Literature Review on Fretting Wear and Contact Mechanics of Tribological Coatings
Abstract
1. Introduction
2. Experimental Fretting Conditions Found in Industries
3. Experimental Methods and Evaluation Techniques
4. Recent Solutions to Resist Fretting Wear Damage
5. Contact Mechanics of Coated Systems
5.1. Single-Layer Coated Contacts
5.2. Multi-Layer Coated Contact
5.3. Functionally Graded Material Coating (FGM)
6. Simulation for Fretting
7. Future Challenges
8. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
Appendix A
Number | Coating | Anti-Fretting Lifetime Ratio 1 |
---|---|---|
1 | CuNiIn+MoS2 | 1.00 |
2 | Mo+S | 1.05 |
3 | SiC-Mo-MoS2 | 1.21 |
4 | SiC-Mo-MoS2 | 1.21 |
References
- Hills, D.A.; Nowell, D. Mechanics of Fretting Fatigue, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Vingsbo, O.; Soderberg, S. On Fretting Maps. Wear 1988, 126, 131–147. [Google Scholar] [CrossRef]
- Kim, K. An Investigation of Fretting Wear and Fretting Fatigue of Coated Systems. Ph.D. Thesis, University of Oxford, Oxford, UK, 2005. [Google Scholar]
- Fouvry, S.; Kapsa, P.; Vincent, L. An elastic–plastic shakedown analysis of fretting wear. Wear 2001, 247, 41–54. [Google Scholar] [CrossRef]
- Zhou, Z.R.; Nakazawa, K.; Zhu, M.H.; Maruyama, N.; Kapsa, P.; Vincent, L. Progress in fretting maps. Tribol. Inl. 2006, 39, 1068–1073. [Google Scholar] [CrossRef]
- Geringer, J.; Macdonald, D. Friction/fretting-corrosion mechanisms: Current trends and outlooks for implants. Mater. Lett. 2014, 134, 152–157. [Google Scholar] [CrossRef]
- Wu, Y.P.; Li, Z.Y.; Zhu, S.F.; Lü, L.; Cai, Z.B. Effect of frequency on fretting wear behavior of Ti/TiN multilayer film on depleted uranium. PLoS ONE 2017, 12, 0175084. [Google Scholar] [CrossRef] [PubMed]
- Kubiak, K.; Mathia, T.; Fouvry, S.; Kubiak, K. Interface roughness effect on friction map under fretting contact conditions. Tribol. Int. 2010, 43, 1500–1507. [Google Scholar] [CrossRef]
- Korsunsky, A.M.; Torosyan, A.R.; Kim, K. Development and characterization of low friction coatings for protection against fretting wear in aerospace components. Thin Solid Film. 2008, 516, 5690–5699. [Google Scholar] [CrossRef]
- Kim, K.; Geringer, J.; Pellier, J.; Macdonald, D.D. Fretting corrosion damage of total hip prosthesis: Friction coefficient and damage rate constant approach. Tribol. Int. 2013, 60, 10–18. [Google Scholar] [CrossRef]
- Kim, K. Fretting studies on electroplated brass contacts. Int. J. Mech. Sci. 2018, 140, 306–312. [Google Scholar] [CrossRef]
- Kim, H.K.; Lee, Y.H.; Heo, S.P. Mechanical and experimental investigation on nuclear fuel fretting. Tribol. Int. 2016, 39, 1305–1319. [Google Scholar] [CrossRef]
- Beale, S. Precision engineering for future propulsion and power systems: A perspective from Rolls-Royce. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 4130–4153. [Google Scholar] [CrossRef] [PubMed]
- Geringer, J.; Forest, B.; Combrade, P. Fretting-corrosion of materials used as orthopaedic implants. Wear 2005, 259, 943–951. [Google Scholar] [CrossRef]
- Antler, M. Survey of contact fretting in electrical connectors. IEEE Trans. Compon. Hybrids Manuf. Technol. 1985, 8, 87–104. [Google Scholar] [CrossRef]
