Antimicrobial Properties of AgNP/TEMPO-Oxidized Cellulose Nanofiber/Chitosan Composite Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of TOCN/CS Composite Fibers
2.3. Preparation of Ag/TOCN/CS Composite Fibers
2.3.1. Optimizing the Number of the Fiber Washing Rounds Using DI Water
2.3.2. Optimizing the Initial Concentration of the AgNO3 Aqueous Solution
2.3.3. Optimizing the Soaking Time of TOCN/CS Composite Fibers in the AgNO3 Aqueous Solution
2.4. Preparation of AgNP/TOCN/CS Composite Fibers
2.5. Characterization of the AgNP/TOCN/CS Composite Fibers
2.6. Swelling and Weight Loss Measurements of the AgNP/TOCN/CS Composite Fibers
2.7. Tensile Test
2.8. Antibacterial Test of the AgNP/TOCN/CS Composite Fibers
3. Results and Discussion
3.1. Effects of Washing and the Initial Concentration of the AgNO3 Aqueous Solution
3.2. The Appearance of the Ag/TOCN/CS Composite Fibers
3.3. Characterization of the Ag/TOCN/CS Composite Fibers
3.4. Confirmation of the Presence of AgNPs on the Fiber Surface
3.5. Swelling and Weight Loss Measurements
3.6. Tensile Properties of the Fiber Samples
3.7. Antibacterial Properties of the AgNP/TOCN/CS Composite Fibers
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alves, N.M.; Mano, J.F. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int. J. Biol. Macromol. 2008, 43, 401–414. [Google Scholar] [CrossRef] [Green Version]
- Levengood, S.L.; Zhang, M. Chitosan-based scaffolds for bone tissue engineering. J. Mater. Chem. B Mater. Biol. Med. 2014, 2, 3161–3184. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, J.; Bhatnagar, I.; Kim, S. Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar. Drugs 2014, 12, 300–316. [Google Scholar] [CrossRef] [PubMed]
- Goy, R.C.; Morais, S.T.B.; Assis, O.B.G. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Rev. Bras. Farmacogn. 2016, 26, 122–127. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wang, L.; Zhao, X.; Luo, Y.; Zheng, K.; Wu, M. Highly effective antibacterial AgNPs@hinokitiol grafted chitosan for construction of durable antibacterial fabrics. Int. J. Biol. Macromol. 2022, 209, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Bandatang, N.; Pongsomboon, S.; Jumpapaeng, P.; Suwanakood, P.; Saengsuwan, S. Antimicrobial electrospun nanofiber mats of NaOH-hydrolyzed chitosan (HCS)/PVP/PVA incorporated with in-situ synthesized AgNPs: Fabrication, characterization, and antibacterial activity. Int. J. Biol. Macromol. 2021, 190, 585–600. [Google Scholar] [CrossRef]
- Jung, J.; Kasi, G.; Seo, J. Development of functional antimicrobial papers using chitosan/starch-silver nanoparticles. Int. J. Biol. Macromol. 2018, 112, 530–536. [Google Scholar] [CrossRef]
- Lee, D.; Lee, S.J.; Moon, J.; Kim, J.H.; Heo, D.N.; Bang, J.B.; Lim, H.; Kwon, I.K. Preparation of antibacterial chitosan membranes containing silver nanoparticles for dental barrier membrane applications. J. Ind. Eng. Chem. 2018, 66, 196–202. [Google Scholar] [CrossRef]
- Dutta, T.; Ghosh, N.N.; Chattopadhyay, A.P.; Das, M. Chitosan encapsulated water-soluble silver bionanocomposite for size-dependent antibacterial activity. Nano-Struct. Nano-Objects 2019, 20, 100393. [Google Scholar] [CrossRef]
- Gopinath, V.; MubarakAli, D.; Vadivelu, J.; Kamath, S.M.; Syed, A.; Elgorban, A.M. Synthesis of biocompatible chitosan decorated silver nanoparticles biocomposites for enhanced antimicrobial and anticancer property. Process Biochem. 2020, 99, 348–356. [Google Scholar] [CrossRef]
- Thinakaran, S.; Loordhuswamy, A.; Rengaswami, G. Electrophoretic deposition of chitosan/nano silver embedded microsphere on centrifugal spun fibrous matrices—A facile biofilm resistant biocompatible material. Int. J. Biol. Macromol. 2020, 148, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Xia, Z.; Qi, C.; He, M.; Yu, T.; Shi, L. Construction of chitosan/Ag nanocomposite sponges and their properties. Int. J. Biol. Macromol. 2021, 192, 272–277. [Google Scholar] [CrossRef]
- Milanović, J.; Mihajlovski, K.; Nikolić, T.; Kostić, M. Antimicrobial cotton fibers prepared by TEMPO-mediated oxidation and subsequent silver deposition. Cellul. Chem. Technol. 2016, 50, 905–914. Available online: https://www.cellulosechemtechnol.ro/pdf/CCT9-10(2016)/p.905-914.pdf (accessed on 27 July 2023).
