The Use of Nanofibers in Regenerative Endodontic Therapy—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
- #1—“Nanofibers”[Mesh] OR “Nanofibers”[tw] OR “Tissue Scaffolds”[Mesh];
- #2—“Endodontics”[Mesh] OR “Regenerative Endodontics”[Mesh] OR “Root Canal Preparation”[Mesh];
- #3—(“Nanofibers”[Mesh] OR “Nanofibers”[tw] OR “Tissue Scaffolds”[Mesh]) AND (“Endodontics”[Mesh] OR “Regenerative Endodontics”[Mesh] OR “Root Canal Preparation”[Mesh]).
3. Results
4. Discussion
4.1. Nanofiber Obtaining Process, Characteristics, and Dynamics
4.2. Antimicrobial Assessment
4.3. Cell Viability, Differentiation, Proliferation, and Toxicity Assessment
4.4. Challenges and Future Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Abbreviation | Meaning |
MTA | Mineral trioxide aggregate |
EB | Evoked bleeding |
TAP | Triple antibiotic paste |
MET | Metronidazole |
CIP | Ciprofloxacin |
MINO | Minocycline |
DAP | Double antibiotic paste |
PDS | Polydioxanone |
HNTs | Halloysite aluminosilicate clay nanotubes |
TB-SC | Tubular scaffold poly(caprolactone) |
FN | Fibronectin |
H | Collagen hydrogel |
CA/ox-PULL/GEL | Cellulose acetate/oxidized pullulan/gelatin |
BGNPs | Bioactive glass nanoparticles |
B-BGNPs | Boron-modified bioactive glass nanoparticles |
B | Boron |
SEM | Scanning electron microscopy |
FTIR | Fourier-transform infrared spectroscopy |
TEM | Transmission electron microscopy |
HPLC | High-performance liquid chromatography |
Pg | Porphyromonas gingivalis |
Ef | Enterococcus faecalis |
An | Actinomyces naeslundii |
Fn | Fusobacterium nucleatum |
CLSM | Confocal laser scanning microscopy |
PBS | Phosphate-buffered solution |
H&E | Hematoxylin–eosin |
TA-3DC | Triple antibiotic-eluting constructs |
qPCR | Quantitative polymerase chain reaction |
EthD-1 | Ethidium homodimer |
WA | Water absorption |
ALP | Alkaline phosphatase |
DPP | Dentin phosphoprotein |
DSPP | Dentin sialophosphoprotein |
OPN | Osteopontin |
ITGA5, ITGAV | Genes that encode the protein integrin α 5 and α V |
COL1A1, COL3A1 | Genes that encode collagen type I and III |
hDPSCs | Human-derived pulp cells |
PCL | Poly(epsilon caprolactone) |
PLA | Polylactic acid |
PGA | Polyglycolic acid |
Mw | Molecular weight |
SBF | Simulated body fluid |
References
- Tanner, A.C.R.; Kressirer, C.A.; Faller, L.L. Understanding Caries from the Oral Microbiome Perspective. J. Calif. Dent. Assoc. 2016, 44, 437–446. [Google Scholar] [CrossRef]
- Tong, H.J.; Seremidi, K.; Stratigaki, E.; Kloukos, D.; Duggal, M.; Gizani, S. Deep Dentine Caries Management of Immature Permanent Posterior Teeth with Vital Pulp: A Systematic Review and Meta-Analysis. J. Dent. 2022, 124, 104214. [Google Scholar] [CrossRef]
- Chawhuaveang, D.D.; Yu, O.Y.; Yin, I.X.; Lam, W.Y.-H.; Mei, M.L.; Chu, C.-H. Acquired Salivary Pellicle and Oral Diseases: A Literature Review. J. Dent. Sci. 2021, 16, 523–529. [Google Scholar] [CrossRef]
- Huang, R.; Li, M.; Gregory, R.L. Bacterial Interactions in Dental Biofilm. Virulence 2011, 2, 435–444. [Google Scholar] [CrossRef]
- Arweiler, N.B.; Netuschil, L. The Oral Microbiota. In Microbiota of the Human Body; Schwiertz, A., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2016; Volume 902, pp. 45–60. ISBN 978-3-319-31246-0. [Google Scholar]
- Nobbs, A.H.; Lamont, R.J.; Jenkinson, H.F. Streptococcus Adherence and Colonization. Microbiol. Mol. Biol. Rev. MMBR 2009, 73, 407–450. [Google Scholar] [CrossRef]
