Hydrogen Sorption Kinetics of SiC-Coated Zr-1Nb Alloy
Abstract
1. Introduction
2. Materials and Methods
2.1. Coating Deposition
2.2. Hydrogenation
2.3. Characterization
3. Results and Discussion
3.1. Morphology and Composition of SiC Coating
3.2. Hydrogen Sorption of SiC-Coated Zr-1Nb Alloy
3.3. Crystalline Structure of Hydrogenated Samples
3.4. Depth Distribution of Elements
3.5. Adhesion of SiC Coating on Zr-1Nb Alloy
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zinkle, S.J.; Was, G.S. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Sabol, G. ZIRLO™—An Alloy Development Success. J. ASTM Int. 2005, 2, 1–22. [Google Scholar] [CrossRef]
- Adamson, R.; Cox, B.; Garzarolli, F.; Strasser, A.; Rudling, P.; Wikmark, G. Corrosion of Zirconium Alloys; Zirat-7 Special Topics Report; Advanced Nuclear Technology International: Uppsala, Sweden, 2002. [Google Scholar]
- Suman, S.; Khan, M.K.; Pathak, M. Effects of hydrogen on thermal creep behaviour of Zircaloy fuel cladding. J. Nucl. Mater. 2017, 498, 20–32. [Google Scholar] [CrossRef]
- Silva, K.R.F.; dos Santos, D.S.; Ribeiro, A.F.; Almeida, L.H. Hydrogen diffusivity and hydride formation in rich-zirconium alloys used in nuclear reactors. Defect Diffus. Forum 2010, 297, 722–727. [Google Scholar] [CrossRef]
- Zieliński, A.; Sobieszczyk, S. Hydrogen-enhanced degradation and oxide effects in zirconium alloys for nuclear applications. Int. J. Hydrog. Energy 2011, 36, 8619–8629. [Google Scholar] [CrossRef]
- Mani Krishna, K.V.; Sain, A.; Samajdar, I.; Dey, G.K.; Srivastava, D.; Neogy, S.; Tewari, R.; Banerjee, S. Resistance to hydride formation in zirconium: An emerging possibility. Acta Mater. 2006, 54, 4665–4675. [Google Scholar] [CrossRef]
- Singh, R.; Kishore, R.; Singh, S.; Sinha, T.; Kashyap, B. Stress-reorientation of hydrides and hydride embrittlement of Zr–2.5 wt % Nb pressure tube alloy. J. Nucl. Mater. 2004, 325, 26–33. [Google Scholar] [CrossRef]
- Hui, R.; Cook, W.; Sun, C.; Xie, Y.; Yao, P.; Miles, J.; Olive, R.; Li, J.; Zheng, W.; Zhang, L. Deposition, characterization and performance evaluation of ceramic coatings on metallic substrates for supercritical water-cooled reactors. Surf. Coat. Technol. 2011, 205, 3512–3519. [Google Scholar] [CrossRef]
- Barrett, F.; Huang, X.; Guzonas, D. Characterization of TiO2-doped yttria-stabilized zirconia (YSZ) for supercritical water-cooled reactor insulator application. J. Therm. Spray Technol. 2013, 22, 734–743. [Google Scholar] [CrossRef]
- Wiklund, U.; Hedenqvist, P.; Hogmark, S.; Stridh, B.; Arbell, M. Multilayer coatings as corrosion protection of Zircaloy. Surf. Coat. Technol. 1996, 86, 530–534. [Google Scholar] [CrossRef]
- Khatkhatay, F.; Jiao, L.; Jian, J.; Zhang, W.; Jiao, Z.; Gan, J.; Zhang, H.; Zhang, X.; Wang, H. Superior corrosion resistance properties of TiN-based coatings on Zircaloy tubes in supercritical water. J. Nucl. Mater. 2014, 451, 346–351. [Google Scholar] [CrossRef]
