Next Article in Journal
Effect of Interlayer Thickness on Nano-Multilayer Coating Performance during High Speed Dry Milling of H13 Tool Steel
Previous Article in Journal
A New Assistant Method for Characterizing Ablation Resistance of ZrC-SiC Dispersive Biphasic Coating on C/C Composites
Previous Article in Special Issue
Novel Edible Coating with Antioxidant and Antimicrobial Activities Based on Whey Protein Isolate Nanofibrils and Carvacrol and Its Application on Fresh-Cut Cheese
Open AccessArticle

Effect of Transglutaminase Cross-Linking in Protein Isolates from a Mixture of Two Quinoa Varieties with Chitosan on the Physicochemical Properties of Edible Films

Facultad de Química, Departamento de Investigación y Posgrado en Alimentos, Universidad Autónoma de Querétaro, C.U., Cerro de las Campanas S/N, Col. Las Campanas, Querétaro 76010, Mexico
Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Gustavo A. Madero, Ciudad de Mexico 07738, Mexico
Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Av. Luis Enrique Erro s/n, Nueva Industrial Vallejo, Ciudad de Mexico 07738, Mexico
Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy
Author to whom correspondence should be addressed.
Coatings 2019, 9(11), 736;
Received: 18 September 2019 / Revised: 31 October 2019 / Accepted: 1 November 2019 / Published: 6 November 2019
(This article belongs to the Special Issue Edible Films and Coatings: Fundamentals and Applications)
The growing demand for minimally processed foods with a long shelf life and environmentally friendly materials has forced industry to develop new technologies for food preservation and handling. The use of edible films has emerged as an alternative solution to this problem, and mixtures of carbohydrates and proteins, may be formulated to improve their properties. The objective of this work was to evaluate the effect of protein cross-linking with transglutaminase (TG) of two varieties of quinoa protein isolate (Chenopodium quinoa) [Willd (QW), and Pasankalla (QP)] on the physicochemical and barrier properties of edible films based on chitosan (CT)-quinoa protein. The evaluated properties were water vapor permeability (WVP), solubility, adsorption, roughness determined by atomic force microscopy, and the interactions among the main film components determined by Raman spectroscopy. The results indicated that TG interacted with lysine of QW and QP. CT:QW (1:5, w/w) showed the lowest solubility (14.02 ± 2.17% w/w). WVP varied with the composition of the mixture. The WVP of CT:quinoa protein ranged from 2.85 to 9.95 × 10−11 g cm Pa−1 cm−2 s−1 without TG, whereas adding TG reduced this range to 2.42–4.69 × 10−11 g cm Pa−1 cm−2 s−1. The addition of TG to CT:QP (1:10, w/w) reduced the film surface roughness from 8.0 ± 0.5 nm to 4.4 ± 0.3 nm. According to the sorption isotherm, the addition of TG to CT-QW films improved their stability [monolayer (Xm) = 0.13 ± 0.02 %]. Films with a higher amount of cross-linking showed the highest improvement in the evaluated physical properties, but interactions among proteins that were catalyzed by TG depended on the protein source and profile. View Full-Text
Keywords: edible films; quinoa protein; chitosan; transglutaminase edible films; quinoa protein; chitosan; transglutaminase
Show Figures

Graphical abstract

MDPI and ACS Style

Escamilla-García, M.; Delgado-Sánchez, L.F.; Ríos-Romo, R.A.; García-Almendárez, B.E.; Calderón-Domínguez, G.; Méndez-Méndez, J.V.; Amaro-Reyes, A.; Di Pierro, P.; Regalado-González, C. Effect of Transglutaminase Cross-Linking in Protein Isolates from a Mixture of Two Quinoa Varieties with Chitosan on the Physicochemical Properties of Edible Films. Coatings 2019, 9, 736.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Back to TopTop