- Carvalho, J.C. Caries Process on Occlusal Surfaces: Evolving Evidence and Understanding. Caries Res. 2014, 48, 339–346. [Google Scholar] [CrossRef]
- Nagata, J.Y.; Soares, A.J.; Souza-Filho, F.J.; Zaia, A.A.; Ferraz, C.C.R.; Almeida, J.F.A.; Gomes, B.P.F.A. Microbial Evaluation of Traumatized Teeth Treated with Triple Antibiotic Paste or Calcium Hydroxide with 2% Chlorhexidine Gel in Pulp Revascularization. J. Endod. 2014, 40, 778–783. [Google Scholar] [CrossRef]
- Albuquerque, M.T.P.; Valera, M.C.; Nakashima, M.; Nör, J.E.; Bottino, M.C. Tissue-Engineering-Based Strategies for Regenerative Endodontics. J. Dent. Res. 2014, 93, 1222–1231. [Google Scholar] [CrossRef]
- Bottino, M.C.; Pankajakshan, D.; Nör, J.E. Advanced Scaffolds for Dental Pulp and Periodontal Regeneration. Dent. Clin. N. Am. 2017, 61, 689–711. [Google Scholar] [CrossRef]
- Trope, M. Treatment of the Immature Tooth with a Non-Vital Pulp and Apical Periodontitis. Dent. Clin. N. Am. 2010, 54, 313–324. [Google Scholar] [CrossRef]
- Diogenes, A.; Ruparel, N.B. Regenerative Endodontic Procedures: Clinical Outcomes. Dent. Clin. N. Am. 2017, 61, 111–125. [Google Scholar] [CrossRef]
- Galler, K.M. Clinical Procedures for Revitalization: Current Knowledge and Considerations. Int. Endod. J. 2016, 49, 926–936. [Google Scholar] [CrossRef]
- Diogenes, A.; Henry, M.A.; Teixeira, F.B.; Hargreaves, K.M. An Update on Clinical Regenerative Endodontics. Endod. Top. 2013, 28, 2–23. [Google Scholar] [CrossRef]
- Namour, M.; Theys, S. Pulp Revascularization of Immature Permanent Teeth: A Review of the Literature and a Proposal of a New Clinical Protocol. Sci. World J. 2014, 2014, 737503. [Google Scholar] [CrossRef]
- Torabinejad, M.; Nosrat, A.; Verma, P.; Udochukwu, O. Regenerative Endodontic Treatment or Mineral Trioxide Aggregate Apical Plug in Teeth with Necrotic Pulps and Open Apices: A Systematic Review and Meta-Analysis. J. Endod. 2017, 43, 1806–1820. [Google Scholar] [CrossRef]
- Ostby, B.N. The Role of the Blood Clot in Endodontic Therapy. An Experimental Histologic Study. Acta Odontol. Scand. 1961, 19, 324–353. [Google Scholar] [CrossRef]
- Galler, K.M.; Buchalla, W.; Hiller, K.-A.; Federlin, M.; Eidt, A.; Schiefersteiner, M.; Schmalz, G. Influence of Root Canal Disinfectants on Growth Factor Release from Dentin. J. Endod. 2015, 41, 363–368. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Münchow, E.A.; Ferreira Bordini, E.A.; de Oliveira da Rosa, W.L.; Bottino, M.C. Antimicrobial Therapeutics in Regenerative Endodontics: A Scoping Review. J. Endod. 2020, 46, S115–S127. [Google Scholar] [CrossRef]
- Ercan, E.; Dalli, M.; Dülgergil, C.T. In Vitro Assessment of the Effectiveness of Chlorhexidine Gel and Calcium Hydroxide Paste with Chlorhexidine against Enterococcus Faecalis and Candida Albicans. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2006, 102, e27–e31. [Google Scholar] [CrossRef]
- Portenier, I.; Haapasalo, H.; Rye, A.; Waltimo, T.; Ørstavik, D.; Haapasalo, M. Inactivation of Root Canal Medicaments by Dentine, Hydroxylapatite and Bovine Serum Albumin. Int. Endod. J. 2001, 34, 184–188. [Google Scholar] [CrossRef]
- Dubey, N.; Xu, J.; Zhang, Z.; Nör, J.E.; Bottino, M.C. Comparative Evaluation of the Cytotoxic and Angiogenic Effects of Minocycline and Clindamycin: An In Vitro Study. J. Endod. 2019, 45, 882–889. [Google Scholar] [CrossRef]
- Porter, M.L.A.; Münchow, E.A.; Albuquerque, M.T.P.; Spolnik, K.J.; Hara, A.T.; Bottino, M.C. Effects of Novel 3-Dimensional Antibiotic-Containing Electrospun Scaffolds on Dentin Discoloration. J. Endod. 2016, 42, 106–112. [Google Scholar] [CrossRef]
