Optimization and Dispersion Tailoring of Chalcogenide M-Type Fibers Using a Modified Genetic Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fiber Model
2.2. Characteristic Equation
2.3. Modified Genetic Algorithm
- The formation of an initial population of N individuals, where each individual is a set of randomly generated parameters in the search range: Ij = (aj, dj, x1j, x2j) and j = 1…N;
- The calculation of the error function Fj = F(Ij) for each individual and sorting the population in ascending order of Fj values (from the best solutions to the worst ones);
- Algorithm iteration:
- (1)
- Random division of the best 2k individuals into k pairs and crossing in each pair with the formation of 2k new individuals that are added to the population;
- (2)
- Random selection of s individuals and applying the mutation operator to them, changing their parameters randomly. This is performed to provide the widest coverage of the parameter space and to prevent premature stagnation of the algorithm in the local optimum, bypassing the global one;
- (3)
- Sorting the updated population of N + 2k individuals and removing the 2k worst ones (with the largest value of the error function F).
- Repeating steps (1)–(3) until the maximum number of iterations nmax is reached or the convergence criterion is met.
3. Results
3.1. Dependences of Dispersion on Parameters
3.1.1. Fixed d, x1, and x2; Varied a
3.1.2. Fixed a, x1, and x2; Varied d
3.1.3. Fixed a, d, and x1; Varied x2
3.1.4. Fixed a, d, and (x2 − x1); Varied x1
3.2. Dispersion Profiles Tailored with Modified Genetic Algorithm
3.2.1. Minimizing the First ZDW with MGA
- N = 400 is the number of individuals in the population;
- k = 40 is the number of pairs of individuals that give offspring at each iteration (the same number of individuals was eliminated at each iteration);
- n = 5 is the parameter of the crossing operator;
- T = 100 and h = 5 are mutation operator parameters.
3.2.2. Obtaining Anomalous Dispersion in the 2–5 μm Range with MGA
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agrawal, G.P. Nonlinear Fiber Optics, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Agrawal, G.P. Applications of Nonlinear Fiber Optics; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Jeunhomme, L.B. Single-Mode Fiber Optics: Prinicples and Applications; Routledge: Oxfordshire, UK, 2019. [Google Scholar]
- Tao, G.; Ebendorff-Heidepriem, H.; Stolyarov, A.M.; Danto, S.; Badding, J.V.; Fink, Y.; Ballato, J.; Abouraddy, A.F. Infrared Fibers. Adv. Opt. Photonics 2015, 7, 379–458. [Google Scholar] [CrossRef]
- Shiryaev, V.S.; Churbanov, M.F. Recent Advances in Preparation of High-Purity Chalcogenide Glasses for Mid-IR Photonics. J. Non-Cryst. Solids 2017, 475, 1–9. [Google Scholar] [CrossRef]
- Bodrov, S.; Sergeev, Y.; Burova, E.; Korytin, A.; Murzanev, A.; Romashkin, A.; Stepanov, A. Cubic Nonlinearity of Tellurite and Chalcogenide Glasses: Terahertz-Field-Induced Second Harmonic Generation vs. Optical Kerr Effect. Appl. Sci. 2022, 12, 11608. [Google Scholar] [CrossRef]
- Anashkina, E.A.; Sorokin, A.A.; Andrianov, A.V. Ultrashort Pulse Retrieval from Experimental Spectra Transformed in Chalcogenide and Silica Fibers. Fibers 2022, 10, 98. [Google Scholar] [CrossRef]
- Niang, A.; Mansuryan, T.; Krupa, K.; Tonello, A.; Fabert, M.; Leproux, P.; Modotto, D.; Egorova, O.N.; Levchenko, A.E.; Lipatov, D.S.; et al. Spatial Beam Self-Cleaning and Supercontinuum Generation with Yb-Doped Multimode Graded-Index Fiber Taper Based on Accelerating Self-Imaging and Dissipative Landscape. Opt. Express 2019, 27, 24018. [Google Scholar] [CrossRef] [PubMed]
- Neves, I.V.; Fernandes, A.S.C. Modal Characteristics for W-Type and M-Type Dielectric Profile Fibers. Microw. Opt. Technol. Lett. 1999, 22, 398–405. [Google Scholar] [CrossRef]
- Yeh, P.; Yariv, A.; Marom, E. Theory of Bragg Fiber. J. Opt. Soc. Am. 1978, 68, 1196. [Google Scholar] [CrossRef]