- Jin, D.; Yang, F.; Zou, Z.; Gu, L.; Zhao, X.; Guo, F.; Xiao, P. A study of the zirconium alloy protection by Cr3C2–NiCr coating for nuclear reactor application. Surf. Coat. Technol. 2016, 287, 55–60. [Google Scholar] [CrossRef]
- Usui, T.; Sawada, A.; Amaya, M.; Suzuki, A.; Chikada, T.; Terai, T. SiC coating as hydrogen permeation reduction and oxidation resistance for nuclear fuel cladding. J. Nucl. Sci. Technol. 2015, 52, 1318–1322. [Google Scholar] [CrossRef]
- Younker, I.; Fratoni, M. Neutronic evaluation of coating and cladding materials for accident tolerant fuels. Prog. Nucl. Energy 2016, 88, 10–18. [Google Scholar] [CrossRef]
- Lorrette, C.; Sauder, C.; Billaud, P.; Hossepied, C.; Loupias, G.; Braun, J.; Michaux, A. SiC/SiC composite behavior in LWR conditions and under high temperature steam environment. In Proceedings of the Top Fuel 2015, Zurich, Switzerland, 13–17 September 2015; pp. 126–134. [Google Scholar]
- Terrani, K.A.; Pint, B.A.; Parish, C.M.; Silva, C.M.; Snead, L.L.; Katoh, Y. Silicon carbide oxidation in steam up to 2 MPa. J. Am. Ceram. Soc. 2014, 97, 2331–2352. [Google Scholar] [CrossRef]
- Lei, Y.; Yu, Y.; Ren, C.; Zou, S.; Chen, D.; Wong, S.; Wilson, I. Compositional and structural studies of DC magnetron sputtered SiC films on Si(111). Thin Solid Films 2000, 365, 53–57. [Google Scholar] [CrossRef]
- Sigl, L.S. Thermal conductivity of liquid phase sintered silicon carbide. J. Eur. Ceram. Soc. 2003, 23, 1115–1122. [Google Scholar] [CrossRef]
- Bao, W.; Xue, J.; Liu, J.-X.; Wang, X.; Gu, Y.; Xu, F.; Zhang, G.-J. Coating SiC on Zircaloy-4 by magnetron sputtering at room temperature. J. Alloy. Compd. 2018, 730, 81–87. [Google Scholar] [CrossRef]
- Al-Olayyan, Y.; Fuchs, G.E.; Baney, R.; Tulenko, J. The effect of Zircaloy-4 substrate surface condition on the adhesion strength and corrosion of SiC coatings. J. Nucl. Mater. 2005, 346, 109–119. [Google Scholar] [CrossRef]
- Kudiiarov, V.; Babikhina, M.; Pushilina, N.; Kashkarov, E.; Syrtanov, M. Influence of surface state on hydrogen sorption by zirconium alloy Zr1Nb. AIP Conf. Proc. 2016, 1772, 030019. [Google Scholar]
- Evsin, A.E.; Begrambekov, L.B.; Gumarov, A.I.; Kaplevsky, A.S.; Luchkin, A.G.; Tagirov, L.R.; Vakhitov, I.R. Trapping and desorption of hydrogen isotopes under irradiation of zirconium by deuterium atoms of thermal energies. Vacuum 2016, 129, 183–187. [Google Scholar] [CrossRef]
- Evsin, A.E.; Begrambekov, L.B.; Gumarov, A.I.; Kashapov, N.F.; Luchkin, A.G.; Vakhitov, I.R.; Yanilkin, I.V.; Tagirov, L.R. Effect of irradiation by argon ions on hydrogen transport through the surface oxide layer of zirconium. J. Phys. Conf. Ser. 2016, 748, 012011. [Google Scholar] [CrossRef]
- Eder, D.; Kramer, R. The stoichiometry of hydrogen reduced zirconia and its influence on catalytic activity. Phys. Chem. Chem. Phys. 2002, 4, 795–801. [Google Scholar] [CrossRef]
- Tulk, E.; Kerr, M.; Daymond, M.R. Study on the effects of matrix yield strength on hydride phase stability in Zircaloy-2 and Zr 2.5 wt % Nb. J. Nucl. Mater. 2012, 425, 93–104. [Google Scholar] [CrossRef]