- Bottino, M.C.; Albuquerque, M.T.P.; Azabi, A.; Münchow, E.A.; Spolnik, K.J.; Nör, J.E.; Edwards, P.C. A Novel Patient-Specific Three-Dimensional Drug Delivery Construct for Regenerative Endodontics. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 1576–1586. [Google Scholar] [CrossRef]
- Reynolds, K.; Johnson, J.D.; Cohenca, N. Pulp Revascularization of Necrotic Bilateral Bicuspids Using a Modified Novel Technique to Eliminate Potential Coronal Discolouration: A Case Report. Int. Endod. J. 2009, 42, 84–92. [Google Scholar] [CrossRef]
- Ruparel, N.B.; Teixeira, F.B.; Ferraz, C.C.R.; Diogenes, A. Direct Effect of Intracanal Medicaments on Survival of Stem Cells of the Apical Papilla. J. Endod. 2012, 38, 1372–1375. [Google Scholar] [CrossRef]
- Berkhoff, J.A.; Chen, P.B.; Teixeira, F.B.; Diogenes, A. Evaluation of Triple Antibiotic Paste Removal by Different Irrigation Procedures. J. Endod. 2014, 40, 1172–1177. [Google Scholar] [CrossRef]
- Yassen, G.H.; Eckert, G.J.; Platt, J.A. Effect of Intracanal Medicaments Used in Endodontic Regeneration Procedures on Microhardness and Chemical Structure of Dentin. Restor. Dent. Endod. 2015, 40, 104–112. [Google Scholar] [CrossRef]
- Bottino, M.C.; Kamocki, K.; Yassen, G.H.; Platt, J.A.; Vail, M.M.; Ehrlich, Y.; Spolnik, K.J.; Gregory, R.L. Bioactive Nanofibrous Scaffolds for Regenerative Endodontics. J. Dent. Res. 2013, 92, 963–969. [Google Scholar] [CrossRef]
- Palasuk, J.; Kamocki, K.; Hippenmeyer, L.; Platt, J.A.; Spolnik, K.J.; Gregory, R.L.; Bottino, M.C. Bimix Antimicrobial Scaffolds for Regenerative Endodontics. J. Endod. 2014, 40, 1879–1884. [Google Scholar] [CrossRef]
- Bottino, M.C.; Yassen, G.H.; Platt, J.A.; Labban, N.; Windsor, L.J.; Spolnik, K.J.; Bressiani, A.H.A. A Novel Three-Dimensional Scaffold for Regenerative Endodontics: Materials and Biological Characterizations. J. Tissue Eng. Regen. Med. 2015, 9, E116–E123. [Google Scholar] [CrossRef]
- Kamocki, K.; Nör, J.E.; Bottino, M.C. Dental Pulp Stem Cell Responses to Novel Antibiotic-Containing Scaffolds for Regenerative Endodontics. Int. Endod. J. 2015, 48, 1147–1156. [Google Scholar] [CrossRef]
- Pankajakshan, D.; Albuquerque, M.T.P.; Evans, J.D.; Kamocka, M.M.; Gregory, R.L.; Bottino, M.C. Triple Antibiotic Polymer Nanofibers for Intracanal Drug Delivery: Effects on Dual Species Biofilm and Cell Function. J. Endod. 2016, 42, 1490–1495. [Google Scholar] [CrossRef]
- Moonesi Rad, R.; Atila, D.; Akgün, E.E.; Evis, Z.; Keskin, D.; Tezcaner, A. Evaluation of Human Dental Pulp Stem Cells Behavior on a Novel Nanobiocomposite Scaffold Prepared for Regenerative Endodontics. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 100, 928–948. [Google Scholar] [CrossRef]
- Leite, M.L.; de Oliveira Ribeiro, R.A.; Soares, D.G.; Hebling, J.; de Souza Costa, C.A. Poly(Caprolactone)-Aligned Nanofibers Associated with Fibronectin-Loaded Collagen Hydrogel as a Potent Bioactive Scaffold for Cell-Free Regenerative Endodontics. Int. Endod. J. 2022, 55, 1359–1371. [Google Scholar] [CrossRef]
- Yang, X.; Yang, F.; Walboomers, X.F.; Bian, Z.; Fan, M.; Jansen, J.A. The Performance of Dental Pulp Stem Cells on Nanofibrous PCL/Gelatin/nHA Scaffolds. J. Biomed. Mater. Res. A 2010, 93, 247–257. [Google Scholar] [CrossRef]
- Liu, X.; Feng, S.; Wang, X.; Qi, J.; Lei, D.; Li, Y.; Bai, W. Tuning the Mechanical Properties and Degradation Properties of Polydioxanone Isothermal Annealing. Turk. J. Chem. 2020, 44, 1430–1444. [Google Scholar] [CrossRef]