- Huang, M.; Chen, F.; Jiang, Z.; Li, Y. Preparation of TEMPO-oxidized cellulose/amino acid/nanosilver biocomposite film and its antibacterial activity. Int. J. Biol. Macromol. 2013, 62, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Ding, B.; Yu, J.; Al-Deyab, S.S. In situ growth of silver nanoparticles on TEMPO-oxidized jute fibers by microwave heating. Carbohydr. Polym. 2013, 92, 571–576. [Google Scholar] [CrossRef]
- Isogai, A.; Kato, Y. Preparation of Polyuronic Acid from Cellulose by TEMPO-mediated Oxidation. Cellulose 1998, 5, 153–164. [Google Scholar] [CrossRef]
- Saito, T.; Shibata, I.; Isogai, A.; Suguri, N.; Sumikawa, N. Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohydr. Polym. 2005, 61, 414–419. [Google Scholar] [CrossRef]
- Saito, T.; Nishiyama, Y.; Putaux, J.; Vignon, M.; Isogai, A. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 2006, 7, 1687–1691. [Google Scholar] [CrossRef]
- Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 2007, 8, 2485–2491. [Google Scholar] [CrossRef]
- Soni, B.; Hassan, E.B.; Schilling, M.W.; Mahmoud, B. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties. Carbohydr. Polym. 2016, 151, 779–789. [Google Scholar] [CrossRef] [Green Version]
- Endo, R.; Saito, T.; Isogai, A. TEMPO-oxidized cellulose nanofibril/poly(vinyl alcohol) composite drawn fibers. Polymer 2013, 54, 935–941. [Google Scholar] [CrossRef]
- Ifuku, S.; Tsuji, M.; Morimoto, M.; Saimoto, H.; Yano, H. Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers. Biomacromolecules 2009, 10, 2714–2717. [Google Scholar] [CrossRef]
- Ito, H.; Sakata, M.; Hongo, C.; Matsumoto, T.; Nishino, T. Cellulose nanofiber nanocomposites with aligned silver nanoparticles. Nanocomposites 2018, 4, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Pawcenis, D.; Chlebda, D.K.; Jędrzejczyk, R.J.; Leśniak, M.; Sitarz, M.; Łojewska, J. Preparation of silver nanoparticles using different fractions of TEMPO-oxidized nanocellulose. Eur. Polym. J. 2019, 116, 242–255. [Google Scholar] [CrossRef]
- Dechojarassri, D.; Nishida, K.; Ozakiya, R.; Furuike, T.; Tamura, H. Adsorption studies of ammonia, protein, and phytic acid using chitosan fiber coated with oxidized cellulose nanofiber. Fibers 2023, 11, 32. [Google Scholar] [CrossRef]
- El-Sakhawy, M.; Salama, A.; El-Ziaty, A.K.; Hazem Hassan, H. Preparation of Tempo-cellulose nanofiber/zinc oxide as antimicrobial and methylene blue photo-degrading nanocomposite. Cellul. Chem. Technol. 2021, 55, 365–373. [Google Scholar] [CrossRef]
- Darder, M.; Karan, A.; del Real, G.; DeCoster, M.A. Cellulose-based biomaterials integrated with copper-cystine hybrid structures as catalysts for nitric oxide generation. Mater. Sci. Eng. C 2020, 108, 110369. [Google Scholar] [CrossRef] [PubMed]
