Observation of Visible Upconversion Luminescence of Soft Glass Multimode Fibers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miller, S. Optical Fiber Telecommunications; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Agrawal, G.P. Nonlinear fiber optics. In Nonlinear Science at the Dawn of the 21st Century; Springer: Berlin/Heidelberg, Germany, 2000; pp. 195–211. [Google Scholar]
- Petersen, C.R.; Møller, U.; Kubat, I.; Zhou, B.; Dupont, S.; Ramsay, J.; Benson, T.; Sujecki, S.; Abdel-Moneim, N.; Tang, Z.; et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics 2014, 8, 830–834. [Google Scholar] [CrossRef]
- Saini, T.S.; Sinha, R.K. Mid-infrared supercontinuum generation in soft-glass specialty optical fibers: A review. Prog. Quantum Electron. 2021, 78, 100342. [Google Scholar] [CrossRef]
- Werle, P.; Slemr, F.; Maurer, K.; Kormann, R.; Mücke, R.; Jänker, B. Near-and mid-infrared laser-optical sensors for gas analysis. Opt. Lasers Eng. 2002, 37, 101–114. [Google Scholar] [CrossRef]
- Gao, W.; Li, X.; Wang, P.; Chen, L.; Ni, C.; Chen, L.; Chen, X.; Zhou, Y.; Zhang, W.; Hu, J.; et al. Investigation on sensing characteristics of fiber Bragg gratings based on soft glass fibers. Optik 2018, 156, 13–21. [Google Scholar] [CrossRef]
- Shi, L.; Alfano, R.R. Deep Imaging in Tissue and Biomedical Materials: Using Linear and Nonlinear Optical Methods; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Barik, A.K.; Lukose, J.; Upadhya, R.; Pai, M.V.; Kartha, V.; Chidangil, S. In vivo spectroscopy: Optical fiber probes for clinical applications. Expert Rev. Med. Devices 2022, 19, 657–675. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, B.; Xu, S.; Yang, Z.; Zhang, Q. Recent advances in soft optical glass fiber and fiber lasers. Prog. Mater. Sci. 2019, 101, 90–171. [Google Scholar] [CrossRef]
- Xia, C.; Kumar, M.; Kulkarni, O.P.; Islam, M.N.; Terry Jr, F.L.; Freeman, M.J.; Poulain, M.; Mazé, G. Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping. Opt. Lett. 2006, 31, 2553–2555. [Google Scholar] [CrossRef]
- Désévédavy, F.; Strutynski, C.; Lemière, A.; Mathey, P.; Gadret, G.; Jules, J.C.; Kibler, B.; Smektala, F. Review of tellurite glasses purification issues for mid-IR optical fiber applications. J. Am. Ceram. Soc. 2020, 103, 4017–4034. [Google Scholar] [CrossRef]
- Chen, C.; Jaluria, Y. Effects of doping on the optical fiber drawing process. Int. J. Heat Mass Transf. 2009, 52, 4812–4822. [Google Scholar] [CrossRef]
- Fokine, M. Thermal stability of chemical composition gratings in fluorine–germanium-doped silica fibers. Opt. Lett. 2002, 27, 1016–1018. [Google Scholar] [CrossRef] [PubMed]
- Nagel, S.R.; MacChesney, J.B.; Walker, K.L. An overview of the modified chemical vapor deposition (MCVD) process and performance. IEEE Trans. Microw. Theory Tech. 1982, 30, 305–322. [Google Scholar] [CrossRef]
- Méndez, A.; Morse, T.F. Specialty Optical Fibers Handbook; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Agrawal, G.P. Invite paper: Self-imaging in multimode graded-index fibers and its impact on the nonlinear phenomena. Opt. Fiber Technol. 2019, 50, 309–316. [Google Scholar] [CrossRef]
- Poletti, F.; Horak, P. Description of ultrashort pulse propagation in multimode optical fibers. JOSA B 2008, 25, 1645–1654. [Google Scholar] [CrossRef]
- Couny, F.; Benabid, F.; Light, P. Large-pitch kagome-structured hollow-core photonic crystal fiber. Opt. Lett. 2006, 31, 3574–3576. [Google Scholar] [CrossRef]
- Strutynski, C.; Meza, R.A.; Teulé-Gay, L.; El-Dib, G.; Poulon-Quintin, A.; Salvetat, J.p.; Vellutini, L.; Dussauze, M.; Cardinal, T.; Danto, S. Stack-and-Draw Applied to the Engineering of Multi-Material Fibers with Non-Cylindrical Profiles. Adv. Funct. Mater. 2021, 31, 2011063. [Google Scholar] [CrossRef]
