materials science. Comput. Mater. Sci. 2021, 200, 110815. [Google Scholar] [CrossRef]
- Arumugam, D.; Kiran, R. Compact representation and identification of important regions of metal microstructures using complex-step convolutional autoencoders. Mater. Des. 2022, 223, 111236. [Google Scholar] [CrossRef]
- Jung, J.H.; Lee, S.J.; Kim, H.S. Estimation of Average Grain Size from Microstructure Image Using a Convolutional Neural Network. Materials 2022, 15, 6954. [Google Scholar] [CrossRef]
- Zhu, B.; Chen, Z.; Hu, F.; Dai, X.; Wang, L.; Zhang, Y. Feature extraction and microstructural classification of hot stamping ultra-high strength steel by machine learning. JOM 2022, 74, 3466–3477. [Google Scholar] [CrossRef]
- Tsutsui, K.; Matsumoto, K.; Maeda, M.; Takatsu, T.; Moriguchi, K.; Hayashi, K.; Morito, S.; Terasaki, H. Mixing effects of SEM imaging conditions on convolutional neural network-based low-carbon steel classification. Mater. Today Commun. 2022, 32, 104062. [Google Scholar] [CrossRef]
- Motyl, M.; Madej, Ł. Supervised pearlitic–ferritic steel microstructure segmentation by U-Net convolutional neural network. Arch. Civ. Mech. Eng. 2022, 22, 206. [Google Scholar] [CrossRef]
- Khan, A.H.; Sarkar, S.S.; Mali, K.; Sarkar, R. A Genetic Algorithm Based Feature Selection Approach for Microstructural Image Classification. Exp. Tech. 2022, 46, 335–347. [Google Scholar] [CrossRef]
- Mishra, S.P.; Rahul, M. A detailed study of convolutional neural networks for the identification of microstructure. Mater. Chem. Phys. 2023, 308, 128275. [Google Scholar] [CrossRef]
- Khurjekar, I.D.; Conry, B.; Kesler, M.S.; Tonks, M.R.; Krause, A.R.; Harley, J.B. Automated, high-accuracy classification of textured microstructures using a convolutional neural network. Front. Mater. 2023, 10, 1086000. [Google Scholar] [CrossRef]
- Lagares, M.L.; Silva, G.C.; Caldeira, L. Fusion zone microstructure image dataset of the flux-cored and shielded metal arc welding processes. Data Brief 2020, 33, 106353. [Google Scholar] [CrossRef] [PubMed]
- Aitchison, J. Principles of compositional data analysis. In Multivariate Analysis and Its Applications; Institute of Mathematical Statistics: Waite Hill, OH, USA, 1994; pp. 73–81. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Dodge, S.; Karam, L. Understanding how image quality affects deep neural networks. In Proceedings of the 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), Lisbon, Portugal, 6–8 June 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks and Learning Machines; Pearson Education: London, UK, 2009; Volume 3, p. 936. [Google Scholar]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Zhao, H.; Burkhart, C.; Brinson, L.C.; Chen, W. A Transfer Learning Approach for Microstructure Reconstruction and Structure-property Predictions. Sci. Rep. 2018, 8, 13461. [Google Scholar] [CrossRef]
- Shen, L.; Margolies, L.R.; Rothstein, J.H.; Fluder, E.; McBride, R.; Sieh, W. Deep Learning to Improve Breast Cancer Detection on Screening Mammography. Sci. Rep. 2019, 9, 12495. [Google Scholar] [CrossRef]
- Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow; O’Reilly Media: Sebastopol, CA, USA, 2022. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.E.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R, 2nd ed.; Springer: New York, NY, USA, 2021; p. 607. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Bisong, E. Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners, 1st ed.; Apress: New York, NY, USA, 2019; p. 348. [Google Scholar]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 6105–6114. [Google Scholar]