- van Dijk, P.; Rudolphi, A.K.; Klaffke, D. Investigations on Electrical Contacts Subjected to Fretting Motion. In Proceedings of the 21st International Conference on Electrical Contacts (ICEC), Zurich, Switzerland, 9–12 September 2002. [Google Scholar]
- Sung, I.; Kim, J.; Noh, H.; Jang, H. Effect of displacement and humidity on contact resistance of copper electrical contacts. Tribol. Int. 2016, 95, 256–261. [Google Scholar] [CrossRef]
- Kim, H.K.; Lee, Y.H.; Lee, K.H. On the geometry of the fuel rod supports concerning a fretting wear failure. Nucl. Eng. Des. 2008, 238, 3321–3330. [Google Scholar] [CrossRef]
- Bhushan, B. Introduction to Tribology, 1st ed.; John Wiley & Sons: New York, NY, USA, 2002; p. 180. [Google Scholar]
- Geringer, J.; Pellier, J.; Taylor, M.L.; Macdonald, D.D. Fretting corrosion with proteins: The role of organic coating on the synergistic mechanisms. Thin Solid Films 2013, 528, 123–129. [Google Scholar] [CrossRef]
- Fouvry, S.; Kapsa, P.; Vincent, L. Analysis of sliding behaviour for fretting loadings: Determination of transition criteria. Wear 1995, 185, 35–46. [Google Scholar] [CrossRef]
- Varenberg, M.; Etsion, I.; Halperin, G. Slip Index: A new unified approach to fretting. Tribol. Lett. 2004, 17, 569–573. [Google Scholar] [CrossRef]
- Kim, K. Statistical determination of a fretting-induced failure of an electro-deposited coating. Coatings 2017, 7, 48. [Google Scholar] [CrossRef]
- Kim, K.; Korsunsky, A.M. Effects of imposed displacement and initial coating thickness on fretting behaviour of a thermally sprayed coating. Wear 2011, 271, 1080–1085. [Google Scholar] [CrossRef]
- Korsunsky, A.M.; Kim, K. Dissipated energy and friction coefficient evolution during fretting wear of solid lubricant coatings. Tribol. Int. 2010, 43, 861–867. [Google Scholar] [CrossRef]
- Noel, S.; Correia, S.; Alamarguy, D.; Gendre, P. Fretting behavior of various intermetallic compound influence on reliability. Wear 2011, 271, 1515–1523. [Google Scholar] [CrossRef]
- Kim, K.; Korsunsky, A.M. Dissipated energy and fretting damage in CoCrAlY-MoS2 coatings. Tribol. Int. 2010, 43, 676–684. [Google Scholar] [CrossRef]
- Kim, K.; Korsunsky, A.M.; Korsunsky, A. Fretting damage of Ni—MoS2 Coatings: Friction coefficient and accumulated dissipated energy evolutions. Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol. 2010, 224, 1173–1180. [Google Scholar] [CrossRef]
- Fridrici, V.; Fouvry, S.; Kapsa, P. Effect of shot peening on the fretting wear of Ti–6Al–4V. Wear 2001, 250, 642–649. [Google Scholar] [CrossRef]
- De Aza, A.H.; Chevalier, J.; Fantozzi, G.; Schehl, M.; Torrecillas, R. Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials 2002, 23, 937–945. [Google Scholar] [CrossRef]
- Kim, K.; Geringer, J.; Macdonald, D.D. Crack simulation of nano-bioceramic composite microstructures with cohesive failure law: Effects of sintering, loads and time. J. Mech. Behav. Biomed. Mater. 2012, 15, 1–12. [Google Scholar] [CrossRef] [PubMed]
- England, A.H.; Green, A.E. A punch problem for a transversely isotropic layer. Math. Proc. Camb. Philos. Soc. 1962, 58, 539. [Google Scholar] [CrossRef]
- Wu, T.S.; Chiu, Y.P. On the contact problem of layered elastic bodies. Q. Appl. Math. 1967, 25, 233–242. [Google Scholar] [CrossRef][Green Version]
- Ma, L.; Korsunsky, A.; Korsunsky, A. Fundamental formulation for frictional contact problems of coated systems. Int. J. Solids Struct. 2004, 41, 2837–2854. [Google Scholar] [CrossRef]
