Impact of Defects on Tensile Properties of Ancient and Modern Egyptian Flax Fibers: Multiscale X-Ray Microtomography and Numerical Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. X-Ray Microtomography
2.3. Tensile Testing
2.4. Finite Element Computation
3. Results and Discussion
3.1. Morphological Analysis
3.2. Tensile Results
3.3. Numerical Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmad, J.; Ahmad, J. Health and safety aspects in machining FRPs. In Machining of Polymer Composites; Springer Nature: Berlin/Heidelberg, Germany, 2009; pp. 293–307. [Google Scholar]
- Rahman, M.Z. Mechanical and damping performances of flax fibre composites–A review. Compos. Part C Open Access 2021, 4, 100081. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Al Rashid, A.; Arif, Z.U.; Ahmed, W.; Arshad, H.; Zaidi, A.A. Natural fiber reinforced composites: Sustainable materials for emerging applications. Results Eng. 2021, 11, 100263. [Google Scholar] [CrossRef]
- Baley, C. Influence of kink bands on the tensile strength of flax fibers. J. Mater. Sci. 2004, 39, 331–334. [Google Scholar] [CrossRef]
- Kozlova, L.; Petrova, A.; Chernyad’ev, A.; Salnikov, V.; Gorshkova, T. On the origin of bast fiber dislocations in flax. Ind. Crops Prod. 2022, 176, 114382. [Google Scholar] [CrossRef]
- Hosseinzadeh, Y.; Jalili, S.; Khani, R. Investigating the effects of flax fibers application on multi-objective optimization of laminated composite plates for simultaneous cost minimization and frequency gap maximization. J. Build. Eng. 2020, 32, 101477. [Google Scholar] [CrossRef]
- Zuccarello, B.; Militello, C.; Bongiorno, F. Environmental aging effects on high-performance biocomposites reinforced by sisal fibers. Polym. Degrad. Stab. 2023, 211, 110319. [Google Scholar] [CrossRef]
- Gleba, M.; Harris, S. The first plant bast fibre technology: Identifying splicing in archaeological textiles. Archaeol. Anthropol. Sci. 2019, 11, 2329–2346. [Google Scholar] [CrossRef]
- Khan, S.U.; Bar, M.; Evon, P.; Labonne, L.; Ouagne, P. Development of 100% Linseed Flax Yarns with Improved Mechanical Properties and Durability for Geotextiles Applications. Fibers 2022, 10, 102. [Google Scholar] [CrossRef]
- Goudenhooft, C.; Siniscalco, D.; Arnould, O.; Bourmaud, A.; Sire, O.; Gorshkova, T.; Baley, C. Investigation of the mechanical properties of flax cell walls during plant development: The relation between performance and cell wall structure. Fibers 2018, 6, 6. [Google Scholar] [CrossRef]
- Richely, E.; Durand, S.; Melelli, A.; Kao, A.; Magueresse, A.; Dhakal, H.; Gorshkova, T.; Callebert, F.; Bourmaud, A.; Beaugrand, J. Novel insight into the intricate shape of flax fibre lumen. Fibers 2021, 9, 24. [Google Scholar] [CrossRef]
- Charlet, K.; Beakou, A. Interfaces within flax fibre bundle: Experimental characterization and numerical modelling. J. Compos. Mater. 2014, 48, 3263–3269. [Google Scholar] [CrossRef]
- Zamil, M.; Geitmann, A. The middle lamella—More than a glue. Phys. Biol. 2017, 14, 015004. [Google Scholar] [CrossRef] [PubMed]
- Aslan, M.; Chinga-Carrasco, G.; Sørensen, B.F.; Madsen, B. Strength variability of single flax fibres. J. Mater. Sci. 2011, 46, 6344–6354. [Google Scholar] [CrossRef]
- Thygesen, L.G.; Eder, M.; Burgert, I. Dislocations in single hemp fibres—Investigations into the relationship of structural distortions and tensile properties at the cell wall level. J. Mater. Sci. 2007, 42, 558–564. [Google Scholar] [CrossRef]
- Morgillo, L.; Brionne, L.; Melelli, A.; Ouagne, P.; Scheel, M.; Weitkamp, T.; Shah, D.U.; Abida, M.; Beaugrand, J.; Bourmaud, A. Elucidating links between the mechanical performance of flax fibres and their structural defects. Ind. Crops Prod. 2023, 206, 117722. [Google Scholar] [CrossRef]
