Pulsed Laser Deposition of Aluminum Nitride Films: Correlation between Mechanical, Optical, and Structural Properties
Abstract
:1. Introduction
2. Experimental Details
2.1. AlN Film Preparation
2.2. Nanoindentation Testing
2.3. Transmission Electron Microscopic Measurements
2.4. Optical Measurements
3. Results and Discussion
3.1. Nanoindentation Testing
3.2. TEM Observations
3.3. FTIR Reflectance Spectra Analysis
3.4. Spectroscopic Ellipsometry
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chrisey, D.B.; Hubler, G.K. Pulsed Laser Deposition of Thin Films; John Wiley & Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Eason, R. Pulsed Laser Deposition of Thin Films—Applications-Led Growth of Functional Materials; Wiley-Interscience: Hoboken, NJ, USA, 2007. [Google Scholar]
- Koh, A.T.T.; Foong, Y.M.; Chua, D.H.C. Cooling rate and energy dependence of pulsed laser fabricated graphene on nickel at reduced temperature. Appl. Phys. Lett. 2010, 97, 114102. [Google Scholar] [CrossRef]
- Yang, Z.; Hao, J. Progress in pulsed laser deposited two-dimensional layered materials for device applications. J. Mater. Chem. C 2016, 4, 8859–8878. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, R.J.; Garcia, J.A.; Medrano, A.; Rico, M.; Sanchez, R.; Martinez, R.; Labrugère, C.; Lahaye, M.; Guette, A. Tribological behaviour of hard coatings deposited by arc-evaporation PVD. Vacuum 2002, 67, 559–566. [Google Scholar] [CrossRef]
- Huang, Z.P.; Sun, Y.; Bell, T. Friction behaviour of TiN, CrN, (TiAl)N coatings. Wear 1994, 173, 13–20. [Google Scholar] [CrossRef]
- Jianxin, D.; Aihua, L. Dry sliding wear behavior of PVD TiN, Ti55Al45N, and Ti35Al65N coatings at temperatures up to 600 °C. Int. J. Refract. Met. Hard Mater. 2013, 41, 241–249. [Google Scholar] [CrossRef]
- Jianxin, D.; Fengfang, W.; Yunsong, L.; Youqiang, X.; Shipeng, L. Erosion wear of CrN, TiN, CrAlN, and TiAlN PVD nitride coatings. Int. J. Refract. Met. Hard Mater. 2012, 35, 10–16. [Google Scholar] [CrossRef]
- Liang, C.L.; Cheng, G.A.; Zheng, R.T.; Liu, H.P. Fabrication and performance of TiN/TiAlN nanometer modulated coatings. Thin Solid Films 2011, 520, 813–817. [Google Scholar] [CrossRef]
- Cecchini, R.; Fabrizi, A.; Cabibbo, M.; Paternoster, C.; Mavrin, B.N.; Denisov, V.N.; Novikova, N.N.; Haïdopoulo, M. Mechanical, microstructural and oxidation properties of reactively sputtered thin CrN coatings on steel. Thin Solid Films 2011, 519, 6515–6521. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.; Jiang, H.; Li, Z.; Miao, G.; Song, H. The optimized growth of AlN templates for back-illuminated AlGaN-based solar-blind ultraviolet photodetectors by MOCVD. J. Mater. Chem. C 2018, 6, 4936–4942. [Google Scholar] [CrossRef]
- Gao, J.; Hao, Z.; Luo, Y.; Li, G. Frequency response improvement of a two-port surface acoustic wave device based on epitaxial AlN thin film. IOP Conf. Ser. Mater. Sci. Eng. 2018, 284, 012028. [Google Scholar] [CrossRef] [Green Version]
- Maouhoub, S.; Aoura, Y.; Mir, A. FEM simulation of AlN thin layers on diamond substrates for high frequency SAW devices. Diam. Relat. Mater. 2016, 62, 7–13. [Google Scholar] [CrossRef]
- Schubert, E.F. Light-Emitting Diodes, 3rd ed.; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Galca, A.C.; Stan, G.E.; Trinca, L.M.; Negrila, C.C.; Nistor, L.C. Structural and optical properties of c-axis oriented aluminum nitride thin films prepared at low temperature by reactive radio-frequency magnetron sputtering. Thin Solid Films 2012, 524, 328–333. [Google Scholar] [CrossRef]