- Panchal, S.S.; Vasava, D.V. Biodegradable Polymeric Materials: Synthetic Approach. ACS Omega 2020, 5, 4370–4379. [Google Scholar] [CrossRef]
- Bottino, M.C.; Thomas, V.; Janowski, G.M. A Novel Spatially Designed and Functionally Graded Electrospun Membrane for Periodontal Regeneration. Acta Biomater. 2011, 7, 216–224. [Google Scholar] [CrossRef]
- Zafar, M.; Najeeb, S.; Khurshid, Z.; Vazirzadeh, M.; Zohaib, S.; Najeeb, B.; Sefat, F. Potential of Electrospun Nanofibers for Biomedical and Dental Applications. Materials 2016, 9, 73. [Google Scholar] [CrossRef]
- Lvov, Y.M.; Shchukin, D.G.; Möhwald, H.; Price, R.R. Halloysite Clay Nanotubes for Controlled Release of Protective Agents. ACS Nano 2008, 2, 814–820. [Google Scholar] [CrossRef]
- Qi, R.; Cao, X.; Shen, M.; Guo, R.; Yu, J.; Shi, X. Biocompatibility of Electrospun Halloysite Nanotube-Doped Poly(Lactic-Co-Glycolic Acid) Composite Nanofibers. J. Biomater. Sci. Polym. Ed. 2012, 23, 299–313. [Google Scholar] [CrossRef]
- Dargaville, B.L.; Vaquette, C.; Rasoul, F.; Cooper-White, J.J.; Campbell, J.H.; Whittaker, A.K. Electrospinning and Crosslinking of Low-Molecular-Weight Poly(Trimethylene Carbonate-Co-(L)-Lactide) as an Elastomeric Scaffold for Vascular Engineering. Acta Biomater. 2013, 9, 6885–6897. [Google Scholar] [CrossRef] [PubMed]
- Haroosh, H.J.; Chaudhary, D.; Dong, Y. Electrospun PLA/PCL Fibers with Tubular Nanoclay: Morphological and Structural Analysis. J. Appl. Polym. Sci. 2012, 124, 3930–3939. [Google Scholar] [CrossRef]
- Yang, F.; Both, S.K.; Yang, X.; Walboomers, X.F.; Jansen, J.A. Development of an Electrospun Nano-Apatite/PCL Composite Membrane for GTR/GBR Application. Acta Biomater. 2009, 5, 3295–3304. [Google Scholar] [CrossRef]
- Tungprapa, S.; Jangchud, I.; Supaphol, P. Release Characteristics of Four Model Drugs from Drug-Loaded Electrospun Cellulose Acetate Fiber Mats. Polymer 2007, 48, 5030–5041. [Google Scholar] [CrossRef]
- Kenawy, E.-R.; Abdel-Hay, F.I.; El-Newehy, M.H.; Wnek, G.E. Controlled Release of Ketoprofen from Electrospun Poly(Vinyl Alcohol) Nanofibers. Mater. Sci. Eng. A 2007, 1–2, 390–396. [Google Scholar] [CrossRef]
- Kenawy, E.-R.; Abdel-Hay, F.I.; El-Newehy, M.H.; Wnek, G.E. Processing of Polymer Nanofibers through Electrospinning as Drug Delivery Systems. Mater. Chem. Phys. 2009, 113, 296–302. [Google Scholar] [CrossRef]
- Gupte, M.J.; Ma, P.X. Nanofibrous Scaffolds for Dental and Craniofacial Applications. J. Dent. Res. 2012, 91, 227–234. [Google Scholar] [CrossRef]
- Ma, P.X. Biomimetic Materials for Tissue Engineering. Adv. Drug Deliv. Rev. 2008, 60, 184–198. [Google Scholar] [CrossRef]
- Wei, G.; Ma, P.X. Macroporous and Nanofibrous Polymer Scaffolds and Polymer/Bone-like Apatite Composite Scaffolds Generated by Sugar Spheres. J. Biomed. Mater. Res. A 2006, 78, 306–315. [Google Scholar] [CrossRef]
- Lei, B.; Shin, K.-H.; Noh, D.-Y.; Jo, I.-H.; Koh, Y.-H.; Kim, H.-E.; Kim, S.E. Sol-Gel Derived Nanoscale Bioactive Glass (NBG) Particles Reinforced Poly(ε-Caprolactone) Composites for Bone Tissue Engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 1102–1108. [Google Scholar] [CrossRef]
- Pourhaghgouy, M.; Zamanian, A. Ice-Templated Scaffolds of Bioglass Nanoparticles Reinforced-Chitosan. In Proceedings of the 2014 21th Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, 26–28 November 2014; pp. 48–52. [Google Scholar] [CrossRef]