- Buczyński, R.; Klimczak, M.; Stefaniuk, T.; Kasztelanic, R.; Siwicki, B.; Stępniewski, G.; Cimek, J.; Pysz, D.; Stępień, R. Optical fibers with gradient index nanostructured core. Opt. Express 2015, 23, 25588–25596. [Google Scholar] [CrossRef]
- Crocco, M.C.; Mangini, F.; Filosa, R.; Solano, A.; Agostino, R.G.; Barberi, R.C.; Couderc, V.; Klimczak, M.; Filipkowski, A.; Buczynski, R.; et al. Soft glass optical fiber characterization with X-ray computed microtomography. Opt. Mater. Express 2024, 14, 70–81. [Google Scholar] [CrossRef]
- Karpate, T.; Stępniewski, G.; Kardaś, T.; Pysz, D.; Kasztalanic, R.; Stepanenko, Y.; Buczyński, R.; Krupa, K.; Klimczak, M. Quasi-periodic spectro-temporal pulse breathing in a femtosecond-pumped tellurite graded-index multimode fiber. Opt. Express 2023, 31, 13269–13278. [Google Scholar] [CrossRef]
- Eslami, Z.; Salmela, L.; Filipkowski, A.; Pysz, D.; Klimczak, M.; Buczynski, R.; Dudley, J.M.; Genty, G. Two octave supercontinuum generation in a non-silica graded-index multimode fiber. Nat. Commun. 2022, 13, 1–10. [Google Scholar]
- Mangini, F.; Ferraro, M.; Zitelli, M.; Niang, A.; Tonello, A.; Couderc, V.; Wabnitz, S. Multiphoton-absorption-excited up-conversion luminescence in optical fibers. Phys. Rev. Appl. 2020, 14, 054063. [Google Scholar] [CrossRef]
- Cho, S.H.; Kumagai, H.; Yokota, I.; Midorikawa, K.; Obara, M. Observation of self-channeled plasma formation and bulk modification in optical fibers using high-intensity femtosecond laser. Jpn. J. Appl. Phys. 1998, 37, L737. [Google Scholar] [CrossRef]
- Cho, S.H.; Kumagai, H.; Midorikawa, K.; Obara, M. Fabrication of double cladding structure in optical multimode fibers using plasma channeling excited by a high-intensity femtosecond laser. Opt. Commun. 1999, 168, 287–295. [Google Scholar] [CrossRef]
- Mangini, F.; Ferraro, M.; Zitelli, M.; Niang, A.; Mansuryan, T.; Tonello, A.; Couderc, V.; De Luca, A.; Babin, S.; Frezza, F.; et al. Helical plasma filaments from the self-channeling of intense femtosecond laser pulses in optical fibers. Opt. Lett. 2022, 47, 1–4. [Google Scholar] [CrossRef]
- Mangini, F.; Ferraro, M.; Zitelli, M.; Niang, A.; Tonello, A.; Couderc, V.; Sidelnikov, O.; Frezza, F.; Wabnitz, S. Experimental observation of self-imaging in SMF-28 optical fibers. Opt. Express 2021, 29, 12625–12633. [Google Scholar] [CrossRef]
- Hansson, T.; Tonello, A.; Mansuryan, T.; Mangini, F.; Zitelli, M.; Ferraro, M.; Niang, A.; Crescenzi, R.; Wabnitz, S.; Couderc, V. Nonlinear beam self-imaging and self-focusing dynamics in a GRIN multimode optical fiber: Theory and experiments. Opt. Express 2020, 28, 24005–24021. [Google Scholar] [CrossRef]
- Kumar, V.R.K.; George, A.; Reeves, W.; Knight, J.; Russell, P.S.J.; Omenetto, F.; Taylor, A. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Opt. Express 2002, 10, 1520–1525. [Google Scholar] [CrossRef]
- Cho, S.H.; Kumagai, H.; Midorikawa, K. Dynamics of permanent structural transformations in ZBLAN induced by self-channeled plasma filament. Opt. Mater. 2004, 26, 57–63. [Google Scholar] [CrossRef]
- Bernier, M.; Faucher, D.; Vallée, R.; Saliminia, A.; Androz, G.; Sheng, Y.; Chin, S. Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm. Opt. Lett. 2007, 32, 454–456. [Google Scholar] [CrossRef]
- Courrol, L.C.; Messaddeq, Y.; Messaddeq, S.H.; Ribeiro, S.J.; Samad, R.E.; de Freitas, A.Z.; Vieira Jr, N.D. Production of defects in ZBLAN, ZBLAN: Tm3+ and ZBLAN: Cr3+ glasses by ultra-short pulses laser interaction. J. Phys. Chem. Solids 2008, 69, 55–59. [Google Scholar] [CrossRef]
- Available online: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=15877 (accessed on 1 February 2024).