- Dumitru, V.; Morosanu, C.; Sandu, V.; Stoica, A. Optical and structural differences between RF and DC AlxNy magnetron sputtered films. Thin Solid Films 2000, 359, 17–20. [Google Scholar] [CrossRef]
- Pankov, V.; Evstigneev, M.; Prince, R.H. Room-temperature fabrication of hard AlN/TiN superlattice coatings by pulsed laser deposition. J. Vac. Sci. Technol. A 2002, 20, 430–436. [Google Scholar] [CrossRef]
- Kim, G.S.; Lee, S.Y.; Hahn, J.H.; Lee, S.Y. Synthesis of CrN/AlN superlattice coatings using closed-field unbalanced magnetron sputtering process. Surf. Coat. Technol. 2003, 171, 91–95. [Google Scholar] [CrossRef]
- Abid, I.; Faisal, M.-Y. Reactive sputtering of aluminum nitride (002) thin films for piezoelectric applications: A review. Sensors 2018, 18, 1797. [Google Scholar] [CrossRef]
- Nan, L.; Satyesh, K.Y.; Jian, W.; Xiang-Yang, L.; Amit, M. Growth and stress-induced transformation of Zinc blende AlN layers in Al-AlN-TiN multilayers. Sci. Rep. 2015, 5, 18554. [Google Scholar] [CrossRef]
- Abels, C.; Mastronardi, V.M.; Guido, F.; Dattoma, T.; Qualtieri, A.; Megill, W.M.; De Vittorio, M.; Rizzi, F. Nitride-based materials for flexible MEMS tactile and flow sensors in robotics. Sensors 2017, 17, 1080. [Google Scholar] [CrossRef]
- Oliveira, I.C.; Grigorov, K.G.; Maciel, H.S.; Massi, M.; Otani, C. High textured AlN thin films grown by RF magnetron sputtering; composition, structure, morphology and hardness. Vacuum 2004, 75, 331–338. [Google Scholar] [CrossRef]
- Szekeres, A.; Fogarassy, Z.; Petrik, P.; Vlaikova, E.; Cziraki, A.; Socol, G.; Ristoscu, C.; Mihailescu, I.N. Structural characterization of AlN films synthesized by pulsed laser deposition. Appl. Surf. Sci. 2011, 257, 5370–5374. [Google Scholar] [CrossRef]
- Antonova, K.; Duta, L.; Szekeres, A.; Stan, G.E.; Mihailescu, I.N.; Anastasescu, M.; Stroescu, H.; Gartner, M. Influence of laser pulse frequency on the microstructure of aluminum nitride thin films synthesized by pulsed laser deposition. Appl. Surf. Sci. 2017, 394, 197–204. [Google Scholar] [CrossRef]
- Giba, A.E.; Pigeat, P.; Bruyère, S.; Easwarakhanthan, T.; Mücklich, F.; Horwat, D. Controlling refractive index in AlN films by texture and crystallinity manipulation. Thin Solid Films 2017, 636, 537–545. [Google Scholar] [CrossRef]
- Meyers, M.A.; Mishra, A.; Benson, D.J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 2006, 51, 427–556. [Google Scholar] [CrossRef]
- Ristoscu, C.; Mihailescu, I.N. Thin Films and Nanoparticles by Pulsed Laser Deposition: Wetting, Adherence, and Nanostructuring. In Pulsed Laser Ablation: Advances and Applications in Nanoparticles and Nanostructuring Thin Films, 1st ed.; Mihailescu, I.N., Caricato, A.P., Eds.; Taylor&Francis Group: Singapore, 2018; pp. 245–276. [Google Scholar] [CrossRef]
- Kumar, A.; Chan, H.L.; Weimer, J.J.; Sanderson, L. Structural characterization of pulsed laser-deposited AlN thin films on semiconductor substrates. Thin Solid Films 1997, 308–309, 406–409. [Google Scholar] [CrossRef]
- Bakalova, S.; Szekeres, A.; Anastasescu, M.; Gartner, M.; Duta, L.; Socol, G.; Ristoscu, C.; Mihailescu, I.N. VIS/IR spectroscopy of thin AlN films grown by pulsed laser deposition at 400 °C and 800 °C and various N2 pressures. J. Phys. Conf. Ser. 2016, 514, 012001. [Google Scholar] [CrossRef]