- Tainio, J.; Paakinaho, K.; Ahola, N.; Hannula, M.; Hyttinen, J.; Kellomäki, M.; Massera, J. In Vitro Degradation of Borosilicate Bioactive Glass and Poly(l-Lactide-Co-ε-Caprolactone) Composite Scaffolds. Materials 2017, 10, 1274. [Google Scholar] [CrossRef] [PubMed]
- Araujo, H.C.; Nakamune, A.C.M.S.; Garcia, W.G.; Pessan, J.P.; Antoniali, C. Carious Lesion Severity Induces Higher Antioxidant System Activity and Consequently Reduces Oxidative Damage in Children’s Saliva. Oxid. Med. Cell. Longev. 2020, 2020, 3695683. [Google Scholar] [CrossRef]
- Mour, M.; Das, D.; Winkler, T.; Hoenig, E.; Mielke, G.; Morlock, M.M.; Schilling, A.F. Advances in Porous Biomaterials for Dental and Orthopaedic Applications. Materials 2010, 3, 2947–2974. [Google Scholar] [CrossRef]
- Ferracane, J.L. Hygroscopic and Hydrolytic Effects in Dental Polymer Networks. Dent. Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef]
- Breda, S.A.; Jimenez-Kairuz, A.F.; Manzo, R.H.; Olivera, M.E. Solubility Behavior and Biopharmaceutical Classification of Novel High-Solubility Ciprofloxacin and Norfloxacin Pharmaceutical Derivatives. Int. J. Pharm. 2009, 371, 106–113. [Google Scholar] [CrossRef]
- Rediguieri, C.F.; Porta, V.; Nunes, D.S.G.; Nunes, T.M.; Junginger, H.E.; Kopp, S.; Midha, K.K.; Shah, V.P.; Stavchansky, S.; Dressman, J.B.; et al. Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Metronidazole. J. Pharm. Sci. 2011, 100, 1618–1627. [Google Scholar] [CrossRef]
- Taepaiboon, P.; Ruktanonchai, U.; Supaphol, P. Drug-Loaded Electrospun Mats of Poly(Vinyl Alcohol) Fibres and Their Release Characteristics of Four Model Drugs. Nanotechnology 2006, 17, 2317–2329. [Google Scholar] [CrossRef]
- Sahoo, S.; Ang, L.T.; Goh, J.C.-H.; Toh, S.-L. Growth Factor Delivery through Electrospun Nanofibers in Scaffolds for Tissue Engineering Applications. J. Biomed. Mater. Res. A 2010, 93, 1539–1550. [Google Scholar] [CrossRef]
- Waeiss, R.A.; Negrini, T.C.; Arthur, R.A.; Bottino, M.C. Antimicrobial Effects of Drug-Containing Electrospun Matrices on Osteomyelitis-Associated Pathogens. J. Oral Maxillofac. Surg. 2014, 72, 1310–1319. [Google Scholar] [CrossRef]
- Madhubala, M.M.; Srinivasan, N.; Ahamed, S. Comparative Evaluation of Propolis and Triantibiotic Mixture as an Intracanal Medicament against Enterococcus Faecalis. J. Endod. 2011, 37, 1287–1289. [Google Scholar] [CrossRef]
- Pallotta, R.C.; Ribeiro, M.S.; de Lima Machado, M.E. Determination of the Minimum Inhibitory Concentration of Four Medicaments Used as Intracanal Medication. Aust. Endod. J. 2007, 33, 107–111. [Google Scholar] [CrossRef]
- Chuensombat, S.; Khemaleelakul, S.; Chattipakorn, S.; Srisuwan, T. Cytotoxic Effects and Antibacterial Efficacy of a 3-Antibiotic Combination: An In Vitro Study. J. Endod. 2013, 39, 813–819. [Google Scholar] [CrossRef]
- Chatzkel, J.A.; Vossough, A. Metronidazole-Induced Cerebellar Toxicity. Pediatr. Radiol. 2010, 40, 1453. [Google Scholar] [CrossRef]
- Kuriyama, A.; Jackson, J.L.; Doi, A.; Kamiya, T. Metronidazole-Induced Central Nervous System Toxicity: A Systematic Review. Clin. Neuropharmacol. 2011, 34, 241–247. [Google Scholar] [CrossRef]
- Rizzo, A.; Paolillo, R.; Guida, L.; Annunziata, M.; Bevilacqua, N.; Tufano, M.A. Effect of Metronidazole and Modulation of Cytokine Production on Human Periodontal Ligament Cells. Int. Immunopharmacol. 2010, 10, 744–750. [Google Scholar] [CrossRef]