- Sandler, M.; Howard, A.G.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar] [CrossRef]
ASTM Standard | Title | Description |
---|---|---|
ASTM E562 [12] | Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count | Used to estimate volume fractions of microstructural constituents using a point-counting method. |
ASTM E112 [15] | Standard Test Methods for Determining Average Grain Size | Provides methods (comparison, planimetric, and intercept) for determining average grain size in metallic materials. |
ASTM E3 [16] | Standard Guide for Preparation of Metallographic Specimens | Describes procedures for cutting, mounting, grinding, and polishing specimens for metallographic examination. |
Reference | Model | Main Result |
---|---|---|
Azimi et al. [4] | CNN with max-voting | Achieved 93.94% accuracy in microstructure classification of low-carbon steel. |
Lorena et al. [52] | LeNet with additional layers | Improved classification accuracy for ultrahigh-carbon steel microstructures. |
Kim et al. [53] | CNN + SLIC | Enabled unsupervised segmentation of low-carbon steel microstructures. |
Holm et al. [54] | Various CNNs | Reviewed CNN-based microstructural analysis techniques. |
Perera et al. [55] | ML framework | Identified pores, particles, grains, and grain boundaries. |
Warmuzek et al. [56] | DL-based approach | Classified morphological features in alloy microstructures. |
Baskaran et al. [57] | CNN + HOG | Achieved 93.00 ± 1.17% accuracy in titanium alloy segmentation. |
Mishra and Rahul [58] | ResNet, VGG, DenseNet | Optimized DenseNet achieved 94.89% accuracy for high-entropy-alloy classification. |
Arumugam and Kiran [59] | CNN framework | Identified critical pixel regions in ferrite–pearlite microstructures. |
Jung et al. [60] | CNN | Estimated average grain size from microstructural images. |
Zhu et al. [61] | CNN + GLCM | Compared CNN with GLCM for microstructural feature extraction. |
Tsutsui et al. [62] | CNN | Addressed class imbalance in bainite and martensite microstructures. |
Motyl and Madej [63] | U-Net CNN | Improved classification and quantification of pearlitic–ferritic microstructures. |
Khan et al. [64] | CNN + Genetic Algorithm | Enhanced feature selection for microstructural image classification. |
Durmaz et al. [20] | DL-based approach | Achieved 96% accuracy for bainite/martensite classification. |
Mishra and Rahul [65] | VGG, Inception, ResNet, MobileNet | Used saliency maps to analyze feature importance in alloy micrographs. |
Khurjekar et al. [66] | CNN | Improved classification of textured and untextured microstructures. |
Image | PF(G) | PF(I) | AF | FS(NA) | FS(A) |
---|---|---|---|---|---|
1 | 26.04% | 1.56% | 10.94% | 47.40% | 14.06% |
2 | 34.38% | 4.17% | 11.98% | 39.06% | 10.42% |
3 | 33.85% | 3.13% | 20.31% | 42.71% | 1.00% |
4 | 31.25% | 4.17% | 7.81% | 47.40% | 9.38% |
5 | 33.33% | 3.13% | 18.23% | 40.10% | 5.21% |
6 | 45.83% | 3.65% | 11.98% | 37.50% | 1.04% |
7 | 41.67% | 3.65% | 16.67% | 35.94% | 2.08% |
8 | 50.00% | 4.17% | 16.67% | 23.44% | 5.73% |
CNN Model | Main Features |
---|---|