- Bakalova, S.; Szekeres, A.; Fogarassy, Z.; Georgiev, S.; Ivanov, T.; Socol, G.; Ristoscu, C.; Mihailescu, I.N. Synthesis of nanostructured PLD AlN films: XRD and Surface-enhanced Raman scattering studies. Micro Nanosyst. 2014, 6, 9–13. [Google Scholar] [CrossRef]
- Antonova, K.; Szekeres, A.; Duta, L.; Stan, G.E.; Mihailescu, N.; Mihailescu, I.N. Orientation of the nanocrystallites in AlN thin film determined by FTIR spectroscopy. J. Phys. Conf. Ser. 2016, 682, 012024. [Google Scholar] [CrossRef] [Green Version]
- Simeonov, S.; Bakalova, S.; Kafedjiiska, E.; Szekeres, A.; Socol, G.; Grigorescu, S.; Mihailescu, I.N. Admittance study of MIS structures with pulsed plasma deposited AlN films. J. Optoelectron. Adv. Mater. 2007, 9, 323–325. [Google Scholar]
- Bakalova, S.; Szekeres, A.; Cziraki, A.; Lungu, C.P.; Grigorescu, S.; Socol, G.; Axente, E.; Mihailescu, I.N. Influence of in-situ nitrogen pressure on crystallization of pulsed laser deposited AlN Films. Appl. Surf. Sci. 2007, 253, 8215–8219. [Google Scholar] [CrossRef]
- Simeonov, S.; Bakalova, S.; Szekeres, A.; Kafedjiiska, E.; Grigorescu, S.; Socol, G.; Mihailescu, I.N. Extended analysis of the admittance frequency dependence of MIS structures with pulsed laser deposited AlN films as gate dielectric. J. Phys. Conf. Ser. 2008, 113, 012050. [Google Scholar] [CrossRef]
- Duta, L.; Stan, G.E.; Stroescu, H.; Gartner, M.; Anastasescu, M.; Fogarassy, Z.; Mihailescu, N.; Szekeres, A.; Bakalova, S.; Mihailescu, I.N. Multi-stage pulsed laser deposition of aluminum nitride at different temperatures. Appl. Surf. Sci. 2016, 374, 143–150. [Google Scholar] [CrossRef]
- Fogarassy, Z.; Petrik, P.; Duta, L.; Mihailescu, N.; Anastasescu, M.; Gartner, M.; Antonova, K.; Szekeres, A. TEM and AFM studies of aluminum nitride films synthesized by pulsed laser deposition. Appl. Phys. A 2017, 123, 756. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Software CompleteEASE® 5.08 supplied by J. A. Woollam Co., Inc. Available online: https://www.jawoollam.com/ellipsometry-software/completeease (accessed on 15 March 2019).
- Hay, J.L.; Pharr, G.M. Instrumented Indentation Testing. In ASM Handbook: Mechanical Testing and Evaluation; Khun, H., Medlin, D., Eds.; ASM International: Novelty, OH, USA, 2000; Volume 8, pp. 232–243. [Google Scholar] [CrossRef]
- Bakalova, S.; Szekeres, A.; Huhn, G.; Havancsak, K.; Grigorescu, S.; Socol, G.; Ristoscu, C.; Mihailescu, I.N. Surface morphology studies of AlN films synthesized by pulsed laser deposition. Vacuum 2009, 84, 155–157. [Google Scholar] [CrossRef]
- Buckle, H.; Westbrook, J.H.; Conrad, H. The Science of Hardness Testing and Its Research Applications; ASTM: Philadelphia, PA, USA, 1971. [Google Scholar]
- Panda, P.; Ramaseshan, R.; Ravi, N.; Mangamma, G.; Jose, F.; Dash, S.; Suzuki, K.; Suematsu, H. Reduction of residual stress in AlN thin films synthesized by magnetron sputtering technique. Mater. Chem. Phys. 2017, 200, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.P.; Zhang, X.W.; Liu, D.Y.; Jie, L.I.; Zhou, K.C.; Zhang, D.; Yu, Z.M. Effects of sputtering pressure on nanostructure and nanomechanical properties of AlN films prepared by RF reactive sputtering. Trans. Nonferrous Met. Soc. China 2014, 24, 2845–2855. [Google Scholar] [CrossRef]