- Available online: https://leverrefluore.com/scientific-world/fluoride-fibers/general-properties/ (accessed on 1 February 2024).
- Von der Linde, D.; Schüler, H. Breakdown threshold and plasma formation in femtosecond laser–solid interaction. JOSA B 1996, 13, 216–222. [Google Scholar] [CrossRef]
- Zhihua, H.; Jianjun, W.; Honghuan, L.; Dangpeng, X.; Rui, Z.; Mingzhong, L.; Xiaofeng, W. Self-focusing length in highly multimode ultra-large-mode-area fibers. Opt. Express 2012, 20, 14604–14613. [Google Scholar] [CrossRef]
- Karlsson, M.; Anderson, D.; Desaix, M. Dynamics of self-focusing and self-phase modulation in a parabolic index optical fiber. Opt. Lett. 1992, 17, 22–24. [Google Scholar] [CrossRef]
- He, Z.; Li, W.; Yu, A.; Wu, Y.; Cai, Z. Efficient UV-visible emission enabled by 532 nm CW excitation in an Ho 3+-doped ZBLAN fiber. Opt. Express 2022, 30, 10414–10427. [Google Scholar] [CrossRef]
- Ma, J.; Sun, Y.; Yu, F.; Xue, T.; Hu, L. Boosting visible luminescence of Tb3+-activated ZBLAN fluoride glasses by Dy3+ co-doping. J. Lumin. 2021, 238, 118247. [Google Scholar] [CrossRef]
- Remillieux, A.; Jacquier, B. IR-to-visible up-conversion mechanisms in Pr3+-doped ZBLAN fluoride glasses and fibers. J. Lumin. 1996, 68, 279–289. [Google Scholar] [CrossRef]
- Peysokhan, M.; Mobini, E.; Allahverdi, A.; Abaie, B.; Mafi, A. Characterization of Yb-doped ZBLAN fiber as a platform for radiation-balanced lasers. Photonics Res. 2020, 8, 202–210. [Google Scholar] [CrossRef]
- Girard, S.; Alessi, A.; Richard, N.; Martin-Samos, L.; De Michele, V.; Giacomazzi, L.; Agnello, S.; Di Francesca, D.; Morana, A.; Winkler, B.; et al. Overview of radiation induced point defects in silica-based optical fibers. Rev. Phys. 2019, 4, 100032. [Google Scholar] [CrossRef]
- Pietros, A.R.; Rebeszko, K.; Rosenbaum, J.R.; Stone, M.P.; Brasovs, A.; Kornev, K.G.; Hawkins, T.; Cavillon, M.; Ballato, J.; Dragic, P.D. Investigation of intense visible defect luminescence from visible and infrared pumped barium fluorosilicate glass-core fiber. Opt. Mater. X 2023, 19, 100231. [Google Scholar] [CrossRef]
- Pietros, A.R.; Rebeszko, K.; Rosenbaum, J.R.; Stone, M.P.; Hawkins, T.; Cavillon, M.; Ballato, J.; Dragic, P.D. Luminescence Thermometry via Intense Green Defect Emission from an Infrared-Pumped Fluorosilicate Optical Fiber. In Proceedings of the Optical Fiber Sensors, Alexandria, VA, USA, 29 August–2 September 2022; pp. W4–W49. [Google Scholar]