- Oe, T.; Dechojarassri, D.; Kakinoki, S.; Kawasaki, H.; Furuike, T.; Tamura, H. Microwave-assisted incorporation of AgNP into chitosan–alginate hydrogels for antimicrobial applications. J. Funct. Biomater. 2023, 14, 199. [Google Scholar] [CrossRef]
- Nam, S.; Hillyer, M.B.; Condon, B.D.; Lum, J.S.; Richards, M.N.; Zhang, Q. Silver nanoparticle-infused cotton fiber: Durability and aqueous release of silver in laundry water. J. Agric. Food Chem. 2020, 68, 13231–13240. [Google Scholar] [CrossRef]
- Song, L.; Takahashi, K.; Ito, Y.; Aita, T. Preparation of oriented gold plate/cellulose nanofiber composite films by using TEMPO-oxidized cellulose nanofiber as a reducing agent. Microsyst. Technol. 2021, 27, 1039–1049. [Google Scholar] [CrossRef]
- Chekin, F.; Ghasemi, S. Silver nanoparticles prepared in presence of ascorbic acid and gelatin, and their electrocatalytic application. Bull. Mater. Sci. 2014, 37, 1433–1437. [Google Scholar] [CrossRef]
- Qin, Y.; Ji, X.; Jing, J.; Liu, H.; Wu, H.; Yang, W. Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids Surf. A Physicochem. Eng. Asp. 2010, 372, 172–176. [Google Scholar] [CrossRef]
- Mikhailova, E.O. Silver nanoparticles: Mechanism of action and probable bio-application. J. Funct. Biomater. 2020, 11, 84. [Google Scholar] [CrossRef] [PubMed]
Bacteria | Blank | CS Fiber | TOCN/CS Composite Fiber | Heat-Treated Fiber | Vc-Reduced Fiber |
---|---|---|---|---|---|
E. coli | 0 mm | 0 mm | 0 mm | 0.9 ± 0.0 mm | 1.1 ± 0.5 mm |
B. subtilis | 0 mm | 0 mm | 0 mm | 0.9 ± 0.1 mm | 0.9 ± 0.0 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dechojarassri, D.; Komatsu, K.; Sawara, A.; Tamura, H.; Furuike, T. Antimicrobial Properties of AgNP/TEMPO-Oxidized Cellulose Nanofiber/Chitosan Composite Fibers. Fibers 2023, 11, 69. https://doi.org/10.3390/fib11080069
Dechojarassri D, Komatsu K, Sawara A, Tamura H, Furuike T. Antimicrobial Properties of AgNP/TEMPO-Oxidized Cellulose Nanofiber/Chitosan Composite Fibers. Fibers. 2023; 11(8):69. https://doi.org/10.3390/fib11080069
Chicago/Turabian StyleDechojarassri, Duangkamol, Kazuki Komatsu, Atsuhito Sawara, Hiroshi Tamura, and Tetsuya Furuike. 2023. "Antimicrobial Properties of AgNP/TEMPO-Oxidized Cellulose Nanofiber/Chitosan Composite Fibers" Fibers 11, no. 8: 69. https://doi.org/10.3390/fib11080069
APA StyleDechojarassri, D., Komatsu, K., Sawara, A., Tamura, H., & Furuike, T. (2023). Antimicrobial Properties of AgNP/TEMPO-Oxidized Cellulose Nanofiber/Chitosan Composite Fibers. Fibers, 11(8), 69. https://doi.org/10.3390/fib11080069