- Sippola, P.; Perros, A.P.; Ylivaara, O.M.E.; Ronkainen, H.; Julin, J.; Liu, X.; Sajavaara, T.; Etula, J.; Lipsanen, H.; Puurunen, R.L. Comparison of mechanical properties and composition of magnetron sputter and plasma enhanced atomic layer deposition aluminum nitride films. J. Vac. Sci. Technol. A 2018, 36, 051508. [Google Scholar] [CrossRef]
- Guillaumot, A.; Lapostolle, F.; Dublanche-Tixier, C.; Oliveira, J.C.; Billard, A.; Langlade, C. Reactive deposition of Al-N coatings in Ar/N2 atmospheres using pulsed-DC or high power impulse magnetron sputtering discharges. Vacuum 2010, 85, 120–125. [Google Scholar] [CrossRef]
- Kohout, J.; Qian, J.; Schmitt, T.; Vernhes, R.; Zabeida, O.; Klemberg-Sapieha, J.; Martinu, L. Hard AlN films prepared by low duty cycle magnetron sputtering and by other deposition techniques. J. Vac. Sci. Technol. A 2017, 35, 061505. [Google Scholar] [CrossRef]
- Besleaga, C.; Dumitru, V.; Trinca, L.M.; Popa, A.-C.; Negrila, C.-C.; Kołodziejczyk, Ł.; Luculescu, C.R.; Ionescu, G.C.; Ripeanu, R.G.; Vladescu, A.; et al. Mechanical, corrosion and biological properties of room-temperature sputtered aluminum nitride films with dissimilar nanostructure. Nanomaterials 2017, 7, 394. [Google Scholar] [CrossRef]
- Barna, P.B.; Adamik, M. Fundamental structure forming phenomena of polycrystalline films and the structure zone models. Thin Solid Films 1998, 317, 27–33. [Google Scholar] [CrossRef]
- Oberle, T.L. Wear of metals. J. Met. 1951, 3, 438–439. [Google Scholar] [CrossRef]
- Leyland, A.; Matthews, A. On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behavior. Wear 2000, 246, 1–11. [Google Scholar] [CrossRef]
- Musil, J. Hard and superhard nanocomposite coatings. Surf. Coat. Technol. 2000, 125, 322–330. [Google Scholar] [CrossRef]
- Szekeres, A.; Cziraki, A.; Huhn, G.; Havancsak, K.; Vlaikova, E.; Socol, G.; Ristoscu, C.; Mihailescu, I.N. Laser technology for synthesis of AlN films: Influence of the incident laser fluence on the films microstructure. J. Phys. Conf. Ser. 2012, 356, 012003. [Google Scholar] [CrossRef]
- Wang, W.; Yang, W.; Liu, Z.; Lin, Y.; Zhou, S.; Lin, Z.; Wang, H.; Qian, H.; Li, G. Synthesis of high-quality AlN films on (La,Sr)(Al,Ta)O3 substrates by pulsed laser deposition. Mater. Lett. 2015, 39, 483–486. [Google Scholar] [CrossRef]
- Hua, T.S.; Zhu, B.; Song, R.G. Characterisation of AlN nano thin films prepared by PLD. Surf. Eng. 2019, 1–8. [Google Scholar] [CrossRef]
- Music, D.; Hensling, F.; Pazur, T.; Bednarcik, J.; Hans, M.; Schnabel, V.; Hostert, C.; Schneider, J.M. Bonding and elastic properties of amorphous AlYB14. Solid State Commun. 2013, 169, 6–9. [Google Scholar] [CrossRef]
- Kobayashi, S.; Tsurekawa, S.; Watanabe, T. A new approach to grain boundary engineering for nanocrystalline materials. Beilstein J. Nanotechnol. 2016, 7, 1829–1849. [Google Scholar] [CrossRef] [Green Version]
- Uberuaga, B.P.; Vernon, L.J.; Martinez, E.; Voter, A.F. The relationship between grain boundary structure, defect mobility, and grain boundary sink efficiency. Sci. Rep. 2015, 5, 9095. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, A.; Mishin, Y. Atomic mechanisms of grain boundary diffusion: Low versus high temperatures. J. Mater. Sci. 2005, 40, 3155–3161. [Google Scholar] [CrossRef] [Green Version]
- Berreman, D.W. Infrared absorption at longitudinal optic frequency in cubic crystal films. Phys. Rev. 1963, 130, 2193–2198. [Google Scholar] [CrossRef]