- Bentall, R.H.; Johnson, K.L. An elastic strip in plan rolling contact. Int. J. Mech. Sci. 1968, 10, 637–663. [Google Scholar] [CrossRef]
- Walowit, J.A.; Gupta, P.K. Contact stresses between an elastic cylinder and a layered elastic solid. J. Lubr. Technol. 1974, 96, 250–257. [Google Scholar]
- King, R.; O’Sullivan, T. Sliding contact stresses in a two-dimensional layered elastic half-space. Int. J. Solids Struct. 1987, 23, 581–597. [Google Scholar] [CrossRef]
- Jaffar, M.J.; Savage, M.D. On the numerical solution of line contact problems involving bonded and unbonded strips. J. Strain Anal. Eng. Des. 1988, 23, 67–77. [Google Scholar] [CrossRef]
- Porter, M.; Hills, D. Note on the complete contact between a flat rigid punch and an elastic layer attached to a dissimilar substrate. Int. J. Mech. Sci. 2002, 44, 509–520. [Google Scholar] [CrossRef]
- Ma, L.F.; Korsunsky, A.M. Solution of sliding contact problems using Gauss-Jacobi quadrature formulae. Int. J. Numer. Methods Eng. 2005, 64, 1236–1255. [Google Scholar] [CrossRef]
- Ma, L.F.; Korsunsky, A.M.; Sun, K. The contact of coated systems under sliding conditions. J. Tribol. Trans. ASME 2006, 128, 886–890. [Google Scholar] [CrossRef]
- Comez, I.; Erdol, R. Frictional contact problem of a rigid stamp and an elastic layer bonded to a homogeneous substrate. Arch. Appl. Mech. 2013, 83, 15–24. [Google Scholar] [CrossRef]
- Nowell, D.; Hills, D. Contact problems incorporating elastic layers. Int. J. Solids Struct. 1988, 24, 105–115. [Google Scholar] [CrossRef]
- Sackfield, A.; Hills, D.A.; Nowell, D. Mechanics of Elastic Contacts, 1st ed.; Butterworth-Heinemann: Oxford, UK, 1993. [Google Scholar]
- Krenk, S. On quadrature formulas for singular integral equations of the first and the second kind. Q. Appl. Math. 1975, 33, 225–232. [Google Scholar] [CrossRef]
- Erdogan, F.; Gupta, G.D.; Cook, T.S. Numerical solution of singular integral equations. In Methods of Analysis and Solutions of Crack Problems; Springer Science and Business Media LLC: Berlin, Germany, 1973; pp. 368–425. [Google Scholar]
- Korsunsky, A.M. On the use of interpolative quadratures for hypersingular integrals in fracture mechanics. Proc. R. Soc. A Math. Phys. Eng. Sci. 2002, 458, 2721–2733. [Google Scholar] [CrossRef]
- Keer, L.M.; Dundurs, J.; Tsai, K.C. Problems involving a receding contact between a layer and a half space. J. Appl. Mech. 1972, 39, 1115–1120. [Google Scholar] [CrossRef]
- Ratwani, M.; Erdogan, F. On the plane contact problem for a frictionless elastic layer. Int. J. Solids Struct. 1973, 9, 921–936. [Google Scholar] [CrossRef]
- Reina, S.; Hills, D.; Dini, D. Contact of a rigid cylinder indenting an elastic layer sliding over a rigid substrate. Eur. J. Mech. A Solids 2010, 29, 772–783. [Google Scholar] [CrossRef]
- Comez, I. Frictional contact problem for a rigid cylindrical stamp and an elastic layer resting on a half plane. Int. J. Solids Struct. 2010, 47, 1090–1097. [Google Scholar] [CrossRef]
- Chaise, T.; Paynter, R.; Hills, D. Contact analysis of a semi-infinite strip pressed onto a half plane by a line force. Int. J. Mech. Sci. 2014, 81, 60–64. [Google Scholar] [CrossRef]
- Parel, K.; Hills, D. Frictional receding contact analysis of a layer on a half-plane subjected to semi-infinite surface pressure. Int. J. Mech. Sci. 2016, 108, 137–143. [Google Scholar] [CrossRef]