- Underwood, C.C.; McMillen, C.D.; Chen, H.; Anker, J.N.; Kolis, J.W. Hydrothermal chemistry, structures, and luminescence studies of alkali hafnium fluorides. Inorg. Chem. 2013, 52, 237–244. [Google Scholar] [CrossRef]
- Wang, S.; Kershaw, S.V.; Li, G.; Leung, M.K. The self-assembly synthesis of tungsten oxide quantum dots with enhanced optical properties. J. Mater. Chem. C 2015, 3, 3280–3285. [Google Scholar] [CrossRef]
- Feng, M.; Pan, A.; Zhang, H.; Li, Z.; Liu, F.; Liu, H.; Shi, D.; Zou, B.; Gao, H. Strong photoluminescence of nanostructured crystalline tungsten oxide thin films. Appl. Phys. Lett. 2005, 86. [Google Scholar] [CrossRef]
Sample Label | Type | Preform Method | Manufacturer | Material | Core/Cladding Size (m) | Reference |
---|---|---|---|---|---|---|
A | SI | CVD | Thorlabs | ZBLAN | 100/190 | [34] |
B | SI | CVD | Verre Fluoré | ZBLAN | 90/150 | [35] |
C | GI | Stack and draw | University of Warsaw | Tellurite | 78/137 | [22] |
Z | Element | Sample A | Sample B | Sample C |
---|---|---|---|---|
6 | C | 16.1 | 24.7 | 12.3 |
8 | O | - | - | 45.6 |
9 | F | 61.8 | 57.2 | - |
11 | Na | 4.1 | 2.2 | 3.8 |
13 | Al | 0.8 | 0.6 | 17.7 |
30 | Zn | - | - | 0.4 |
39 | Y | - | 0.5 | - |
40 | Zr | 11.3 | 5.9 | - |
41 | Nb | - | - | 0.9 |
52 | Te | - | - | 13.8 |
56 | Ba | 4.8 | 4.1 | - |
57 | La | 1.0 | 0.8 | - |
72 | Hf | 0.1 | 3.9 | - |
74 | W | - | - | 5.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferraro, M.; Mangini, F.; Filosa, R.; Couderc, V.; Sun, Y.; Parra-Rivas, P.; Gemechu, W.A.; Stepniewski, G.; Filipkowski, A.; Buczynski, R.; et al. Observation of Visible Upconversion Luminescence of Soft Glass Multimode Fibers. Fibers 2024, 12, 15. https://doi.org/10.3390/fib12020015
Ferraro M, Mangini F, Filosa R, Couderc V, Sun Y, Parra-Rivas P, Gemechu WA, Stepniewski G, Filipkowski A, Buczynski R, et al. Observation of Visible Upconversion Luminescence of Soft Glass Multimode Fibers. Fibers. 2024; 12(2):15. https://doi.org/10.3390/fib12020015
Chicago/Turabian StyleFerraro, Mario, Fabio Mangini, Raffaele Filosa, Vincent Couderc, Yifan Sun, Pedro Parra-Rivas, Wasyhun A. Gemechu, Grzegorz Stepniewski, Adam Filipkowski, Ryszard Buczynski, and et al. 2024. "Observation of Visible Upconversion Luminescence of Soft Glass Multimode Fibers" Fibers 12, no. 2: 15. https://doi.org/10.3390/fib12020015
APA StyleFerraro, M., Mangini, F., Filosa, R., Couderc, V., Sun, Y., Parra-Rivas, P., Gemechu, W. A., Stepniewski, G., Filipkowski, A., Buczynski, R., & Wabnitz, S. (2024). Observation of Visible Upconversion Luminescence of Soft Glass Multimode Fibers. Fibers, 12(2), 15. https://doi.org/10.3390/fib12020015