- Davydov, V.Y.; Kitaev, Y.E.; Goncharuk, I.N.; Smirnov, A.N.; Graul, J.; Semchinova, O.; Uffmann, D.; Smirnov, M.B.; Mirgorodsky, A.P.; Evarestov, R.A. Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys. Rev. B 1998, 58, 12899–12907. [Google Scholar] [CrossRef]
- Prokofyeva, T.; Seon, M.; Vanbuskirk, J.; Holtz, M.; Nikishin, S.A.; Faleev, N.N.; Temkin, H.; Zollner, S. Vibrational properties of AlN grown on (111)-oriented silicon. Phys. Rev. B 2001, 63, 125313. [Google Scholar] [CrossRef]
- Lu, Y.F.; Ren, Z.M.; Chong, T.C.; Cheong, B.A.; Chow, S.K.; Wang, J.P. Ion-assisted pulsed laser deposition of aluminum nitride thin films. J. Appl. Phys. 2000, 87, 1540–1542. [Google Scholar] [CrossRef]
- Taborda, J.A.P.; Caicedo, J.C.; Grisales, M.; Saldarriaga, W.; Riascos, H. Deposition pressure effect on chemical, morphological and optical properties of binary Al-nitrides. Opt. Laser Technol. 2015, 69, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.D.; Lifshitz, E.M. Mechanics. In Course of Theoretical Physics, 2nd ed.; Landau, L.D., Lifshitz, E.M., Eds.; Pergamon Press: Oxford, UK, 1969; Volume 1. [Google Scholar]
- Born, M.; Kun, H. Dynamical Theory of Crystal Lattices; Series Oxford Classic Texts in the Physical Sciences; Clarendon Press: Oxford, UK, 1998. [Google Scholar]
- Kitamura, R.; Pilon, L.; Jonasz, M. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Opt. 2007, 46, 8118–8133. [Google Scholar] [CrossRef]
- Kazan, M.; Rufflé, B.; Zgheib, C.; Masri, P. Phonon dynamics in AlN lattice contaminated by oxygen. Diam. Relat. Mater. 2006, 15, 1525–1534. [Google Scholar] [CrossRef]
- Klingshirn, C.F. Semiconductor Optics, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-3-642-28362-8. [Google Scholar]
Substrate Temperature (°C) | A1(TO) Mode (cm−1) | E1(TO) Mode (cm−1) | A1(LO) Mode (cm−1) | E1(LO) Mode (cm−1) |
---|---|---|---|---|
800 | 618 | 740 | 890 | 920 |
450 | 615 | 730 | 885 | 925 |
400 | 616 | 704 | 870 | 922 |
Substrate Temperature (°C) | Al/N Atomic Ratio |
---|---|
800 | 0.98 |
450 | 0.98 |
350 | 0.97 |
RT | 1.14 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolaklieva, L.; Chitanov, V.; Szekeres, A.; Antonova, K.; Terziyska, P.; Fogarassy, Z.; Petrik, P.; Mihailescu, I.N.; Duta, L. Pulsed Laser Deposition of Aluminum Nitride Films: Correlation between Mechanical, Optical, and Structural Properties. Coatings 2019, 9, 195. https://doi.org/10.3390/coatings9030195
Kolaklieva L, Chitanov V, Szekeres A, Antonova K, Terziyska P, Fogarassy Z, Petrik P, Mihailescu IN, Duta L. Pulsed Laser Deposition of Aluminum Nitride Films: Correlation between Mechanical, Optical, and Structural Properties. Coatings. 2019; 9(3):195. https://doi.org/10.3390/coatings9030195
Chicago/Turabian StyleKolaklieva, Lilyana, Vasiliy Chitanov, Anna Szekeres, Krassimira Antonova, Penka Terziyska, Zsolt Fogarassy, Peter Petrik, Ion N. Mihailescu, and Liviu Duta. 2019. "Pulsed Laser Deposition of Aluminum Nitride Films: Correlation between Mechanical, Optical, and Structural Properties" Coatings 9, no. 3: 195. https://doi.org/10.3390/coatings9030195
APA StyleKolaklieva, L., Chitanov, V., Szekeres, A., Antonova, K., Terziyska, P., Fogarassy, Z., Petrik, P., Mihailescu, I. N., & Duta, L. (2019). Pulsed Laser Deposition of Aluminum Nitride Films: Correlation between Mechanical, Optical, and Structural Properties. Coatings, 9(3), 195. https://doi.org/10.3390/coatings9030195