- Sergici, A.O.; Adams, G.G.; Müftü, S. Adhesion in the contact of a spherical indenter with a layered elastic half-space. J. Mech. Phys. Solids 2006, 54, 1843–1861. [Google Scholar] [CrossRef]
- Elsharkawy, A.A. Effect of friction on subsurface stresses in sliding line contact of multilayered elastic solids. Int. J. Solids Struct. 1999, 36, 3903–3915. [Google Scholar] [CrossRef]
- Shakeri, M.; Sadough, A.; Ahmadi, S.R. Elastic stress analysis of bi-layered isotropic coatings and substrate subjected to line scratch indentation. J. Mater. Process. Technol. 2008, 196, 213–221. [Google Scholar] [CrossRef]
- Chidlow, S.; Teodorescu, M. Two-dimensional contact mechanics problems involving inhomogeneously elastic solids split into three distinct layers. Int. J. Eng. Sci. 2013, 70, 102–123. [Google Scholar] [CrossRef]
- Chidlow, S.; Teodorescu, M. Sliding contact problems involving inhomogeneous materials comprising a coating-transition layer-substrate and a rigid punch. Int. J. Solids Struct. 2014, 51, 1931–1945. [Google Scholar] [CrossRef]
- Ibrahim, R.; Rahmat, M.; Oskouei, R.; Raman, R.S. Monolayer TiAlN and multilayer TiAlN/CrN PVD coatings as surface modifiers to mitigate fretting fatigue of AISI P20 steel. Eng. Fract. Mech. 2015, 137, 64–78. [Google Scholar] [CrossRef]
- Stan, G.; Adams, G.G. Adhesive contact between a rigid spherical indenter and an elastic multi-layer coated substrate. Int. J. Solids Struct. 2016, 87, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Giannakopoulosa, A.E.; Pallot, P. Two-dimensional contact analysis of elastic graded materials. J. Mech. Phys. Solids 2000, 48, 1597–1631. [Google Scholar] [CrossRef]
- Yang, J.; Ke, L.L. Two-dimensional contact problem for a coating–graded layer–substrate structure under a rigid cylindrical punch. Int. J. Mech. Sci. 2008, 50, 985–994. [Google Scholar] [CrossRef]
- El-Borgi, S.; Abdelmoula, R.; Keer, L. A receding contact plane problem between a functionally graded layer and a homogeneous substrate. Int. J. Solids Struct. 2006, 43, 658–674. [Google Scholar] [CrossRef]
- Yilmaz, K.; Comez, I.; Yildirim, B.; Güler, M.; El-Borgi, S. Frictional receding contact problem for a graded bilayer system indented by a rigid punch. Int. J. Mech. Sci. 2018, 141, 127–142. [Google Scholar] [CrossRef]
- Choi, H.J.; Paulino, G.H. Thermoelastic contact mechanics for a flat punch sliding over a graded coating/substrate system with frictional heat generation. J. Mech. Phys. Solids 2008, 56, 1673–1692. [Google Scholar] [CrossRef]
- Balci, M.N.; Dag, S. Dynamic frictional contact problems involving elastic coatings. Tribol. Int. 2018, 124, 70–92. [Google Scholar] [CrossRef]
- Alinia, Y.; Beheshti, A.; Guler, M.A.; El-Borgi, S.; Polycarpou, A.A. Sliding contact analysis of functionally graded coating/substrate system. Mech. Mater. 2016, 94, 142–155. [Google Scholar] [CrossRef]
- Balci, M.N.; Dag, S. Solution of the dynamic frictional contact problem between a functionally graded coating and a moving cylindrical punch. Int. J. Solids Struct. 2019, 161, 267–281. [Google Scholar] [CrossRef]
- Arslan, O.; Dag, S. Contact mechanics problem between an orthotropic graded coating and a rigid punch of an arbitrary profile. Int. J. Mech. Sci. 2018, 135, 541–554. [Google Scholar] [CrossRef]