- Wang, C.; Wang, N.; Liu, S.; Zhang, H.; Zhi, Z. Investigation of microfibril angle of flax fibers using X-ray diffraction and scanning electron microscopy. J. Nat. Fibers 2020, 17, 1001–1010. [Google Scholar] [CrossRef]
- Quereilhac, D.; Pinsard, L.; Guillou, E.; Fazzini, M.; De Luycker, E.; Bourmaud, A.; Abida, M.; Perrin, J.; Weitkamp, T.; Ouagne, P. Exploiting synchrotron X-ray tomography for a novel insight into flax-fibre defects ultrastructure. Ind. Crops Prod. 2023, 198, 116655. [Google Scholar] [CrossRef]
- Ahmed, S.; Ulven, C.A. Dynamic in-situ observation on the failure mechanism of flax fiber through scanning electron microscopy. Fibers 2018, 6, 17. [Google Scholar] [CrossRef]
- Zhang, H.; Sui, T.; Thygesen, L.G.; O’Brien, P.; Korsunsky, A.M. Multi-modal microscopy characterisation of nodal markings in flax fibre. In Proceedings of the World Congress on Engineering, London, UK, 1–3 July 2015. [Google Scholar]
- Guessasma, S.; Beaugrand, J. Damage kinetics at the sub-micrometric scale in bast fibers using finite element simulation and high-resolution X-Ray micro-tomography. Front. Plant Sci. 2019, 10, 194. [Google Scholar] [CrossRef]
- Richely, E.; Bourmaud, A.; Dhakal, H.; Zhang, Z.; Beaugrand, J.; Guessasma, S. Exploring the morphology of flax fibres by X-ray microtomography and the related mechanical response by numerical modelling. Compos. Part A Appl. Sci. Manuf. 2022, 160, 107052. [Google Scholar] [CrossRef]
- Rajakumaran, V.; Melelli, A.; Quiles, A.; Weitkamp, T.; Perrin, J.; Proudhon, H.; Bourmaud, A.; Beaugrand, J.; Guessasma, S. Experimental and numerical approach to understand the role of defects in damage mechanisms of flax fibers at bundle scale. Ind. Crops Prod. 2024, 218, 119025. [Google Scholar] [CrossRef]
- Goudenhooft, C.; Melelli, A.; Durand, S.; Falourd, X.; Le-Bot, L.; Morgillo, L.; Gaballah, S.; Cortopassi, R.; Quiles, A.; Shah, D.U. Comparison of kink-band structures and specificities of cell wall polysaccharides in modern and ancient flax fibres. Carbohydr. Polym. 2024, 344, 122526. [Google Scholar] [CrossRef] [PubMed]
- Melelli, A.; Goudenhooft, C.; Durand, S.; Quiles, A.; Cortopassi, R.; Morgillo, L.; Magueresse, A.; Beaugrand, J.; Jamme, F.; Bourmaud, A. Revealing degradation mechanisms of archaeological flax textiles through the evolution of fibres’ parietal polymers by synchrotron deep-UV fluorescence. Polym. Degrad. Stab. 2024, 226, 110826. [Google Scholar] [CrossRef]
- Paganin, D.; Mayo, S.C.; Gureyev, T.E.; Miller, P.R.; Wilkins, S.W. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 2002, 206, 33–40. [Google Scholar] [CrossRef]
- Schindelin, J.; Rueden, C.T.; Hiner, M.C.; Eliceiri, K.W. The ImageJ ecosystem: An open platform for biomedical image analysis. Mol. Reprod. Dev. 2015, 82, 518–529. [Google Scholar] [CrossRef]
- Abu Obaid, A.; Yarlagadda, S.; Gillespie, J., Jr. Combined effects of kink bands and hygrothermal conditioning on tensile strength of polyarylate liquid crystal co-polymer and aramid fibers. J. Compos. Mater. 2016, 50, 339–350. [Google Scholar] [CrossRef]
- Gogoli, K.; Gehring, F.; Poilâne, C.; Morales, M. Analysis of morphological variations of flax fibre bundles by Fraunhofer diffraction. Ind. Crops Prod. 2021, 171, 113856. [Google Scholar] [CrossRef]
- Gleba, M.; Boudin, M.; Di Pietro, G.A. Textiles from Zawaydah, Naqada, Upper Egypt. Archaeol. Text. Rev. 2019, 61, 14–23. [Google Scholar]
- Charlet, K.; Eve, S.; Jernot, J.; Gomina, M.; Breard, J. Tensile deformation of a flax fiber. Procedia Eng. 2009, 1, 233–236. [Google Scholar] [CrossRef]