AlexNet [77] | First large-scale CNN to achieve breakthrough performance on ImageNet; used ReLU activation and multiple GPUs. It has 8 layers, ReLU activation, overlapping max pooling, dropout for regularization. |
VGG16 [78] | Emphasized the use of small (3 × 3) convolutional filters for increased depth; significantly improved accuracy over AlexNet. Features: 16 layers, small 3 × 3 filters, deeper architecture, uniform layer design. |
VGG19 [78] | Deeper version of VGG16 with even more 3 × 3 convolutional layers; marginally better performance than VGG16, with 19 layers, similar to VGG16 but deeper, improved feature extraction. |
InceptionV3 [79] | Introduced Inception modules to allow for wider networks with reduced computational cost; used factorization of convolutions. Features: Inception modules, factorized convolutions, asymmetric filters, batch normalization [32]. |
Xception [80] | Extreme version of Inception where each 1 × 1 convolution is replaced by a depthwise separable convolution; further improves performance and efficiency; depthwise separable convolutions, linear residual connections, optimized computational efficiency. |
Architecture | Time (min) | R2 | MAE | RMSE |
---|---|---|---|---|
AlexNet | 338.4 | 0.782 ± 0.009 | 5.731 ± 0.12 | 7.978 ± 0.17 |
VGG16 | 1508.4 | 0.758 ± 0.007 | 6.018 ± 0.10 | 8.411 ± 0.14 |
Xception | 673.4 | 0.724 ± 0.013 | 6.459 ± 0.13 | 8.978 ± 0.21 |
VGG19 | 510.2 | 0.838 ± 0.001 | 5.014 ± 0.02 | 6.876 ± 0.03 |
Inception | 506.8 | 0.659 ± 0.021 | 7.215 ± 0.181 | 9.973 ± 0.29 |
Fig. | PF(G) | PF(I) | AF | FS(NA) | FS(A) |
---|---|---|---|---|---|
Figure 8a | 44.0/47.0 (−6.4%) | 7.0/8.0 (−12.5%) | 12.0/11.0 (9.1%) | 33.0/32.0 (3.1%) | 4.0/1.0 (300.0%) |
Figure 8b | 53.0/49.0 (8.2%) | 5.0/6.0 (−16.7%) | 13.0/12.0 (8.3%) | 25.0/29.0 (−13.8%) | 4.0/4.0 (0.0%) |
Figure 8c | 34.0/34.0 (0.0%) | 5.0/4.0 (25.0%) | 13.0/12.0 (8.3%) | 41.0/39.0 (5.1%) | 6.0/10.0 (−40.0%) |
Figure 8d | 30.0/31.0 (−3.2%) | 7.0/4.0 (75.0%) | 15.0/14.0 (7.1%) | 43.0/42.0 (2.4%) | 6.0/9.0 (−33.3%) |
Figure 8e | 26.0/22.0 (18.2%) | 4.0/3.0 (33.3%) | 18.0/19.0 (−5.3%) | 47.0/46.0 (2.2%) | 5.0/9.0 (−44.4%) |
Figure 8f | 33.0/31.0 (6.5%) | 5.0/4.0 (25.0%) | 13.0/8.0 (62.5%) | 42.0/47.0 (−10.6%) | 6.0/9.0 (−33.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, C.D.d.; Filgueiras, T.T.; Lagares, M.L., Jr.; Macêdo, B.d.S.; Saporetti, C.M.; Bodini, M.; Goliatt, L. A CNN-Based Method for Quantitative Assessment of Steel Microstructures in Welded Zones. Fibers 2025, 13, 66. https://doi.org/10.3390/fib13050066
Almeida CDd, Filgueiras TT, Lagares ML Jr., Macêdo BdS, Saporetti CM, Bodini M, Goliatt L. A CNN-Based Method for Quantitative Assessment of Steel Microstructures in Welded Zones. Fibers. 2025; 13(5):66. https://doi.org/10.3390/fib13050066
Chicago/Turabian StyleAlmeida, Cássio Danelon de, Thales Tozatto Filgueiras, Moisés Luiz Lagares, Jr., Bruno da Silva Macêdo, Camila Martins Saporetti, Matteo Bodini, and Leonardo Goliatt. 2025. "A CNN-Based Method for Quantitative Assessment of Steel Microstructures in Welded Zones" Fibers 13, no. 5: 66. https://doi.org/10.3390/fib13050066
APA StyleAlmeida, C. D. d., Filgueiras, T. T., Lagares, M. L., Jr., Macêdo, B. d. S., Saporetti, C. M., Bodini, M., & Goliatt, L. (2025). A CNN-Based Method for Quantitative Assessment of Steel Microstructures in Welded Zones. Fibers, 13(5), 66. https://doi.org/10.3390/fib13050066