- Hou, P.F.; Zhang, W.H.; Chen, J.Y. Three-dimensional exact solutions of transversely isotropic coated structures under tilted circular flat punch contact. Int. J. Mech. Sci. 2019, 151, 471–497. [Google Scholar] [CrossRef]
- Tichy, A.J.; Meyer, D.M. Review of solid mechanics in tribology. Int. J. Solids Struct. 2000, 37, 391–400. [Google Scholar] [CrossRef]
- Gladwell, G.M.L. Contact Problems in the Classical Theory of Elasticity; Springer Science and Business Media LLC: Berlin, Germany, 1980. [Google Scholar]
- Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Ihara, T.; Shaw, M.C.; Bhushan, B. A finite element analysis of contact stress and strain in an elastic film on a rigid substrate—Part I: Zero friction. J. Tribol. Trans. ASME 1986, 108, 527–533. [Google Scholar] [CrossRef]
- Ihara, T.; Shaw, M.C.; Bhushan, B. A finite element analysis of contact stress and strain in an elastic film on a rigid substrate—Part II: With friction. J. Tribol. 1986, 108, 534–539. [Google Scholar] [CrossRef]
- Komovopoulus, K. Finite element analysis of a layered elastic solid in normal contact with a rigid substrate. J. Tribol. Trans. ASME 1988, 110, 477–485. [Google Scholar] [CrossRef]
- Tian, H.; Saka, N. Finite element analysis of an elastic-plastic two-layer half-space: Sliding contact. Wear 1991, 148, 261–285. [Google Scholar] [CrossRef]
- Anderson, I.; Collins, I. Plane strain stress distributions in discrete and blended coated solids under normal and sliding contact. Wear 1995, 185, 23–33. [Google Scholar] [CrossRef]
- Oliveira, S.A.; Bower, A.F. An analysis of fracture and delamination in thin coatings subjected to contact loading. Wear 1996, 198, 15–32. [Google Scholar] [CrossRef]
- Lovell, M. Analysis of contact between transversely isotropic coated surfaces: Development of stress and displacement relationships using FEM. Wear 1998, 214, 165–174. [Google Scholar] [CrossRef]
- Aslantas, K.; Tasgetiren, S. Debonding between coating and substrate due to rolling–sliding contact. Mater. Des. 2002, 23, 571–576. [Google Scholar] [CrossRef]
- Abdul-Baqi, A.; Van Der Giessen, E. Numerical analysis of indentation-induced cracking of brittle coatings on ductile substrates. Int. J. Solids Struct. 2002, 39, 1427–1442. [Google Scholar] [CrossRef][Green Version]
- Chai, H. Fracture mechanics analysis of thin coatings under plane-strain indentation. Int. J. Solids Struct. 2003, 40, 591–610. [Google Scholar] [CrossRef]
- Archard, J.F.; Hirst, W. The wear of metals under unlubricated conditions. Proc. R. Soc. Ser. A Math. Phys. Sci. 1956, 236, 397–410. [Google Scholar]
- McColl, I.; Ding, J.; Leen, S.; Leen, S. Finite element simulation and experimental validation of fretting wear. Wear 2004, 256, 1114–1127. [Google Scholar] [CrossRef]
- Fouvry, S.; Kapsa, P.; Vincent, L. Quantification of fretting damage. Wear 1996, 200, 186–205. [Google Scholar] [CrossRef]
- Shen, F.; Hu, W.; Meng, Q. A damage mechanics approach to fretting fatigue life prediction with consideration of elastic–plastic damage model and wear. Tribol. Int. 2015, 82, 176–190. [Google Scholar] [CrossRef]
- Rodríguez-Tembleque, L.; Abascal, R.; Aliabadi, M. A boundary elements formulation for 3D fretting-wear problems. Eng. Anal. Bound. Elements 2011, 35, 935–943. [Google Scholar] [CrossRef]