- Sobolewska, B.; Hofmann, J.; Spitzer, M.S.; Bartz-Schmidt, K.U.; Szurman, P.; Yoeruek, E. Antiproliferative and Cytotoxic Properties of Moxifloxacin on Rat Retinal Ganglion Cells. Curr. Eye Res. 2013, 38, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Tziafas, D.; Kodonas, K. Differentiation Potential of Dental Papilla, Dental Pulp, and Apical Papilla Progenitor Cells. J. Endod. 2010, 36, 781–789. [Google Scholar] [CrossRef]
- Cassidy, N.; Fahey, M.; Prime, S.S.; Smith, A.J. Comparative Analysis of Transforming Growth Factor-Beta Isoforms 1-3 in Human and Rabbit Dentine Matrices. Arch. Oral Biol. 1997, 42, 219–223. [Google Scholar] [CrossRef]
- Zhou, W.Y.; Guo, B.; Liu, M.; Liao, R.; Rabie, A.B.M.; Jia, D. Poly(Vinyl Alcohol)/Halloysite Nanotubes Bionanocomposite Films: Properties and in Vitro Osteoblasts and Fibroblasts Response. J. Biomed. Mater. Res. A 2010, 93, 1574–1587. [Google Scholar] [CrossRef]
- Qi, R.; Shen, M.; Cao, X.; Zhang, L.; Xu, J.; Yu, J.; Shi, X. Electrospun Poly(Lactic-Co-Glycolic Acid)/Halloysite Nanotube Composite Nanofibers for Drug Encapsulation and Sustained Release. J. Mater. Chem. 2010, 20, 10622–10629. [Google Scholar] [CrossRef]
- Kaufman, G.; Whitescarver, R.A.; Nunes, L.; Palmer, X.-L.; Skrtic, D.; Tutak, W. Effects of Protein-Coated Nanofibers on Conformation of Gingival Fibroblast Spheroids: Potential Utility for Connective Tissue Regeneration. Biomed. Mater. 2018, 13, 025006. [Google Scholar] [CrossRef]
- Das, P.; DiVito, M.D.; Wertheim, J.A.; Tan, L.P. Collagen-I and Fibronectin Modified Three-Dimensional Electrospun PLGA Scaffolds for Long-Term In Vitro Maintenance of Functional Hepatocytes. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 111, 110723. [Google Scholar] [CrossRef] [PubMed]
- Leite, M.L.; Soares, D.G.; Anovazzi, G.; Anselmi, C.; Hebling, J.; de Souza Costa, C.A. Fibronectin-Loaded Collagen/Gelatin Hydrogel Is a Potent Signaling Biomaterial for Dental Pulp Regeneration. J. Endod. 2021, 47, 1110–1117. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kang, M.-S.; Mahapatra, C.; Kim, H.-W. Effect of Aminated Mesoporous Bioactive Glass Nanoparticles on the Differentiation of Dental Pulp Stem Cells. PLoS ONE 2016, 11, e0150727. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, B.N.; Zeitlin, B.D.; Nör, J.E. A Hydrogel Scaffold That Maintains Viability and Supports Differentiation of Dental Pulp Stem Cells. Dent. Mater. 2013, 29, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Abrahão, I.J.; Martins, M.D.; Katayama, E.; Antoniazzi, J.H.; Segmentilli, A.; Marques, M.M. Collagen Analysis in Human Tooth Germ Papillae. Braz. Dent. J. 2006, 17, 208–212. [Google Scholar] [CrossRef]
- Saito, K.; Nakatomi, M.; Ida-Yonemochi, H.; Ohshima, H. Osteopontin Is Essential for Type I Collagen Secretion in Reparative Dentin. J. Dent. Res. 2016, 95, 1034–1041. [Google Scholar] [CrossRef]
- Deshpande, A.S.; Fang, P.-A.; Zhang, X.; Jayaraman, T.; Sfeir, C.; Beniash, E. Primary Structure and Phosphorylation of Dentin Matrix Protein 1 (DMP1) and Dentin Phosphophoryn (DPP) Uniquely Determine Their Role in Biomineralization. Biomacromolecules 2011, 12, 2933–2945. [Google Scholar] [CrossRef]
Nr. crt/Citation | Authors | Year of Publication | Study Design | Control Scaffold/s | Test Scaffold/s |
---|---|---|---|---|---|
1/[29] | Bottino et al. | 2013 | in vitro | polydioxanone (PDS) | polydioxanone (PDS) with antibiotics |
2/[30] | Palasuk et al. | 2014 | in vitro | polydioxanone (PDS) | polydioxanone (PDS) with antibiotics |