- Placet, V.; Cissé, O.; Boubakar, M.L. Nonlinear tensile behaviour of elementary hemp fibres. Part I: Investigation of the possible origins using repeated progressive loading with in situ microscopic observations. Compos. Part A Appl. Sci. Manuf. 2014, 56, 319–327. [Google Scholar] [CrossRef]
- Pickering, K.L.; Beckermann, G.; Alam, S.; Foreman, N.J. Optimising industrial hemp fibre for composites. Compos. Part A Appl. Sci. Manuf. 2007, 38, 461–468. [Google Scholar] [CrossRef]
- Lefeuvre, A.; Bourmaud, A.; Morvan, C.; Baley, C. Elementary flax fibre tensile properties: Correlation between stress–strain behaviour and fibre composition. Ind. Crops Prod. 2014, 52, 762–769. [Google Scholar] [CrossRef]
- Sliseris, J.; Yan, L.; Kasal, B. Numerical modelling of flax short fibre reinforced and flax fibre fabric reinforced polymer composites. Compos. Part B Eng. 2016, 89, 143–154. [Google Scholar] [CrossRef]
- Nilsson, T.; Gustafsson, P.J. Influence of dislocations and plasticity on the tensile behaviour of flax and hemp fibres. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1722–1728. [Google Scholar] [CrossRef]
- Trivaudey, F.; Placet, V.; Guicheret-Retel, V.; Boubakar, M.L. Nonlinear tensile behaviour of elementary hemp fibres. Part II: Modelling using an anisotropic viscoelastic constitutive law in a material rotating frame. Compos. Part A Appl. Sci. Manuf. 2015, 68, 346–355. [Google Scholar] [CrossRef]
Fiber Type | Length (µm) | Average Diameter (µm) | Shape Factor | Volume (µm3) | Porosity (%) | Porosity (%) at Kink-Band | Kink-Band Density (mm−1) | Average Distance Between Kink- Bands (µm) |
---|---|---|---|---|---|---|---|---|
MF | 120 | 18.5 | 1.01 | 1.89 × 105 | 1.4 | 3.3 | 16.6 | 114 |
AF | 120 | 15.8 | 1.07 | 2.09 × 104 | 1.6 | 5.6 | 20.8 | 77 |
ABF | 50 | 20.5 | 1.11 | 1.27 × 104 | 1.7 | 2.6 | - | - |
Sample | Number of Samples | Diameter (µm) | Young’s Modulus (GPa) | Elongation at Break (%) | Tensile Strength (MPa) |
---|---|---|---|---|---|
MF | 10 | 17.4 ± 4.23 | 45.4 ± 13.2 | 2.91 ± 0.55 | 1321 ± 533 |
AF | 5 | 16.1 ± 3.85 | 28.2 ± 19.9 | 3.07 ± 1.89 | 643 ± 267 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajakumaran, V.; Guessasma, S.; D’Orlando, A.; Melelli, A.; Scheel, M.; Weitkamp, T.; Perrin, J.; Bourmaud, A.; Proudhon, H.; Beaugrand, J. Impact of Defects on Tensile Properties of Ancient and Modern Egyptian Flax Fibers: Multiscale X-Ray Microtomography and Numerical Modeling. Fibers 2024, 12, 111. https://doi.org/10.3390/fib12120111
Rajakumaran V, Guessasma S, D’Orlando A, Melelli A, Scheel M, Weitkamp T, Perrin J, Bourmaud A, Proudhon H, Beaugrand J. Impact of Defects on Tensile Properties of Ancient and Modern Egyptian Flax Fibers: Multiscale X-Ray Microtomography and Numerical Modeling. Fibers. 2024; 12(12):111. https://doi.org/10.3390/fib12120111
Chicago/Turabian StyleRajakumaran, Vasuki, Sofiane Guessasma, Angélina D’Orlando, Alessia Melelli, Mario Scheel, Timm Weitkamp, Jonathan Perrin, Alain Bourmaud, Henry Proudhon, and Johnny Beaugrand. 2024. "Impact of Defects on Tensile Properties of Ancient and Modern Egyptian Flax Fibers: Multiscale X-Ray Microtomography and Numerical Modeling" Fibers 12, no. 12: 111. https://doi.org/10.3390/fib12120111
APA StyleRajakumaran, V., Guessasma, S., D’Orlando, A., Melelli, A., Scheel, M., Weitkamp, T., Perrin, J., Bourmaud, A., Proudhon, H., & Beaugrand, J. (2024). Impact of Defects on Tensile Properties of Ancient and Modern Egyptian Flax Fibers: Multiscale X-Ray Microtomography and Numerical Modeling. Fibers, 12(12), 111. https://doi.org/10.3390/fib12120111