- Ding, J.; McColl, I.; Leen, S.; Shipway, P.; Shipway, P. A finite element based approach to simulating the effects of debris on fretting wear. Wear 2007, 263, 481–491. [Google Scholar] [CrossRef]
- Done, V.; Kesavan, D.; Krishna R, M.; Chaise, T.; Nelias, D. Semi analytical fretting wear simulation including wear debris. Tribol. Int. 2017, 109, 1–9. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, S.; Liu, D.; Zhou, B.; Markert, B. Fretting wear modelling incorporating cyclic ratcheting deformations and the debris evolution for Ti-6Al-4V. Tribol. Int. 2019, 136, 317–331. [Google Scholar] [CrossRef]
- Arnaud, P.; Fouvry, S.; Garcin, S. A numerical simulation of fretting wear profile taking account of the evolution of third body layer. Wear 2017, 376, 1475–1488. [Google Scholar] [CrossRef]
- Madge, J.; Leen, S.; Shipway, P. A combined wear and crack nucleation–propagation methodology for fretting fatigue prediction. Int. J. Fatigue 2008, 30, 1509–1528. [Google Scholar] [CrossRef]
- Greenwood, J.A.; Williamson, J.B.P. Contact of nominally flat surfaces. Proc. R. Soc. 1966, 295, 300–319. [Google Scholar]
- Abbott, E.J.; Firestone, F.A. Specifying Surface Quantity—A method based on accurate measurement and comparison. Mech. Eng. 1933, 55, 569. [Google Scholar]
- Chang, W.R.; Etsion, I.; Bogy, D.B. An Elastic-Plastic Model for the Contact of Rough Surfaces. J. Tribol. 1987, 109, 257–263. [Google Scholar] [CrossRef]
- Kogut, L.; Etsion, I. A finite element based elastic-plastic model for the contact of rough surfaces. Tribol. Trans. 2003, 46, 383–390. [Google Scholar] [CrossRef]
- Chang, W.R. An elastic-plastic contact model for a rough surface with an ion-plated soft metallic coating. Wear 1997, 212, 229–237. [Google Scholar] [CrossRef]
- Dimaki, A.V.; Dmitriev, A.I.; Chai, Y.S.; Popov, V.L. Rapid simulation procedure for fretting wear on the brass of the method of dimensionality reduction. Int. J. Solids Struct. 2014, 51, 4215–4220. [Google Scholar] [CrossRef]
- Liu, J.; Shen, H.; Yang, Y. Finite element implementation of a varied friction model applied to torsional fretting wear. Wear 2014, 314, 220–227. [Google Scholar] [CrossRef]
- Yue, T.; Wahab, M.A. Finite element analysis of fretting wear under variable coefficient of friction and different contact regimes. Tribol. Int. 2017, 107, 274–282. [Google Scholar] [CrossRef]
- Ghosh, A.; Leonard, B.; Sadeghi, F. A stress based damage mechanics model to simulate fretting wear of Hertzian line contact in partial slip. Wear 2013, 307, 87–99. [Google Scholar] [CrossRef]
- Jansen, L.; Hölscher, H.; Fuchs, H.; Schirmeisen, A. Temperature dependence of atomic-scale stick-slip friction. Phys. Rev. Lett. 2010, 104, 256101. [Google Scholar] [CrossRef]
- Li, Q.; Dong, Y.; Pérez, D.; Martini, A.; Carpick, R.W. Speed dependence of atomic stick-slip friction in optimally matched experiments and molecular dynamics simulations. Phys. Rev. Lett. 2011, 106, 126101. [Google Scholar] [CrossRef] [PubMed]
- Riedo, E.; Gnecco, E.; Bennewitz, R.; Meyer, E.; Brune, H. Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 2003, 91, 084502. [Google Scholar] [CrossRef]
- Reimann, P.; Evstigneev, M. Nonmonotonic velocity dependence of atomic friction. Phys. Rev. Lett. 2004, 93, 230802. [Google Scholar] [CrossRef]