3/[31] | Bottino et al. | 2015 | in vitro | polydioxanone (PDS) | Scaffolds with halloysite aluminosilicate clay nanotubes (HNTs); groups being 0.5, 3, 5, 10 wt% |
4/[32] | Kamocki et al. | 2015 | in vitro | Polydioxanone (PDS)—negative control; saturated CIP/MET solution (i.e., 50 mg of each antibiotic in 1 mL) (DAP)—positive control | polydioxanone (PDS) with antibiotics |
5/[33] | Pankajakshan et al. | 2016 | in vitro | Untreated dentin specimens—negative control; polydioxanone (PDS)—control; triple antibiotic solution (TAP solution, 50 mg/mL)—positive control. | polydioxanone (PDS) with antibiotics |
6/[24] | Bottino et al. | 2019 | in vitro and in vivo (canine model) | in vitro [polydioxanone (PDS)—negative control; triple antibiotic paste (TAP)—positive control]; in vivo [evoked bleeding method (EB)] | polydioxanone (PDS) with antibiotics |
7/[34] | Moonesi Rad et al. | 2019 | in vitro | cellulose acetate/oxidized pullulan/gelatin (CA/ox-PULL/GEL) | boron (B)-modified bioactive glass nanoparticles (BG-NPs) based on cellulose acetate/oxidized pullulan/gelatin (CA/ox-PULL/GEL); groups being: 7%, 14%, 21% substitution of SiO2 with B2O3 |
8/[35] | Leite et al. | 2022 | in vitro | [tubular scaffold poly(caprolactone) (TB-SC)]—negative control; [tubular scaffold poly(caprolactone) associated with fibronectin (FN) (TB-SC + FN)]—positive control | tubular scaffold poly(caprolactone) associated with collagen hydrogel (TB-SC + H); tubular scaffold poly(caprolactone) associated with FN-coated collagen hydrogel (TB-SC + HFN) |
Nr. crt/Citation | Fiber Production Method/Parameters | Fiber Morphology Assessment | Chemical Structure Assessment | Mechanical Properties Assessment | Fiber Porosity |
---|---|---|---|---|---|
1/[29] | electrospinning/—2 mL/h, 18-cm distance, 15 kV | Scanning electron microscopy (SEM) | Fourier-transform infrared spectroscopy (FTIR) | Tensile strength testing | NA |
2/[30] | electrospinning/—2 mL/h, 18-cm distance, 15 kV | Scanning electron microscopy (SEM) | Fourier transform infrared spectroscopy (FTIR) | Uniaxial tensile testing | NA |
3/[31] | electrospinning/—2 mL/h, 20-cm distance, 15 kV | Scanning electron microscopy (SEM) | Fourier-transform infrared spectroscopy (FTIR) | Uniaxial microtensile testing | Transmission electron microscopy (TEM) |
4/[32] | electrospinning/—2 mL/h, 18 cm distance, 15–18 kV. | Scanning electron microscopy (SEM) | NA | NA | NA |
5/[33] | electrospinning/—2 mL/h, 18-cm distance, 15–19 kV | NA | NA | NA | NA |
6/[24] | electrospinning/—2 mL/h, 18-cm distance, 15–19 kV | Scanning electron microscopy (SEM) | Fourier-transform infrared spectroscopy (FTIR) | Tensile strength testing | NA |
7/[34] | thermally induced phase separation and porogen leaching/aluminum plate and foam; one direction freezing and freeze-drying; KCl leaching | Scanning electron microscopy (SEM) | Alizarin Red staining-distribution of BG-NPs | Compression test at 25% of strain in the stress–strain curve | Mercury porosimetry device |
8/[35] | electrospinning/—1 mL/h, 18-cm distance, 12–13 kV | NA | NA | NA | NA |
Nr. crt/Citation | Fiber Degradation/Water Absorption Assessment | Drug Release Assessment | Antimicrobials/Concentration | Microbials | Antimicrobial Potential Evaluation |
---|---|---|---|---|---|
1/[29] | NA | High-performance liquid chromatography (HPLC) | Metronidazole (MET)/5 and 25 wt%; Ciprofloxacin (CIP)/5 and 25 wt% | Porphyromonas gingivalis (Pg) Enterococcus faecalis (Ef) | biofilm; agar diffusion assays |