- Zuzek, E.; Abriata, J.P.; San-Martin, A.; Manchester, F.D. The H-Zr (hydrogen-zirconium) system. Bull. Alloy Phase Diagr. 1990, 11, 385–395. [Google Scholar] [CrossRef]
- Root, J.H.; Fong, R.W.L. Neutron diffraction study of the precipitation and dissolution of hydrides in Zr-2.5Nb pressure tube material. J. Nucl. Mater. 1996, 232, 75–85. [Google Scholar] [CrossRef]
- Mishra, S.; Sivaramakrishnan, K.S.; Asundi, M.K. Formation of the gamma phase by a peritectoid reaction in the zirconium-hydrogen system. J. Nucl. Mater. 1972, 45, 235–244. [Google Scholar] [CrossRef]
- Laptev, R.S.; Syrtanov, M.S.; Kudiiarov, V.N.; Shmakov, A.N.; Vinokurov, Z.S.; Mikhaylov, A.A.; Zolotarev, K.V. In situ investigation of thermo-stimulated decay of hydrides of titanium and zirconium by means of X-ray diffraction of synchrotron radiation. Phys. Procedia 2016, 84, 337–341. [Google Scholar] [CrossRef]
- Root, J.H.; Small, W.M.; Khatamian, D.; Woo, O.T. Kinetics of the δ to γ zirconium hydride transformation in Zr-2.5Nb. Acta Mater. 2003, 51, 2041–2053. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Discharge power | 1000 W |
Current | 1.47–1.48 A |
Voltage | 527–532 V |
Working pressure (Ar) | 0.12 Pa |
Deposition time | 50 min |
Distance to substrate | 100 mm |
Sample | Phases | Content, vol.% | Lattice Parameters, Å | c/a | Microstrain Δd/d, ×10−3 |
---|---|---|---|---|---|
SiC/Zr-1Nb | Zr_hcp | 100 | a = 3.2324 c = 5.1472 | 1.592 | 0.8 |
Zr-1Nb_H 350 | Zr_hcp | 79.7 | a = 3.2304 c = 5.1452 | 1.593 | 1.2 |
ZrH_fcc | 20.3 | a = 4.7786 | – | 2.9 | |
Zr-1Nb_H 400 | Zr_hcp | 28.3 | a = 3.2268 c = 5.1438 | 1.594 | 5.7 |
ZrH_fcc | 66.9 | a = 4.7784 | – | 3.3 | |
ZrH_fct | 4.8 | a = 4.5873 c = 4.9592 | 1.081 | 3.0 | |
Zr-1Nb_H450 | Zr_hcp | 12.1 | a = 3.2298 c = 5.1666 | 1.599 | – |
ZrH_fcc | 69.4 | a = 4.7783 | – | 3.9 | |
ZrH_fct | 18.5 | a = 4.5832 c = 4.9632 | 1.083 | 3.8 | |
SiC/Zr-1Nb_H 350 | Zr_hcp | 100 | a = 3.2329 c = 5.1496 | 1.593 | 0.5 |
SiC/Zr-1Nb_H 400 | Zr_hcp | 100 | a = 3.2325 c = 5.1497 | 1.593 | 0.7 |
SiC/Zr-1Nb_H 450 | Zr_hcp | 85.5 | a = 3.2304 c = 5.1482 | 1.594 | 0.8 |
ZrH_fcc | 14.5 | a = 3.2304 c = 5.1482 | – | 6.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashkarov, E.B.; Syrtanov, M.S.; Murashkina, T.L.; Kurochkin, A.V.; Shanenkova, Y.; Obrosov, A. Hydrogen Sorption Kinetics of SiC-Coated Zr-1Nb Alloy. Coatings 2019, 9, 31. https://doi.org/10.3390/coatings9010031
Kashkarov EB, Syrtanov MS, Murashkina TL, Kurochkin AV, Shanenkova Y, Obrosov A. Hydrogen Sorption Kinetics of SiC-Coated Zr-1Nb Alloy. Coatings. 2019; 9(1):31. https://doi.org/10.3390/coatings9010031
Chicago/Turabian StyleKashkarov, Egor B., Maxim S. Syrtanov, Tatyana L. Murashkina, Alexander V. Kurochkin, Yulia Shanenkova, and Aleksei Obrosov. 2019. "Hydrogen Sorption Kinetics of SiC-Coated Zr-1Nb Alloy" Coatings 9, no. 1: 31. https://doi.org/10.3390/coatings9010031
APA StyleKashkarov, E. B., Syrtanov, M. S., Murashkina, T. L., Kurochkin, A. V., Shanenkova, Y., & Obrosov, A. (2019). Hydrogen Sorption Kinetics of SiC-Coated Zr-1Nb Alloy. Coatings, 9(1), 31. https://doi.org/10.3390/coatings9010031