- Evstigneev, M.; Reimann, P. Refined force-velocity relation in atomic friction experiments. Phys. Rev. B 2006, 73, 113401. [Google Scholar] [CrossRef]
- Vanossi, A.; Manini, N.; Urbakh, M.; Zapperi, S.; Tosatti, E. Modeling friction: From nanoscale to mesoscale. Rev. Mod. Phys. 2013, 85, 529–552. [Google Scholar] [CrossRef]
- Eom, K. Computer simulation of protein materials at multiple length scales: From single proteins to protein assemblies. Multiscale Sci. Eng. 2019, 1, 1–25. [Google Scholar]
- Eom, K. Simulations in Nanobiotechnology, 1st ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Karplus, M.; McCammon, J.A. Molecular dynamics simulations of biomolecules. Nat. Struct. Mol. Biol. 2002, 9, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.W.; Wang, J.S.; Li, B. Young’s modulus of graphene: A molecular dynamics study. Phys. Rev. B 2009, 80, 113405. [Google Scholar] [CrossRef]
- Jiang, H.; Yu, M.F.; Liu, B.; Huang, Y. Intrinsic energy loss mechanisms in a cantilevered carbon nanotube bean oscillator. Phys. Rev. Lett. 2004, 93, 185501. [Google Scholar] [CrossRef] [PubMed]
- Urbakh, M.; Klafter, J.; Gourdon, D.; Israelachvill, J. The nonlinear nature of friction. Nature 2004, 430, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, Q.; Carpick, R.W.; Gumbsch, P.; Liu, X.Z.; Ding, X.; Sun, J.; Li, J. The evolving quality of frictional contact with graphene. Nature 2016, 539, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Dror, R.O.; Dirks, R.M.; Grossman, J.; Xu, H.; Shaw, D.E. Biomolecular simulation: A computational microscope for molecular biology. Annu. Rev. Biophys. 2012, 41, 429–452. [Google Scholar] [CrossRef] [PubMed]
Term | Energy Ratio | Slip Index (δ) | Slip Ratio |
---|---|---|---|
Equation | Ad/At | Sd/St | |
Transition from partial slip to gross slip | 0.20 | 0.60–0.80 | 0.26 |
Transition from gross slip to reciprocal sliding | N/A | 11.00 | 0.95 |
Interface | Blade/Disc (Aerospace) [3,9] | Fuel Rod/Support (Nuclear) [12,18] | Electric Connectors (Automotive) [11,16,17] | Hip Implants (Biomedical) [10,14] |
---|---|---|---|---|
Underlying material | Ti-6Al-4V | Zircaloy 4 | Brass | Titanium alloy Cobalt-Chromium-Molybdenum |
Deposition method | Thermal spray | Thermal spray | Electroplating | Chemical electroplating |
Coating | CuNiIn + MoS2 | TiN | Tin, Nickel, Gold | Hydroxyapatite |
Surface treatment | Shot peening, grit blasting | – | – | Polishing |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Eom, K.; Geringer, J.; Jun, T.-S.; Kim, K. Literature Review on Fretting Wear and Contact Mechanics of Tribological Coatings. Coatings 2019, 9, 501. https://doi.org/10.3390/coatings9080501
Ma L, Eom K, Geringer J, Jun T-S, Kim K. Literature Review on Fretting Wear and Contact Mechanics of Tribological Coatings. Coatings. 2019; 9(8):501. https://doi.org/10.3390/coatings9080501
Chicago/Turabian StyleMa, Lifeng, Kilho Eom, Jean Geringer, Tea-Sung Jun, and Kyungmok Kim. 2019. "Literature Review on Fretting Wear and Contact Mechanics of Tribological Coatings" Coatings 9, no. 8: 501. https://doi.org/10.3390/coatings9080501
APA StyleMa, L., Eom, K., Geringer, J., Jun, T.-S., & Kim, K. (2019). Literature Review on Fretting Wear and Contact Mechanics of Tribological Coatings. Coatings, 9(8), 501. https://doi.org/10.3390/coatings9080501