2/[30] | NA | NA | Metronidazole (MET), Ciprofloxacin (CIP) and combination of the two (3:1 MET/CIP, 1:1 MET/CIP and 1:3 MET/CIP)—25 wt% | Ef, Pg, Fusobacterium nucleatum (Fn) | agar diffusion testing |
3/[31] | NA | NA | NA | NA | NA |
4/[32] | NA | High-performance liquid chromatography (HPLC) | Metronidazole (MET), Ciprofloxacin (CIP) and combination of the tow (3:1 MET/CIP, 1:1 MET/CIP and 1:3 MET/CIP)—25 wt% | NA | NA |
5/[33] | NA | NA | Metronidazole (MET), Minocycline (MINO), and Ciprofloxacin (CIP)—30 wt% | An, Pg | fluorescent LIVE/DEAD BacLight Bacterial Viability Kit L-7012; confocal laser scanning microscopy (CLSM) |
6/[24] | NA | NA | Metronidazole (MET), Ciprofloxacin (CIP), and Minocycline (MINO)—35 mg/mL(35 wt.%) | Actinomyces naeslundii (An) | in vitro—[confocal laser scanning microscopy (CLSM) and SEM] |
7/[34] | Phosphate-buffered solution (PBS) for one month | NA | NA | NA | NA |
8/[35] | NA | NA | NA | NA | NA |
Nr. crt/Citation | Cell Viability/Differentiation/Proliferation/Cytotoxicity Assessment | Main Results |
---|---|---|
1/[29] | International Organization for Standardization—toxicity assessment |
|
2/[30] | CellTiter 96 AQueous One Solution Reagent—cell viability |
|
3/[31] | Water-soluble tetrazolium-1 assay—assess mitochondrial dehydrogenase activities; SEM-cell–scaffold interaction |
|
4/[32] | WST-1 assay-proliferation; LIVE/DEAD assay/calcein and ethidium homodimer (EthD-1)-cell viability |
|
5/[33] | SEM and confocal laser scanning microscopy (CLSM)-cell adhesion and cytoskeletal morphology; CellTiter 96 AQueous One Solution Cell Proliferation Assay-cell proliferation |
|
6/[24] | in vivo/ex vivo-[hematoxylin–eosin (H&E) staining and light microscopy] | in vitro
|
7/[34] | Alamar Blue Assay/microplate spectrophotometer-cell viability; SEM analysis/Confocal laser scanning microscopy analysis-cell morphology on the scaffolds; ALP activity/intracellular calcium/Alizarin Red staining-calcium deposition; immunohistochemical and histological staining (DSPP, OPN and Col I-proteins)-odontogenic differentiation/formation of dentin-like hard tissue; |
|
8/[35] | Alamar Blue solution/fluorescence reading-cell viability; genes evaluation: ITGA5, ITGAV, COL1A1 and COL3A1 by quantitative polymerase chain reaction (qPCR); Cell migration-fluorescence microscopy |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Candrea, S.; Muntean, A.; Băbțan, A.-M.; Boca, A.; Feurdean, C.N.; Bordea, I.R.; Boșca, A.B.; Ilea, A. The Use of Nanofibers in Regenerative Endodontic Therapy—A Systematic Review. Fibers 2024, 12, 42. https://doi.org/10.3390/fib12050042
Candrea S, Muntean A, Băbțan A-M, Boca A, Feurdean CN, Bordea IR, Boșca AB, Ilea A. The Use of Nanofibers in Regenerative Endodontic Therapy—A Systematic Review. Fibers. 2024; 12(5):42. https://doi.org/10.3390/fib12050042
Chicago/Turabian StyleCandrea, Sebastian, Alexandrina Muntean, Anida-Maria Băbțan, Antonia Boca, Claudia Nicoleta Feurdean, Ioana Roxana Bordea, Adina Bianca Boșca, and Aranka Ilea. 2024. "The Use of Nanofibers in Regenerative Endodontic Therapy—A Systematic Review" Fibers 12, no. 5: 42. https://doi.org/10.3390/fib12050042
APA StyleCandrea, S., Muntean, A., Băbțan, A. -M., Boca, A., Feurdean, C. N., Bordea, I. R., Boșca, A. B., & Ilea, A. (2024). The Use of Nanofibers in Regenerative Endodontic Therapy—A Systematic Review. Fibers, 12(5), 42. https://doi.org/10.3390/fib12050042