- Ghosh, S.; Dasgupta, S.; Varshney, R.K.; Richardson David, J.; Pal, B.P. Design of a Bragg Fiber with Large Mode Area for Mid-Infrared Applications. Opt. Express 2011, 19, 21295. [Google Scholar] [CrossRef] [PubMed]
- Dudley, J.M.; Genty, G.; Coen, S. Supercontinuum Generation in Photonic Crystal Fiber. Rev. Mod. Phys. 2006, 78, 1135–1184. [Google Scholar] [CrossRef]
- Bufetov, I.A.; Kosolapov, A.F.; Pryamikov, A.D.; Gladyshev, A.V.; Kolyadin, A.N.; Krylov, A.A.; Yatsenko, Y.P.; Biriukov, A.S. Revolver Hollow Core Optical Fibers. Fibers 2018, 6, 39. [Google Scholar] [CrossRef]
- Cai, D.; Xie, Y.; Guo, X.; Wang, P.; Tong, L. Chalcogenide Glass Microfibers for Mid-Infrared Optics. Photonics 2021, 8, 497. [Google Scholar] [CrossRef]
- Aleshkina, S.S.; Yashkov, M.V.; Bubnov, M.M.; Guryanov, A.N.; Likhachev, M.E. Asymptotically Single-Mode Hybrid Fiber for Dispersion Management Near 1 μm. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 0901608. [Google Scholar] [CrossRef]
- Aleshkina, S.S.; Yatsenko, Y.P.; Salganskii, M.Y.; Lipatov, D.S.; Senatorov, A.K.; Tausenev, A.V.; Shepelev, D.V.; Bubnov, M.M.; Guryanov, A.N.; Likhachev, M.E. High-Peak-Power Femtosecond Pulse Generation by Nonlinear Compression in a Yb-Doped Hybrid Fiber. IEEE Photonics J. 2019, 11, 7103411. [Google Scholar] [CrossRef]
- Jain, D.; Markos, C.; Benson, T.M.; Seddon, A.B.; Bang, O. Exploiting Dispersion of Higher-Order-Modes Using M-Type Fiber for Application in Mid-Infrared Supercontinuum Generation. Sci. Rep. 2019, 9, 8536. [Google Scholar] [CrossRef] [PubMed]
- El-Den, M.B.; El-Nahass, M.M. Optical Properties of AsSe1.5−xTex Glassy System. Opt. Laser Technol. 2003, 35, 335–340. [Google Scholar] [CrossRef]
- Amorphous Materials Inc. Available online: http://www.amorphousmaterials.com (accessed on 18 October 2023).
- Anashkina, E.A.; Shiryaev, V.S.; Snopatin, G.E.; Muraviev, S.V.; Kim, A.V. On the Possibility of Mid-IR Supercontinuum Generation in As-Se-Te/As-S Core/Clad Fibers with All-Fiber Femtosecond Pump Source. J. Non-Cryst. Solids 2018, 480, 38–42. [Google Scholar] [CrossRef]
- Snyder, A.W.; Love, J.D. Optical Waveguide Theory; Chapman and Hall: London, UK, 1983. [Google Scholar]
- Mitchell, M. An Introduction to Genetic Algorithms; MIT: Cambridge, MA, USA, 1998. [Google Scholar]
- Wang, Z.; Ye, F.; Li, Q. Modified Genetic Algorithm for High-Efficiency Dispersive Waves Emission at 3 μm. Opt. Express 2022, 30, 2711. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lin, Q.; Yue, Y.; Yan, Y.; Beausoleil, R.G.; Willner, A.E. Silicon Waveguide with Four Zero-Dispersion Wavelengths and Its Application in on-Chip Octave-Spanning Supercontinuum Generation. Opt. Express 2012, 20, 1685–1690. [Google Scholar] [CrossRef] [PubMed]
- Deb, R.; Maji, P.S. Investigation of Parametric Gain and Bandwidth of Tellurite Hybrid Micro-Structured Fiber with Four ZDWs. Opt. Quantum Electron. 2021, 53, 717. [Google Scholar] [CrossRef]
- Honjo, T.; Sonobe, T.; Inaba, K.; Inagaki, T.; Ikuta, T.; Yamada, Y.; Kazama, T.; Enbutsu, K.; Umeki, T.; Kasahara, R.; et al. 100,000-Spin Coherent Ising Machine. Sci. Adv. 2021, 7, eabh0952. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salnikov, N.I.; Andrianov, A.V.; Anashkina, E.A. Optimization and Dispersion Tailoring of Chalcogenide M-Type Fibers Using a Modified Genetic Algorithm. Fibers 2023, 11, 89. https://doi.org/10.3390/fib11110089
Salnikov NI, Andrianov AV, Anashkina EA. Optimization and Dispersion Tailoring of Chalcogenide M-Type Fibers Using a Modified Genetic Algorithm. Fibers. 2023; 11(11):89. https://doi.org/10.3390/fib11110089
Chicago/Turabian StyleSalnikov, Nikolay I., Alexey V. Andrianov, and Elena A. Anashkina. 2023. "Optimization and Dispersion Tailoring of Chalcogenide M-Type Fibers Using a Modified Genetic Algorithm" Fibers 11, no. 11: 89. https://doi.org/10.3390/fib11110089
APA StyleSalnikov, N. I., Andrianov, A. V., & Anashkina, E. A. (2023). Optimization and Dispersion Tailoring of Chalcogenide M-Type Fibers Using a Modified Genetic Algorithm. Fibers, 11(11), 89. https://doi.org/10.3390/fib11110089